对一次大别山中尺度强对流系统的水分循环过程和非绝热加热过程的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从过去几年的统计来看,我国24小时的天气晴雨预报准确率平均已达到83%,但暴雨预报的准确率只有19%。主要原因是强暴雨常与中-β尺度天气系统有关,常规观测网络很难对此类系统给出迅速、准确的响应,数值模式系统也由于初始场的不精确和模式本身的不完善,很难做出准确预报。因此实施有效的中尺度观测,获取丰富的三维气象资料并加以整合利用,对深入研究暴雨的结构和机理显的尤为重要。水汽的辐合和强烈的上升运动在有利的环境条件下将引起积云对流的发展,积云对流通过水汽的辐合上升、凝结释放大量潜热来影响大尺度环境场,并反馈于中尺度系统本身;微物理过程中水物质的相变潜热和降水产生的拖曳对环境的热力动力过程也有不可忽视的作用,因此研究降水过程中热量、水汽收支状况以及系统中云物理过程及其与环境场间的相互作用是研究中尺度暴雨发生发展机理的重要组成部分。
     但是始终没有学者能够将水分循环和非绝热加热过程联系起来,深入讨论水物质和热量之间的关系及对暴雨形成的作用。因此本文使用LAPS系统融合中国SCHeREX计划野外试验中获取的丰富资料生成的格点分辨率为0.03°×0.03°、垂直方向22层、每小时一次的高分辨率中尺度再分析场资料,详细讨论水汽收支方程各项对2008年6月21日大别山地区一次局地性低涡暴雨过程降水的贡献,分析了降水区水汽收入及空中各相态水物质的量值及转化关系;然后借助对暴雨区视热源和视水汽汇的计算分析降水过程中非绝热加热状况,讨论热量与水汽收支之间的关系。通过以上分析研究,论文首先验证了LAPS系统具有良好的数据融合能力和中尺度系统再现能力,其生成的再分析资料可以作为中尺度分析的基础数据使用,并据此揭示了此次中尺度低涡暴雨能量和水分循环方面的特征及与强降水的内在联系,给出相应的概念模型。
     理论计算结果得到总水汽收入产生的降水量(2.42 mm/h)占实际降水量(3.16mm/h)的77%,地表水汽蒸发也是一个重要的水汽来源。水平辐合项贡献总水汽收入的87%,西边界和南边界为主要入流边界,辐合主要在中低层进行;局地变化项贡献总水汽收入的12%;低层水汽通量和局地水汽收入极大值分别出现强降水发生前5小时和1.5小时,前期的水汽水平辐合和局地水汽收入为后期水汽垂直输送和水汽通量的垂直辐合提供了大量水汽来源。强对流云团内整层气柱水汽总收入的变化领先于地面降水量变化1.5小时出现,说明进入强对流云团气柱中所有高度水汽凝结降落到地面的平均时间约为1.5小时。过程平均来看水汽共减小了2.42mm的比水含量,使大气中云粒子增加了0.228mm的比水含量,可降水粒子增加0.042mm比水含量,最终贡献了2.15mm的地面降水量。雪含量极值出现在最强降水时刻,云冰迅速减少时降水减弱,说明冰相粒子在此次降水过程中的重要作用。液态云水和云冰极大值分别出现在强降水发生前4小时和2小时,对降水有一定指示意义。
     平原地区水汽凝结释放潜热为加热场主要贡献因子,山区感热作用和冰相粒子潜热作用不可忽略。垂直廓线上Q2存在两个与水汽通量散度辐合中心相对应的峰值,低层强水汽辐合造成大量水汽汇集并凝结释放潜热,造成Q2凝结层以下的中心,而雪融化吸收大量热量,抵消了部分水汽凝结潜热,故Q1在低层显著小于Q2;凝结层以上的Q2高层中心在最大上升速度层,水汽被迅速抬升大量凝结加热大气,同时大量冰晶消耗过冷云水长大也造成水汽含量的减少和热量的增加,这两种加热效应叠加造成高层Q1大值中心大于Q2大值中心。
     强降水过程显著区别一般降水区的特征:a)550hPa以下水汽辐合强烈,b)250hPa以上冰晶层和550-250hPa冰水混合层中云冰浓度均很高,c)500-300hPa间雪含量较多,d)500hPa以下云水含量丰富,e)对流层低层视水汽汇显著,f)系统成熟时刻对流层中高层加热显著。
     研究中尺度涡旋系统与强对流系统相互作用的过程发现:气旋性辐合环流从低层逐渐向上发展,使得垂直运动加强,并有利于水汽的凝结和潜热释放及加热高度的增加,中层加热反过来加强上升运动,进一步促使低层湿空气辐合,有利于对流不稳定的发展和气旋性环流的增强,并使得气旋系统逐渐靠近强对流系统,这个正反馈过程使得降水持续发生,直到加热高度抬升至不利于低空环流的发展,两系统逐渐远离并减弱,降水也逐渐减弱。
The statistics results show, the accuracy of 24-hour precipitation forecast in China is up to 83%; but the accuracy of heavy rainfall is only 19%, mainly due to the relationship between heavy rainfall ant meso-βscale weather systems, hard to be rapidly and accurately captured by conventional observation networks. Due to imprecise initial field and deficiency of model itself, the numerical model system can not give accurate forecast to heavy rainfall too. Therefore, carrying up effective mesoscale observations, getting plenty of three-dimensional meteorological data and amalgamating them are very important in studying of the structure and mechanism of heavy rain. Under favorable environmental conditions the strong water vapor convergence and upward motion will cause the development of cumulus convective clouds. Through water vapor convergence, rising and condensation to release a large amount of latent heat, the cumulus convection affects the large-scale environmental field, and feedback to the meso-scale system itself. The latent heat released and absorbed by the phase transition of water substances and drag action caused by precipitation have significant affect in the thermal and dynamic process of environment. Therefore, the study of heat, water vapor budgets, cloud microphysical process and the interaction between them and the environmental field are very important component parts in the study on the occurrence and development of meso-scale heavy rainfall.
     But few scholar links the-water cycle and the diabatic heating, to discuss the their relationship and affects to heavy rainfall forms. In this thesis, LAPS data comes from the southern China heavy rainfall experiment (SCHeREX). During SCHeREX, we obtained abundant high spatial and temporal resolution 3D reanalysis data range of 113-119.57°E,28.5-34.02°N, horizontal resolution 0.03°x0:03°, vertical resolution of 22 layers and time resolution of 1 hour:By using the LAPS reanalysis data, we analyze the contribution to pricipitation of each items in water vapor budget, the amount of water vapor income and water substances and the phase transition among them. By calculating the budgets of apparent heat source and apparent moisture sink we analyze the diabatic heating characteristics and the relationship between heat and moisture. This thesis proves the ability of LAPS to assimilate data and describe the meso-scale system, its high resolution reanalysis data can be used as basic data for meso-scale meteorological analysis. According to the above anaysis, we reveal the inherent relationship between the water cycle and heating processes and the heavy rainfall.
     The theoretical calculated precipitation generated by total water vapor budget is 2.42 mm/h, accounting for 77% of actual precipitation (3.16 mm/h), and the eyaporation from surface ground is also an important source of vapor.87% of the water vapor income is contributed by the horizontal convergence term. The horizontal convergence which is mostly caused by wind convergence mainly occurs in middle and lower level. The western and southern boundaries are the major inflow boundaries. The local change term accounts for 12% of the total water vapor income. The maxima of flux divergence in low level and local income of water vapor appear 5 and 1.5 hours before the strongest precipitation moment respectively. Horizontal convergence and local change of water vapor in early period supply a large amount of water vapor for the vertical transportation and convergence of water vapor in late period. In the whole gas column averaged, the changes of water vapor income appear 1.5 hours ahead of precipitation changes, showing that in severe convective cloud system, the average time from water vapor in all height of air column condensation to falling to ground surface is about 1.5 hours. Water vapor decreases 2.42mm water content, causing 0.228mm water content increase of cloud particles and 0.042mm water content increase of precipitation particles, and eventually contributes to 2.15mm ground surface precipitation. The maximum of snow content appears just at the s heaviest rainfall moment; precipitation decrease when cloud ice content decreases rapidly, showing the ice-phase particles have important roles in this precipitation process. The maxima of cloud water and cloud ice appear 4 and 2 hours before the heaviest rainfall moment respectively, having certain forecasting significance for precipitation.
     In plain areas, the heat release of vapor condensation plays a major role to heating field; in mountain regions, the effect of sensible heat and ice-phase substance latent heat are not negligible. There are two peaks on the vertical profile of Q2, corresponding to the large value centers of water vapor flux convergence. Strong water vapor convergence causes a large amount of water vapor assembles and condenses to release latent heat in low level, forming the Q2 peak under 0℃layer. In this layer, melting snow absorbs great amount of heat, so Q1 is significantly smaller than Q2 in low layer. The other Q2 peak is located at maximum layer of vertical velocity. Water vapor is rapidly uplifted and condenses to heating the atmosphere. Simultaneously, many ice crystals grow up, casing the decrease of water vapor and the increase of heat. The combined effect leads to Q1 is bigger than Q2 in high layer.
     The characteristics of heavy rainfall process different from weak rainfall are is as follows:(a) the water vapor convergence is significant bellow 550hPa layer. (b) Cloud ice concentration in the ice crystal layer above 250hPa and mixed layer between 550-250hPa is very high (c) Snow concentration between 550-300hPa layer is relatively high. (d) Liquid cloud water is rich below the 500hPa layer. (e) The apparent moisture is significant in low layer. (f) The heating is notable in mid and high layer, in system matured moment.
     According to study for the interaction process between the mesoscale vortex system and severe convective system, we find that, cyclonic and convergent vortex system develops gradually from the lower troposphere to the upper troposphere, strengthening vertical upward movement, increasing the amount of water vapor condensation and latent heat release, and uplifting the heating height. All of these are beneficial to the convergence of moisture air in low layer, and then firm the development of convective instability and the strengthening of cyclonic vortex. This positive feedback makes the precipitation process continues, until the height of heating is not conducive to the development of low-level circulation. Then the strong convective system moves away from cyclone system, and precipitation decreases gradually.
引文
Tao Shiyan, and Ding Yihui,1981:Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and servere convective storms in China, Bull. Amer. Meteor. Soc,62:23-20.
    Bosart L. F.,1984:The Texas coastal rainstorm of 17-21 September 1979. An example of synoptic mesoscale interaction. Mon. Wea. Rev.,112(6):1108-1133.
    Ninomiya K. and Akiyama T.,1992:Multiscale feactures of Baiyu, the summer monsoon over Japan and the East Asia. J. Meteor. Soc. Japan,70:467-495.
    Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al.,2002:Large and meso-α scale characteristics of intense rainfall in the mid- and lower reaches of the Yangtze River. Chinese Science Bulletin,47(9):779-786.
    Matsumoto, J., K. Ninomiya and S. Yoshizumi,1971:Characteristic features of Baiu front associated with heavy rainfall. J. Meteor. Soc. Japan,49:267-281.
    Matsumoto, S. and T. Akiyama,1970:Mesoscale disturbances and related rainfall cells embedded in the Baiu front with a proposal on the role of convective momentum transfer. J. Meteor. Soc. Japan,48:91-102.
    Kato K.,1985:On the abrupt change in the structure of the Baiu front over the China continent in late May of 1979. J. Meteor.Soc. Japan,63:20-36.
    Kato K.,1987:Airmass transformation over the semi-arid region around north China and abrupt change in the structure of the Baiu Front in early summer. J. Meteor. Soc. Japan,65:737-750.
    Akiyama T.1989:Large, synoptic and meso scale variations of the Baid front, during July 1982 part I:Cloud features. J. Meteor. Soc. Japan,67:57-80.
    Akiyama T.1990:Large, synoptic and meso scale variations of the Baid front, during July 1982 part II:Frontal structure and disturbaces. J. Meteor. Soc. Japan,68: 557-574.
    Nagata, M. Y. Ogura,1991:A modeling case study of interaction between heavy precipitation and a LLJ over Japan in the Baiu Season. Mon. Wea. Rev.,119: 1309-1336.
    Ninomiya K. and H. Muraki,1986:Large scale circulation over East Asia during Baiu period of 1979. J. Meteor. Soc. Japan,64:409-429.
    Matsumoto J.,1970:On the structure of the "Baiu Front" and the associated intermediate scale disturbances in the lower atmosphere. J. Meteor. Soc. Japan, 48:479-491.
    Ninomiya K.,1984:Characteristics of Baiu front as a predominant subtropical front in the summer northern hemisphere. J. Meteor. Soc. Japan,62:880-893.
    Ma K.-Y. and L. F. Bosart,1987:A synoptic overview of a heavy rain event in southern China. Weather Forcasting,2:89-112.
    Akiyama, T.,1973:The largescale aspects of the characteristics of the Baiu. Pap. Meteor. Geophys.24:157-188.
    Ninomiya K. and H. Muraki,1986:Large scale circulation over East Asia during Baiu period of 1979. J. Meteor. Soc. Japan,64:409-429.
    Anthes, R. A., Y.-H. Kuo, S. G. Benjamin, and Y. F. Li,1982:The evolution of the Mesoscale environment of severe local stroms:Preliminary modeling results. Mon. Wea. Rev.,110:1187-1213.
    Ninomiya K, Muraki H.,1986:Large-scale circulation over East Asia during Baiu period of 1979. J. Meteor. Soc. Japan,64:409-429.
    Kurashima Atsushi,1966:日本の气候.东京都:古今东院,105-125.
    Kato K.,1985:On the abrupt change in the structure of the Baiu front over the China continent in late May of 1979. J. Meteor. Soc. Japan,63:20-36.
    Ding Yihui,1992:Summer monsoon rainfalls in China. J. Meteor. Soc. Japan,70: 373-396.
    Maddox R. A.,1980:Meso-scale convective complex. Bull Amer. Meteor. Sci.,61: 1374-1387.
    Nagata, M. Y. Ogura,1991:A modeling case study of interaction between heavy precipitation and a LLJ over Japan in the Baiu Season. Mon. Wea. Rev.,119: 1309-1336.
    Matsumoto, S. and K. Ninomiya,1971:On the mesoscal and medium-scale structure of a cold front and the relevant vertical circulation. J. Meteor. Soc. Japan, 49:648-662.
    Ninomiya K. and Akiyama T.,1992:Multiscale feactures of Baiyu, the summer monsoon over Japan and the East Asia. J. Meteor. Soc. Japan,70:467-495.
    UcceLLini, L. W. and D. R. Jonhson,1979:The coupling of upper and lower troposphere jet streaks and implications for the development of severe convective stroms. Mon. Wea. Rev.,107(6):682-703.
    Wang Bin and Isidoro Orlanski,1987:Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev.,115(7):1370-1393.
    Parsons D. B.,1992:An explanation for intense frontal updraft and narrow cold-frontal rainbands. J Amos. Sci.,49:1810-1825.
    Shapiro M. A. et al.,1985:The frontal hydraulic head:A micro-alpha scale(~1km) triggering mechanism for meso-α convective systems. Mon. Wea. Rev.,113: 1166-1183.
    Trier S. B. et al.,1990:Observations of a subtropical cold front in a region of complex terrain. Mon. Wea. Rev.,118:2449-2470.
    Lin Y.-J. et al.,1992:The structure of a subtropical prefrontal convective rainband, Part I:mesoscale kinematic structure determined from Dual-Doppler measurements. Mon. Wea. Rev.,120:1816-1836.
    Ray S. D. et al.,1991:Radar analysis of a TAMEX frontal system. Mon. Wea. Rev., 119:2519-2539.
    Kuo Y.-H. and G T.-J Chen,1990:The Taiwan Area Mesoscale Experiment(TAMEX): An overview. Bull. Amer. Meteor. Soc.,71:488-503.
    Ninomiya K.,1984:Characteristics of Baiu front as a predominant subtropical front in the summer northern hemisphere. J. Meteor. Soc. Japan,62:880-893.
    Kato K. and Y. Kodama,1992:Formation of the quasi-stationary Baiu front to the south of the Japan Island in early May of 1979. J. Meteor. Soc. Japan,70: 631-647.
    Kato K.,1987:Airmass transformation over the semi-arid region around north China and abrupt change in the structure of the Baiu Front in early summer. J. Meteor. Soc. Japan,65:737-750
    Ma K.-Y. and L. F. Bosart,1987:A synoptic overview of a heavy rain event in southern China. Weather Forcasting,2:89-112.
    Xu Yinlong, Qian Fenlan, Chen Zhi, et al,2002:Observational analysis of baroclinc boundary layer characteristics during one frontal winter snowstrom[J]. Advanced in Atmospheric Sciences,19(1):153-168.
    Chen, G. T.-J.,1992:Mesoscale Features Observed in the Taiwan Mei-Yu Season. J. Meteor. Soc. Japan,70,497-515.
    Matsumoto S, T Akiyama.,1970:Mesoseale disturbanees and related rainfail cells embedded in the Baiu front with a ProPosal on the role of convective momentum transfer. J Meteor Soc, Japan,48:91-102.
    Akiyama T.,1984:A medium-scale cloud cluster in a Baiu front. Part I:Evolution Proeess and a fine strueture. J Meteor Soc. Japan,62:485-504.
    Chen, S. J., Y.-H. Kuo, W. Wang, Z.-Y. Tao, B. Cui,1998:A Modeling Case Study of Heavy Rainstorms along the Mei-Yu Front. Mon. Wea. Rev.,126:2330-2351.
    Chen, Y. L., and N. B. F. Hui,1990:Analysis of a shallow front during Taiwan Area Mesoscale Experiment. Mon. Wea. Rev.,118:2649-2667.
    Chen, Y.-L.,1993:Some Synoptic-Scale Aspects of the Surface Fronts over Southern China during TAMEX, Mon. Wea. Rev.,121:50-64.
    Chen C. S.,1991:A Numerical study of a squall line over the Taiwan Strait during TAMEX IOP2[J]. Mon. Wea. Rev.,119:2677-2698.
    Chen G. T.-J. and C.-P. Chang,1980:The Structure and Vorticity Budget of an Early Summer Monsoon Trough (Mei-Yu) over Southeastern China and Japan. Mon. Wea. Rev.,108:942-953.
    Maddox R. A.,1980:Meso-scale convective complex. Bull Amer. Meteor. Sci.,61: 1374-1387.
    Johnston, E.C.,1981:Mesoseale Vortieity Centers Induced by Mesoseale Convective Complexes, M.5.thesis, University of Wisconsin,54.
    Houze, R.A., Rutledge S. A., and Smull B. F.1989:Intepretation of Doppler weathe rardar dsiplays of midlatitude mesoscale convcetive systmes. Bull. Amer. Meteo. Soc.,70:608-619.
    Hack, J.J., and W.H.Schubert,1986:Nonlinear response of atmospheric vortices to heating by organized cumulus conveetion. J.Atmos.Sei.,23(42):1559-1573.
    Zhang, D.-L., and J.M. Fritseh,1988:A numerical investigation of a conveetively generated, inertially stable, extratropical warmc-core meso vortex over land.Partl: Strueture and evolution. Mon.Wea.Rev.,116:2660-2687.
    Brandes, E.A.,1989:Evolution and structure of the 6-7 May 1985 mesoscale convective system and assoeiated vortex. Mon. Wea.Rev,118:109-127.
    Jorgenson, D.P., M.A.LeMone, and S.B.Trier,1997:Strueture and evolution of the 22 February 1993 TOGA COARE squallline:Observations of Precipitation,eireulation and surface energy fluxes. J.Atmos.Sei.,54:1961-1985.
    Yu, C.-K., B.J.-D. Jou and B.F. Smull,1999:Formative stage of a long-lived mesoseale vortex observed by airborne Doppler radar. Mon.Wea.Rev., 127:838-857.
    Bartels, D.L., andR.A.Maddox.1991:Mid level cyelonic vortices generated by mesoseale convcetive systems. Mon.Wea.Rev.,119:104-118.
    Trier, S.B., C.A.Davis., and W.C. Skamarock,2000:Long-lived moso-convective vortices and their environment. Part Ⅱ:Induced thermodynamic destabilization in idealized simulations. Mon.Wea.Rev,128:3396-3412.
    Luo Zhexian, Zhou Xiuji, Gao Shouting,2006:Two possible mechanisems for vortex self-orgainzation. Science in China(D),49(2):202-211.
    Chou, L. C.,1986:A numerical simulation of the Mei-yu front and the assocaiated LLJ. Ph. D. thesis, Naval Postgraduate School,157pp.
    Nagata, M. Y. Ogura,1991:A modeling case study of interaction between heavy precipitation and a LLJ over Japan in the Baiu Season. Mon. Wea. Rev.,119: 1309-1336.
    Kato, T.,1998:Numerical simulation of the band-shaped torrential rain observed over southern Kyushu, Japan on 1 August 1993. J. Meteor. Soc. Japan,76:97-126.
    Davison, N. E., K. Kurihara, T. Kato, G. Mills and K. Puri,1998:Dynamics and prediction of a mesoscale extreme rain event in the Baiu front over Kyushu, Japan. Mon. Wea. Rev.,126:1608-1629.
    Tao Shiyan and Chen Longxun,1988:A Reviw of Rencent Research on the East Asian Summer Monsoon in China. Monsoon Meteorology, Oxford University Press,60-92.
    Chen, G. T.-J. and C.C. Yu,1988:Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev.,116:884-891.
    Nagata, M. Y. Ogura,1991:A modeling case study of interaction between heavy precipitation and a LLJ over Japan in the Baiu Season. Mon. Wea. Rev.,119: 1309-1336.
    Chen, C., W. K. Tao et al.,1998:The intensification of the low-level jet during the development of mesoscale convective system on a Mai-Yu front. Mon. Wea. Rev., 126:349-371.
    Chen G. T.-J, X. A. Chen, S. Chen, Y.-H. Kuo,1997:A numerical study of the low-level jet during TAXEM IOP5. Mon. Wea. Rev.,125:2583-2604.
    Chen, S. J., Y.-H. Kuo, W. Wang, Z.-Y. Tao, B. Cui,1998:A Modeling Case Study of Heavy Rainstorms along the Mei-Yu Front. Mon. Wea. Rev.,126:2330-2351.
    Chen, S. J., W. Wang, K. H. Lau, Q. H. Zhang and Y.-S. Chung,2000:Mesoscale convective systems along the Mei-Yu front in a numerical model. Meteor. Atoms. Phys.,75:149-160.
    Jose P Peixoto,Oort Abraham H.气候物理学.吴国雄,刘辉,等译.北京:气象出版社,1995.
    Simmonds I, BiD, Hope P.,1999:Atomspheric water vapor flux and its association with rainfall over China in summer. J. Climate,12:1353-1367.
    JiangYing,Zhai Panmao, and Wang Qiyi,2005:Variability of summer atmosphere moisture flux and its diffection precipitation over east China. Acta Meteorologica Sinica,19(4):469-478.
    Sherwood, S. C. and R. Wahrlich,1999:Convective events and their environment. Mon. Wea. Rev.,127:1777-1795.
    Tompkins, A. M.,2001:Organization of tropical convection in low vertical wind shears:The role of water vapor. J. Atmos. Sci.,58:529-545.
    Grabowski, W. W.,2003:MJO-like coherent structures:Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci.,60: 847-864.
    Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares,2004:Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc.,130:3055-3080.
    Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis,2004:Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132:422-444.
    Holloway, C. E. and J. D. Neelin,2009:Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci.,66:1665-1683.
    J. Reisner, R. M. Rasmussen, R. T. Bruintjes,1998:Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. R. Meteorol. Soc.,124:1071-1107.
    Orville H D,1996:A review of cloud modeling in weather modification [J]. Bull. Amer. Meteor. Soc.,11 (7):1535-1555.
    Grabowski W W,1998:Toward cloud resolving modeling of large-scale tropical circulations:A simple cloud microphysics parameterization [J]. J. Atmos.Sci.,55: 3283-3298.
    Liu C H, Moncrieff M W, Zipser E J,1997:Dynamical influence of microphysics in tropical squall lines:Anumerical study [J]. Mon. Wea. Rev.,125:2193-2210.
    Marwitz J D.,1983:The kinematics of orographic airflow during sierra storms [J]. J. Atmos. Sci.,40:1218-1227.
    Cotton W R,1972:Numerical simulation of precipitation development in supercooled cumuli-PartⅡ [J]. Mon. Wea. Rev.,100(11):764-784.
    Liu C, Zipser E J.,1997:The dynamic influence of micro-physics in tropical squall lines:A numerical study[J]. Mon. Wea. Rev.,125:2193-2210.
    Chin H N S.,1994:The impact of the ice phase and radiation on a midlatitude squall line system[J]. J.Atmos. Sci.,51 (22):3320-3343.
    Kristovich D A R, Young G S, Verlinde J, et al.,2000:The lake-induced convection experiment and the snowband dynamics project [J]. Bull Amer Meteor Soc,81 (3):519-542.
    Ping Fan, Gao Shouting, Wang Huijun,2003:A comparative study of the numerical simulation of the 1998 summer flood in China by two kinds of cumulus convective parameterized methods. Adv. Atmos. Sci.,20(1):149-157.
    Heinemann G, Reudenbach C.,2003:Precipitation dynamics of convective clouds [J]. Lecture Notes in Earth Sciences,97:186-198.
    Ooyama K V.,2001:A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics [J]. J. Atmos.Sci.,58: 2073-2102.
    herwood, S. C. and R. Wahrlich,1999:Convective events and their environment. Mon. Wea. Rev.,127:1777-1795.
    Tompkins, A. M.,2001:Organization of tropical convection in low vertical wind shears:The role of water vapor. J. Atmos. Sci.,58:529-545.
    Grabowski, W. W.,2003:MJO-like coherent structures:Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci.,60: 847-864.
    Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares,2004:Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc.,130:3055-3080.
    Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis,2004:Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132:422-444.
    Holloway, C. E. and J. D. Neelin,2009:Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci.,66:1665-1683.
    Liston, G. E., and K. Elder,2006a:A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor.,7:217-234.
    Liston, G. E, and K. Elder,2006b:A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor.,7:1259-1276.
    Liston, G. E, C. A. Hiemstra, K. Elder, and D. Cline,2008:Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX). J. Hydrometeor., 9:957-976.
    Jankov, I., P. J. Schultz, C. J. Anderson, and S. E. Koch,2007:The Impact of Different Physical Parameterizations and Their Interactions on Cold Season QPF in the American River Basin. J. Hydrometeor.,9:1141-1151.
    Jankov, I.,W. A. Gallus JR., M. Segal, and S. E. Koch,2007:Influence of Initial Conditions on the WRF-ARW Model QPF Response to Physical Parameterization Changes. Wea. Forecasting,22:501-519.
    Micho Yanai, Esbensen S,Chu J-H.,1973:Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets[J]. Atmos Sci,30: 611-627.
    Nitta T.,1972:Energy budget of wave disturbance over the Marshall Islands during the years of 1956 and 1958[J]. Meteor Soc Japan,50:71-84.
    Luo H.-B. and M. Yanai,1983:the large-scale circulation and heat sources over the Tibetan plateau and surrouding areas during the early summer of 1979. Part Ⅱ, Heat and moisture budgets, Mon. Wea. Rev., 111:966-989.
    M. Yanai and Cheng feng,1992:seasonal heating of the Tibetan plateau and its effects on the evolution of the Asian summer monsoon, J. Meteor. Soc. Japan,70(1): 319-351.
    Luo Hui-Bang, Micho Yanai,1984:The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and Moisture budgets. [J].Mon. Wea. Rev.,112:966-989.
    Ding Yi hui and Hu Jian,1988:The variation of the heat sources in East China in the early summer of 1984 and their effects on the large - scale sirculation in East Alia[J]. Aavances in Atmos Sci,5(2):172-180.
    Li,Y-F, A.Hunag and K. Gao,1987:The role of convective heating in hevay rain system during Mei-Rains season. Scientis sinica (series B),182-197.
    Gao S, Cui X, Zhou Y, et al.,2005:Surface rainfall processes assimulated in a cloud-resolving model.J. Geophys. Res.,110:D10202, doi: 10.1029/2004JD005467.
    Gao S, Ping F, Li X.,2006:Tropical heat/water vapor quasi-equilibrium and cycle as simulated in a 2D cloud-resolving model.Atmospheric Research,79(1):15-29.
    Kuo Y.-H. and G T.-J Chen,1990:The Taiwan Area Mesoscale Experiment(TAMEX): An overview. Bull. Amer. Meteor. Soc.,71:488-503.
    Lin Y.-J. et al.,1992:The structure of a subtropical prefrontal convective rainband, Part I:mesoscale kinematic structure determined from Dual-Doppler measurements. Mon. Wea. Rev.,120:1816-1836.
    Micho Yanai, Esbensen S,Chu J-H.,1973:Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets[J]. Atmos Sci,30: 611-627
    Luo Hui-Bang, Micho Yanai,1984:The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and Moisture budgets. [J]. Mon. Wea. Rev.,112:966-989.
    McGinley, J. A., S. C. Albers, and P. A. Stamus,1991:Validation of a composite convective index as defined by a real-time local analysis system. Wea. Forecasting,6,337-356.956
    Albers, S. C.,1995:The LAPS wind analysis. Wea. Forecasting,10,342-352.
    Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart,1996:The Local Analysis and Prediction System (LAPS):Analyses of clouds, precipitation, and temperature. Wea. Forecasting,11,273-287.
    Birkenheuer, D.,1999:The effect of using digital satellite imagery in the LAPS moisture analysis. Wea. Forecasting,14,782-788.
    Hiemstra, C. A., G. E. Liston, R. A. Pielke Sr., D. L. Birkenheuer, and S. A. Albers, 2006:Comparing Local Analysis and Prediction System (LAPS) assimilations with independent observations. Wea. Forecasting,21,1024-1040.
    Brewster K., S. Albers, F. H. Carr, and M.Xiue,1995:Initializing a nonhydrostatic forecast model using WSR-88D data and OLAPS. Preprints,27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc.,252-254.
    Birkerheuer D L, Gutman S. A,2005:comparison of GOES moisture-derived product and GPS-IPW data during IHOP_200 [J]. J Atoms Oceanic Technol,22, 1838-1845.
    Liston, G. E.,, D. L. Birkenheuer, C. A. Hiemstra, D. W. Cline, K. Elder,2007: NASA Cold Land Processes Experiment (CLPX 200203):Atmospheric Analyses Datesets. J. Hydrometeor.,9,952-956
    Barnes, S. L.,1964:A technique for maximizing details in numericalweather map analysis. J. Appl. Meteor.,3,396-409.
    Lewis, J. M.,1971:Variational subsynoptic analysis with applications to severe local storms. Mon. Wea. Rev.,99,786-795.
    Birkenheuer, D. L.,1996:Applying satellite gradient moisture information to localscale water vapor analysis using variational methods. J. Appl. Meteor.,35, 24-35.
    McGinley, J. A.,1982:A diagnosis of alpine lee cyclogenesis. Mon. Wea. Rev.,110, 1271-1287.
    McGinley, J. A.,,1987:Use of satellite IR data in the enhancement of surface thermal fields. Proc. Symp. on Mesoscale Analysis and Forecasting, Vancouver, BC, Canada, ESA SP-282,123-128.
    Bleck, R., and S. G. Benjamin,1993:Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I:Model description. Mon. Wea. Rev.,121,1770-1785.
    Haines, P. A., J. K. Luers, and C. A. Cerbus,1989:The role of the Smith-Feddes model in improving the forecasting of aircraft icing. Preprints, Third Conf. on the Aviation Weather System, Anaheim, CA, Amer. Meteor. Soc.,258-263.
    Donaldson, R., R. Dyer, and M. Kraus,1975:An objective evaluator of techniques for prediction of severe weather events. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc.,321-326.
    McGinley, J. A., and S. Albers,1991:Validation of liquid cloud water forecasts from the Smith-Feddes method derived from soundings and LAPS analyses. Preprints, Fourth Int. Conf. on Aviation Weather Systems, Paris, France, Amer. Meteor. Soc.,228-233.
    McGinley, J. A.,1995:Opportunities for high resolution data analysis, prediction, and product dissemination within the local weather office. Preprints,14th Conf. on Weather Analysis and Forecasting, Dallas, TX, Amer. Meteor. Soc.,478-485.
    Hiemstra, C. A., G. E. Liston, R. A. Pielke Sr., D. L. Birkenheuer, and S. C. Albers, 2006:Comparing local analysis and prediction system(LAPS) assimilations with independent observations. Wea. Forecasting,21,1024-1040.
    Elder, K., D. Cline, G. Goodbody, P. Houser, G. E. Liston, L. Mahrt, and N. Rutter, 2008:NASA Cold Land Processes Experiment (CLPX 2002/03):Ground-based and nearsurface meteorological observations. J. Hydrometeor,21,952-956
    Snook, J. S., P. A. Stamus, J. Edwards, Z. Christidis, J. A. McGlinley,1997: Local-Domain Mesoscale Analysis and Forecast Model Support for the 1996 Centennial Olympic Games. Wea. Forecasting,13,138-150.
    Yuan Huilin, J. A. McGinley, P. J. Schultz, C. J. Anderson, C. Lu,2008:Short-Range Precipitation Forecasts from Time-Lagged Multimodel Ensembles during the HMT-West-2006 Campaign. J. Hydrometeor.,9,477-491.
    Etherton, B., P. Santos,2008:Sensitivity of WRF Forecasts for South Florida to Initial Conditions. Wea. Forecasting,23,725-740.
    Snook, J. S., P. A. Stamus, J. Edwards, Z. Christidis, J. A. McGlinley,1997: Local-Domain Mesoscale Analysis and Forecast Model Support for the 1996 Centennial Olympic Games. Wea. Forecasting,13,138-150.
    Rothfusz, L. P., and M. R. McLaughlin,1997:Weather support for the XXVI Olympiad. NOAA Tech. Memo. NWS SR-184, National Weather Service, Southern Region, Fort Worth, TX,70 pp.
    Liston, G. E., and K. Elder,2006a:A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor.,7,217-234.
    Liston, G. E, C. A. Hiemstra, K. Elder, and D. Cline,2008:Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX). J. Hydrometeor., 9,957-976.
    Liston, G. E, and K. Elder,2006b:A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor.,7,1259-1276.
    Jankov, I., P. J. Schultz, C. J. Anderson, and S. E. Koch,2007a:The Impact of Different Physical Parameterizations and Their Interactions on Cold Season QPF in the American River Basin. J. Hydrometeor.,9,1141-1151.
    Jankov, I.,W. A. Gallus JR., M. Segal, and S. E. Koch,2007b:Influence of Initial Conditions on the WRF-ARW Model QPF Response to Physical Parameterization Changes. Wea. Forecasting,22,501-519.
    Birkenheuer, D.,1999:The effect of using digital satellite imagery in the LAPS moisture analysis. Wea. Forecasting,14,782-788.
    Cherubini, T., S. Businger, C. Velden, R. Ogasaware,2005:The Impact of Satellite-Derived Atmospheric Motion Vectors on Mesoscale Forecasts over Hawaii. Mon. Wea. Rev.,134,2009-2020
    J.Reisner,R.M.Rasmussen,R.T.Bruintjes.Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q.J.R. Meteorol.Soc., 1998,124:1071-1107.
    Luo Hui-Bang, Micho Yanai. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and Moisture budgets. [J]. Mon Wea Rev,1984 (or1983),112:966-989
    Ding Yi hui and Hu Jian. The variation of the heat sources in East China in the early summer of 1984 and their effects on the large - scale sirculation in East Alia[J]. Aavances in Atmospheric Sciences
    Sherwood, S. C. and R. Wahrlich,1999:Convective events and their environment. Mon.Wea. Rev.,127,1777-1795.
    Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis,2004:Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132,422-444.
    Johnson. Heat and moisture budgets of tropical mesoscale anvil clouds[J]. Atmos. Sci., 1983,40:2138-2147
    Johnson. Partitionning tropical heat and moisture budgets into cumulus and mesoscale components:Implications for cumulus parameterization. Mon. Wea. Rev., 1984,112:1590-1601
    Luo Hui-Bang, Micho Yanai. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ:Heat and Moisture budgets. [J]. Mon Wea Rev,1984,112:966-989
    Ding Yi hui and Hu Jian. The variation of the heat sources in East China in the early summer of 1984 and their effects on the large - scale sirculation in East Alia[J]. Aavances in Atmospheric Sciences,1988,5(2):171-180
    程麟生。中尺度大气数值模式和模拟。北京:气象出版社,1994,152—164。
    陶诗言等。中国之暴雨。北京:气象出版社,1980,1—225。
    《华北暴雨》编写组。华北暴雨。气象出版社,1992。
    丁一汇。高等天气学。北京:气象出版社,2005,236。
    陶诗言等。中国之暴雨。北京:气象出版社,1980,25-26。
    丁一汇。暴雨和强对流研究。北京:科学出版社,1980,1—13。
    丁一汇。1991年江淮流域持续性特大暴雨研究。北京:气象出版社,1993,1—55。
    中科院大气物理研究所集刊。暴雨及强对流天气的研究。北京:气象出版社,1980。
    陶诗言。季风研究中有待解决的问题,现代大气科学前沿与展望。北京:气象出版社,1996,35—36。
    梁必骐。南海热带大气环流系统。北京:气象出版社,1991,22,209。
    孙颖,丁一汇,等。1997年东亚夏季风异常活动在汛期降水中的作用。应用气象学报,2002,13(3):277—287。
    柳艳菊,丁一汇,等。1998年夏季风爆发前后南海地区的水汽输送和水汽收支。2005,21(1):55—62。
    陶诗言,徐淑英。夏季江淮流域持久性旱涝现象的环流特征。气象学报,1962,30(1):1—10。
    陶诗言等。中国夏季副热带天气系统若干问题的研究。北京:科学出版社,1963,106—123。
    黄士松。副热带高压东西向移动及其预报的研究。气象学报,1963,33(3):320—332。
    陈兴芳,赵振国。中国汛期降水预测研究及应用[M]。北京:气象出版社,2000,1-20。
    伍荣生。现代天气学原理[M]。北京:高等教育出版社,1999,191—192。
    叶笃正,黄荣辉。长江黄河流域旱涝规律和成因研究[M]。济南:山东科学技术出版社,1996,65—77,367。
    毕慕莹。夏季西太平洋副热带高压的振荡。气象学报,1989,47(4):467—474。
    喻世华,杨维武。季节内西太平洋副热带高压异常进退的诊断研究。热带气象学报,1995,11(3):214—222。
    喻世华,张韧,杨维武。副热带高压进退机理研究。北京:解放军出版社,1999,47—53。
    苏东玉,李跃清,蒋兴文。南亚高压的研究进展及展望。干旱气象,2006,24(3):68—74。
    方宗义等。一次前汛期暴雨过程的综合分析。《大气物理研究所集刊》,1980年。
    蒋伯仁、张爱华。华南前汛期暴雨的红外卫星云图特征。南京气象学院学报,1981,1。
    龚振淞,王永光,许力。2003年夏季中高纬度环流与淮河流域降水[J]。气象,2004,30(2):30-33。
    何敏,龚振淞,许力。热带环流系统异常对2003年淮河持续性暴雨的影响[J]。热带气象学报,200,21(3):323—329
    李峰,林建,何立富。西风带系统的异常活动对2003年淮河暴雨的作用机制研究[J]。应用气象学报,2006,17(3):303—309。
    张小玲,陶诗言,等。1996年7月洞庭湖流域持续性暴雨过程分析。应用气象学报,2004,15(1):21—31
    仪清菊,刘品,王明志。1998年华南暴雨试验期暴雨过程概述。气象科技,1999(3):33—39。
    竺可祯。东南季风与中国之雨量。地理学报,1934。
    涂长望。中国之气团。气象研究所集刊,1937,12。
    陶诗言。中国的梅雨。中央气象局气象论文集,1958,36-40。
    王德翰,韦统建。伴有特大暴雨的梅雨锋结构特征,长江流域暴雨文集。北京:气象出版社,1982,76—81。
    丁一汇。梅雨锋的环流结构。气象,1976(5)
    高守亭,陶诗言。高空急流加速与低层锋生。大气科学,1991,15(2):11—21。
    周仲岛,洪景山和邓秀明。1990:梅花锋面对流雨带双多卜勒雷达分析。大气科学(台湾),15:239—264。
    徐娟。低层梅雨锋结构及锋生中冷空气的分析。科技通报,2004,20(6):506—511。
    姚秀萍,于玉斌。2003年梅雨期干冷空气的活动及其对梅雨降水的作用。大气 科学,2005,29(6):973—985。
    赵思雄,陶祖钰,孙建华,贝耐芳,等。长江流域梅雨锋暴雨机理的分析研究。气象出版社,北京。2004。
    张庆红。台湾海峡上空中尺度对流系统的数值模拟[博士学位论文]。北京:北京大学物理学院大气科学系,1999:2—3。
    张小玲,陶诗言,张庆云。1998年梅雨锋的动力热力结构分析。应用气象学报,2002,13(3):257—268。
    胡伯威,彭广。暖切变型梅雨锋结构及其形成和维持机制。大气科学,1996,20:463-472
    顾震潮。论锋面在副热带里的性质和华中华南锋面分析问题。气象学报,1953,24(1):28—32。
    黄士松等。华南前汛期暴雨。广州:广东科技出版社,1986,28—54。
    闫敬华,薛纪善。“5.24"华南中尺度暴雨系统结构的数值模拟分析。热带气象学报,2002,18(4)。
    叶笃正、朱抱真。大气环流的若干基本问题。北京:科学出版社,1958。
    陶诗言、赵煜佳、陈晓敏。东亚的梅雨期与东亚上空大气环流季节变化的关系。气象学报,1958,29:119—134。
    陶诗言等。中国夏季副热带天气系统若干问题的研究。北京:科学出版社,1963。
    孙淑清等。低空急流与暴雨相互关系的对比分析。气象学报,1979,37(1):36—44。
    孙淑清。关于低空急流对暴雨触发作用的一种机制。气象,1979,4。
    孙淑清,翟国庆。低空急流的不稳定性及其对暴雨的触发作用。大气科学,1980,4,327—337。
    陶祖钰。湿急流的结构和形成过程。气象学报,1980,38(4)
    巢纪平。非均匀层结大气中的重力惯性波及其在暴雨中的初步应用。大气科学,1980,4(3)。
    孙淑清。低层风场在暴雨发生中的动力作用。大气科学,1982,6:394—403。
    陈受均。梅雨末期暴雨过程中高低空环流的耦合——数值实验。气象学报,1989,47:8—15。
    陶祖钰,黄伟。大暴雨过程中与急流相关气块的三维运动分析。气象学报,1994, 52(3):359—367。
    俞樟孝等。一次高空急流中心引起的梅雨锋暴雨分析。杭州大学学报,1981,8(1):104—112。
    斯公望,俞樟孝,李法然。一次梅雨锋低空急流形成的分析[J]。大气科学,1982,6(2):165—169。
    斯公望。论东亚梅雨锋的大尺度环流及其次天气尺度扰动。气象学报,1989,47(3):312—323。
    徐海明,.何金海,周兵。“倾斜”高空急流轴在大暴雨过程中的作用。南京气象学院学报,2001,6(2):155—161。
    陶诗言等。中国之暴雨。北京:科学出版社,1980,225pp。
    赵思雄,刘苏红,刘名扬。夏季北京冷涡强对流天气的中尺度分析,暴雨及强对
    流天气的研究。中国科学院大气物理研究所集刊,第9号,北京:科学出版社,1980。
    高守亭。行星边界层内低涡的环流结构。气象学报,1983,41(3):285—295。
    罗四维,何梅兰,刘晓东。关于夏季青藏高原低涡的研究。中国科学(B),1993,23(7):778—784。
    陈忠明,徐茂良,闵文彬,等。1998年夏季西南低涡活动与长江上游暴雨。高原气象,2003,22(2):162—167。
    陈忠明,黄福均,何光碧。热带气旋与西南低涡相互作用的个例研究。大气科学,2002,26(3):352—360。
    曾庆存。数值天气预报的数学物理基础。北京:科学出版社,1979,237—314。
    项素清。热带低压环流引发的中尺度特大暴雨过程分析[J]。气象科技,2003,31(1):38—49。
    项素清,徐燕峰。浙北地区一次强对流天气过程分析[J]。气象,2003,29(5):46—50。
    温市耕。切变线类暴雨发生的天气背景和触发机制[J]。气象,1999,25(2):44—48。
    郑永光,陈炯,葛国庆,黄艳芳,张春喜。梅雨锋的天气尺度研究综述及其天气
    学定义。北京大学学报(自然科学版)[J],2008,44(1):157—164。
    方宗义等。2003年7月3日梅雨锋切变线上的β—中尺度暴雨云团分析[J]。应用 气象学报,2005,16(5):569—575。
    孙健,刘淑媛,陶祖钰等。1998年6月8—9日香港特大暴雨中尺度对流系统分析[J]。大气科学,2004,28(5):713—721。
    刘黎平,阮征,覃丹宇。长江流域梅雨锋暴雨过程的中尺度结构个例分析。中国科学(D),2004,34(12):1193—1201。
    贝耐芳,赵思雄。1998年“二度梅”期间突发强暴雨系统的中尺度分析。大气科学,2002,26(4):526—540。
    赵思雄等。中尺度动力学以及灾害性天气预测理论研究。大气科学,1998,22(4):503—510。
    倪允琪、周秀骥。我国长江中下游梅雨锋暴雨研究的进展[J]。气象,2005,1:9—12。
    高坤、徐亚梅。1999年6月下旬长江流域持续性暴雨的分析。大气科学,2001,25:40—756。
    张小玲、陶诗言、张顺利。梅雨锋上的三类暴雨。大气科学,2002,13:385—397。
    丁一汇。高等天气学[M]。北京,气象出版社,2005:309—442。
    方宗义。长江流域和华南汛期暴雨二卫星云特征,气象卫星资料分析应用文集(M]。北京:气象出版社,1985:55—62。
    王欢,倪允琪。2003年淮河汛期一次中尺度强暴雨过程的诊断分析和数值模拟研究[J]。气象学报,2006,64(6):735—742。
    郑永光,陈炯,费增坪等。2003年淮河流域持续暴雨的云系特征及环境条件[J]。北京大学学报(自然科学版),2007,43(2):157—165。
    方宗义。长江流域和华南汛期暴雨二卫星云特征,气象卫星资料分析应用文集(M)。北京:气象出版社,1985:55—62。
    李玉兰,王倩熔,郑新江,等。中国西南—华南地区中尺度对流复合体(MCC)的研究[J]。大气科学,1989,13:417—422。
    项续康,江吉喜。中国南方地区的中尺度对流复合体[J]。应用气象学报1995,6:1—17。
    程麟生,冯伍虎。“98.7”突发大暴雨及中尺度低涡结构的分析和数值模拟。大气科学,2001,25(4):465—478。
    程麟生,冯伍虎。“98.7"暴雨p中尺度低涡生成发展结构演变:双向四重嵌套网格模拟。气象学报,2003,61(4)385—395。
    徐亚梅,高坤。1998年7月22日长江中游中p低涡的数值模拟及分析。气象学报,2002,60(1):85—95。
    张小玲,陶诗言,张庆云。1998年7月20—21日武汉地区梅雨锋上突发性中—β系统的发生发展分析。应用气象学报,2002,13(4):386—397。
    冯伍虎,程麟生。“98.7”突发性特大暴雨中尺度切变线低涡发展的涡源诊断。高原气象,2002,21(5):447—456。
    张丙辰。长江中下游梅雨锋暴雨研究。北京:气象出版社,1990。
    丁一汇等。1991年江淮流域持续性特大暴雨的研究。北京:气象出版社,1993。
    高守亭,赵思雄,周晓平等。次天气尺度及中尺度暴雨系统研究进展。大气科学,2003,27(4):618—627。
    高坤,徐亚梅。1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究。大气科学,2001,25(6):740—756。
    陈丽芳,高坤,徐亚梅。梅雨锋演变与低涡发展的联系。浙江大学学报(理学版),2004,31:103—109。
    隆霄,程麟生。“99.6”梅雨锋暴雨低涡切变线的数值模拟和分析。大气科学,2004,28(3):342—356。
    程麟生。“91.7”暴雨低涡发展结构和暴雨机制的中尺度数值模拟[J]。暴雨灾害,1997,1:63—70。
    孙力,安刚。1998年松嫩流域东北冷涡大暴雨过程的诊断分析。大气科学,2001,25(3):342—354。
    周秀骥,罗哲贤,高守亭。涡旋自组织的两类可能机制。中国科学(D辑),2006,36(2):201—208。
    韦统键,薛建军。影响江淮地区的西南涡中尺度结构特征[J]。高原气象,1996,14(4):456—463。
    程麟生,冯伍虎。“987”突发大暴雨及中尺度低涡结构的分析和数值模拟[J]。大气科学,2001,25:465—478。
    孙建华,张小玲,齐琳琳等。2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究[J]。大气科学,2004:675—691。
    张庆红,刘启汉,王洪庆等。华南梅雨锋上中尺度对流系统的数值模拟。科学通报,2000,45(18):198—218。
    程麟生。中尺度大气数值模式和模拟[M]。北京:气象出版社,1994,152—164。
    陶诗言,倪允琪,赵思雄等。1998年中国暴雨的形成机理与预报研究[M]。北京:气象出版社,2001,180—184。
    仪清菊,魏凤英,许晨海等编译。国外暴雨研究最新进展[M]。北京:气象出版社,2001。
    周秀骥主编。海峡两岸及邻近地区暴雨试验研究[M]。北京:气象出版社,2000。
    赵柏林,丁一汇编。淮河流域能量与水分循环研究(一)[M1。北京:气象出版社,1999。
    丁一汇主编。1991年江淮流域持续性特大暴雨研究[M]。北京:气象出版社。1993
    丁一汇。高等天气学。北京:气象出版社,2005,43—53。
    陶诗言,倪允琪等。1998年夏季中国暴雨的形成机理与预报研究。北京:气象出版社,2001,137—141。
    高国栋,翟盘茂。长江流域旱涝典型年大气水汽输送。水科学进展,1993,4(1):10—16。
    马开玉,高国栋。长江流域典型旱涝年夏季大气中的水汽输送。气象科学,1992,12(1):48—56。
    陆渝蓉,高国栋,朱超群。江淮地区旱涝灾害年份的水分气候研究。地球物理学报,1996,39(3):313—321。
    曹丽青,高国栋,翟盘茂,等。江淮流域大气水分特征与旱涝关系的诊断分析。气象科学,1993,13(2):164—173。
    罗会邦、王两铭。暴雨天气动力学一些问题的探讨(2)。中山大学学报,1978,1。
    卓东奇,郑益群,李炜。江淮流域夏季典型旱涝年大气中的水汽输送和收支。气象科学,2006,26(3):244—251。
    徐敏,田红。淮河流域2003年梅雨期降水与水汽输送的关系。气象科学,2005,25(3):265—271。
    鲍媛媛,李锋,矫梅燕。2003年淮河流域特大暴雨期间低纬环流分析[J]。气象, 2004,30(2):25—29。
    蒋伯仁、张爱华。华南前汛期暴雨的红外卫星云图特征。南京气象学院学报,1981,1。
    孙建华,赵思雄。华南“94.6”特大暴雨的中尺度对流系统及其环境场研究Ⅰ引发
    暴雨的中-β尺度对流系统的数值模拟研究。大气科学,2002,26(4):541—557。
    丁一汇,胡国权。1998年中国大洪水时期的水汽收支研究[J]。气象学报,2003,61(2):146—163。
    丁一汇,刘月贞。7507号台风中水汽收支的研究[J]。海洋学报,1986,8(3):291—301。
    胡国权,丁一汇。1991年江淮暴雨时期的能量和水汽循环研究[J]。气象学报,2003,61(2):129—145。
    李峰等。2005年“5.31”湖南大暴雨中尺度模拟和发生机制[J]。高原气象,2007,26(3):442—452。
    贝耐芳,赵思雄。1998年“二度梅”期间突发强暴雨系统的中尺度分析。大气科学,2002,26(4):526—540。
    胡志晋,徐华英。中国云降水学和人工影响天气研究//中国气象局。人工影响天气(十二),1999,12—15。
    游来光。我国人工影响天气40年科学技术进展的回顾//中国气象局。人工影响天气(十二),1999,9—11。
    中国气象科学研究院。中国气象科学研究院二十年。1999,40—45。
    游来光,石安英。北京地区1963年春季冰核浓度变化特点的观测分析。气象学报,1964,34(4):548—554。
    苏正军,黄世鸿,刘卫国。一次华北冷涡降水的云微物理的飞机探测特征[J]。气象,2000,26(6):16—25。
    杨静,王鹏云,杨绍忠等。对梅雨锋降水云微物理结构的摄像探空观测和分析[J]。气象,2002,28(2):3—8。
    刘卫国,苏正军,王广河,等。新一代机载PMS粒子测量系统及应用。应用气象学报,2003,14(增刊):11—18。
    廖菲,洪延超,郑国光。影响云和降水的动力、热力与微物理因素的研究概述。 气象,2006,32(11):3—11。
    廖菲,洪延超,郑国光。地形对降水的影响研究概述。气象科技,2007,35(3):309—316。,
    何观芳,胡志晋。不同云底温度雹云成雹机制及其引晶催化的数值研究。气象学报,1998,56(1):31—45。
    洪延超。冰雹形成机制和催化防雹机制研究。气象学报,1999,57(1):30—44。
    刘玉宝,周秀骥,胡志晋。强对流风暴数值模拟及其未来预报的若干问题[J]。应用气象学报,1994,5(4):418—427。
    孙凌峰,郭学良,孙立潭等。武汉“6·22”空难下击暴流的三维数值模拟研究[J]。大气科学,2003,27(6):1077—1092。
    胡朝霞,李宏宇,肖辉,等。旬邑冰雹云的数值模拟及累积带特征。气候与环境研究,2003,8(2):196—208。
    刘术艳,肖辉,杜秉玉,等。北京一次强单体雹暴的三维数值模拟。大气科学,2004,28(3):455—470。
    胡朝霞,郭学良,李宏宇,等。慕尼黑一次混合型雹暴的数值模拟与成雹机制。大气科学,2007,31(5):973—986。
    陈宝君,肖辉。过冷雨水低含量条件下冰雹形成和增长机制及其催化效果的数值模拟。大气科学。2007,31(2):273—290。
    胡朝霞,齐彦斌,郭学良,等。青藏高原东部冰雹形成机理的数值模拟。气候与环境研究,2007,12(1):37—48。
    康凤琴,张强,渠永兴,等。青藏高原东北侧冰雹微物理过程模拟研究。高原气象,2004,23(6):735—742。
    李兴宇,洪延超。三维冰雹云数值催化模式改进与个例模拟研究。气象学报,2005,63(6):874—888。
    陶玥,洪延超。云中粒子谱形状因子变化对云及降水影响的数值研究。气象学报,2007,65(2):221—230。
    洪延超,周非非。“催化—供给”云降水形成机理的数值模拟研究。大气科学,2005,29(6):885—896。
    胡朝霞,雷恒池,郭学良,等。降水性层状云系结构和降水过程的观测个例与模拟研究。大气科学,2007,31(3):425-439。 顾震潮。云雾降水物理基础。北京:科学出版社,1980,173—177。
    肖辉,王孝波,周非非,等。强降水云物理过程的三维数值模拟研究。大气科学,2004,28(3):385—404。
    付丹红,郭学良,肖稳安,等。北京一次大风和强降水天气过程形成机理的数值模拟。南京气象学院学报,2003,26(2):190—200。
    孙凌峰,郭学良,孙立潭,等。武汉“6·22”空难下击暴流的三维数值模拟研究。大气科学,2003,27(6):1077—1092。
    陈宝君,吴海英,曾明剑。南京"03。7”大暴雨中云物理过程的数值模拟研究[J]。2005,25(1):26—31。
    康丽莉,雷恒池,肖稳安。中尺度模式中各种湿物理过程的数值模拟。南京气象学院学报,2003,26(1):76—83。
    王鹏云,阮征,康红文。华南暴雨中云物理过程的数值研究[J]。应用气象学报,2002,13(1):78—87。
    孙晶,王鹏云。用MM5模式Reisner霰方案对华南暴雨的数值模拟[J]。气象,2003,29(4):10—14。
    郭学良,付丹红。北京一次典型灾害性雹暴、大风的形成过程与云物理特征。科学通报,2003,48(增刊2):65—69。
    李书严,肖稳安,雷恒池。对LASG—REM模式的改进及云雨数值试验。南京气象学院学报,2004,27(6):51—58。
    张大林。各种非绝热物理过程在中尺度模式中的作用[J]。大气科学,1998,22(4):548—561。
    金德镇,雷恒池,谷淑芳,等。机载微波辐射计测云中液态含水量。气象学报,2004,62(6):868—874。
    王扬锋,雷恒池,樊鹏,等。一次延安层状云微物理结构特征及降水机制研究。高原气象,2007,26(2):388—395。
    齐彦斌,郭学良,金德镇。一次东北冷涡中对流云带的宏微物理结构探测研究。大气科学,2007,31(4):621—634。
    廖菲,洪延超,郑国光。2006:影响云和降水的动力、热力与微物理因素的研究概述。气象,32(11):3—11。
    丁一汇,王笑芳。1983年长江中游梅雨期的热源和热汇分析[J]。热带气象,1988, 4(2):134—145。
    孙淑清,翟国庆,高坤。梅雨期暴雨过程中高低空环流场耦合关系的分析与数值
    模拟。中国科学院大气物理研究所,东亚季风和中国暴雨,北京:气象出版社,1998:327—336。
    程麟生。“81.8”持续暴雨期中—α尺度低涡发展的涡度变率及其热源[J]。高原气象,1991,10(4):337—350。
    程麟生等:中国暴雨中尺度系统发生与发展的诊断分析和数值模拟Ⅰ:诊断分析。应用气象学报,1993,4(3):257—268。
    胡国权,丁一汇。1991年江淮暴雨时期的能量和水汽循环研究[J]。气象学报,2003,61(2):129—140。
    冯业荣,王作述。一次梅雨锋暴雨过程Q1和Q2的结构[J]。热带气象学报。1995,11(1):86—91。
    冯伍虎,程麟生。“98.7"特大暴雨中尺度系统发展的热量和水汽收支诊断。应用气象学报,2001,12(4):419—432。
    文莉娟,程麟生等。“98.5"华南前汛期暴雨中尺度系统发生发展的动力、热量和水汽收支诊断[J]。高原气象,2006,25(1):45—51。
    冯伍虎,程麟生。“98.7"特大暴雨中尺度系统发展的热量和水汽收支诊断。应用气象学报,2001,12(4):419—432。
    文莉娟,程麟生等。“98.5"华南前汛期暴雨中尺度系统发生发展的动力、热量和水汽收支诊断[J]。高原气象,2006,25(1):45—51。
    李英。登陆热带气旋维持机制的研究。中国气象科学研究院与南京气象学院联招博士研究生学位论文,2004,135—136。
    《华南前汛期暴雨》编写组。华南前汛期暴雨。广州:广东科技出版社,1986。
    “中国SCHeREX计划”编写组。中国SCHeREX计划实施方案[M]。内部资料,2008,29—30。
    丁一汇。天气动力学中的诊断分析方法[M]。.北京:科学出版社,1989。
    丁一汇,胡国权.1998年中国大洪水时期的水汽收支研究[J].气象学报,2003,61(2):146-163
    丁一汇,刘月贞.7507号台风中水汽收支的研究[J].海洋学报,1986,8(3):291-301
    胡国权,丁一汇.1991年江淮暴雨时期的能量和水汽循环研究[J].气象学报,2003,61(2):129-145
    冯业荣,罗会邦.台湾锋前暖区一次积云对流过程[J].气象学报,1997,55(2):249-256
    苏正军,黄世鸿,刘卫国.一次华北冷涡降水的云微物理的飞机探测特征[J].气象,2000,26(6):16-25
    杨静,王鹏云,杨绍忠等.对梅雨锋降水云微物理结构的摄像探空观测和分析[J].气象,2002,28(2):3-8
    王鹏云,阮征,康红文.华南暴雨中云物理过程的数值研究[J].应用气象学报,2002,13(1):78-87
    孙晶,王鹏云.用MM5模式Reisner霰方案对华南暴雨的数值模拟[J].气象,2003,
    29(4):10-14
    肖辉,王孝波,周非非等.强降水云物理过程的三维数值模拟研究[J].大气科学,2004,28(5):385-404
    洪延超,周非非.“催化-供给”云降水形成机理的数值模拟研究[J].大气科学,2005,29(6):885-896
    陈宝君,吴海英,曾明剑.南京“03.7”大暴雨中云物理过程的数值模拟研究[J].2005,25(1):26-31
    丁一汇,王笑芳.1983年长江中游梅雨期的热源和热汇分析[J].热带气象,1988,4(2):134-145
    何观芳,胡志晋.不同云底温度雹云成雹机制及其引晶催化的数值研究.气象学报,1998,56(1):31-45.
    洪延超.冰雹形成机制和催化防雹机制研究.气象学报,1999,57(1):30-44.
    冯业荣,王作述.一次梅雨锋暴雨过程Q1和Q2的结构[J].热带气象学报.1995,11(1):86-91
    冯伍虎,程麟生.“98.7”特大暴雨中尺度系统发展的热量和水汽收支诊断[J].应用气象学报.2001,12(4):419-432.
    丁一汇,刘月贞.7507号台风中水汽收支的研究[J].海洋学报,1986,8(3):291-301丁一汇,王笑芳.1983年长江中游梅雨期的热源和热汇分析[J].热带气象,1988,4(2):134-145
    冯伍虎,程麟生.“98.7”特大暴雨中尺度系统发展的热量和水汽收支诊断[J].应用气象学报.2001,12(4):419-432.
    胡国权,丁一汇.1991年江淮暴雨时期的能量和水汽循环研究[J].气象学报,2003,61(2):129-145
    贝耐芳等.1998年“二度梅”期间武汉—黄石突发性暴雨的模拟研究[J].大气科学,2003,27(3):399-418
    文莉娟,程麟生等.“98.5”华南前汛期暴雨中尺度系统发生发展的动力、热量和水汽收支诊断[J].高原气象.2006,25(1):45-51.
    李峰等.2005年“5.31”湖南大暴雨中尺度模拟和发生机制[J].高原气象,2007,26(3):442-452
    冯业荣,罗会邦.台湾锋前暖区一次积云对流过程[J].气象学报,1997,55(2):249-256
    苏正军,黄世鸿,刘卫国.一次华北冷涡降水的云微物理的飞机探测特征[J].气象,2000,26(6):16-25
    杨静,王鹏云,杨绍忠等.对梅雨锋降水云微物理结构的摄像探空观测和分析[J].气象,2002,28(2):3-8
    王鹏云,阮征,康红文.华南暴雨中云物理过程的数值研究[J].应用气象学报,2002,13(1):78-87
    孙晶,王鹏云.用MM5模式Reisner霰方案对华南暴雨的数值模拟[J].气象,2003,29(4):10-14
    肖辉,王孝波,周非非等.强降水云物理过程的三维数值模拟研究[J].大气科学,2004,28(5):385-404
    洪延超,周非非.“催化-供给”云降水形成机理的数值模拟研究[J].大气科学,2005,29(6):885-896
    陈宝君,吴海英,曾明剑.南京“03.7”大暴雨中云物理过程的数值模拟研究[J].2005,25(1):26-31
    程麟生.中尺度大气数值模式和模拟[M].北京:气象出版社,1994.152-164.
    程麟生.“81.8”持续暴雨期中-α尺度低涡发展的涡度变率及其热源[J].高原气象,1991,10(4):337-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700