沙漠地区被动微波遥感研究——以塔克拉玛干沙漠为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于微波遥感来说,研究沙漠地区至少有三方面的意义:1)沙漠地区面积广大,地表无植被,可以作为星载微波辐射计天然的定标场;2)沙漠地区的微波遥感问题,不仅涉及到大气和地表辐射,更需要考虑微波穿透性的影响,本质上是浅表层遥感问题,因而它是各种辐射模型的天然试验场;3)拓展微波遥感的应用领域。此外,沙漠中频繁发生的沙尘暴、大风等对微波的影响,也是微波遥感研究的热点。
     以往对沙漠地区的微波遥感研究数量较少,还不系统。在“973”项目“地球表面时空多变要素的定量遥感理论及应用”和“复杂自然环境时空定量信息获取与融合处理的理论与应用”以及中国科学院重大创新项目“地物微波辐射特性研究”的支持下,本文利用星载微波辐射计数据系统的以塔克拉玛干沙漠为例研究了沙漠地区的被动微波遥感问题,涉及微波辐射特性的时空分布,地表要素反演,地表要素分布以及沙漠地区的浅表层遥感等。
     在相关课题的支持下,本文还进行了主被动微波遥感之间的关系研究。以往的研究表明,综合利用微波散射辐射特性能够帮助人们选择决定反演参量的观测参数、提高反演精度和加深对地表面与微波辐射之间交互作用的机理的理解。但未引起足够重视。本文利用统一基础的微波辐射散射模型,对主被动微波遥感之间的关系进行了深入研究。
     具体来说,本文有以下工作和结论:
     1)详细描述了目前广泛使用的几种随机粗糙面微波散射的模型,包括几何光学模型、物理光学模型、微扰模型和积分方程模型。通过与实测数据的对比分析和理论分析,表明各种模型在其适用范围内能够与实测数据符合。积分方程模型具有更宽的适用范围。
     通过利用IEM模型模拟了C波段(5.3GHz),入射角为40°,地表粗糙度服从高斯分布时,两种不同土壤水分条件下(介电常数分别为36.0—j0.1,4.3-j1.2)下均方根高度从0.1~7.0,相关长度从0.5~17.0的后向散射系数和发射率。分析所建立的数据库后,得出在0.2<均方根高度<1.7,均方根坡度<0.2和2.0<均方根高度<4.0,0.2<均方根坡度<0.4两种情况下后向散射系数与反射率之比与土
    
    中国科学院遥感应用研究所博卜学位论文
    壤粗糙度的关系。模拟结果同时表明,这一关系与土壤水分含量无关。利用导出
    的主被动微波遥感之间的关系,可望由后向散射系数计算发射率,并使用经验、
    半经验模型来反演地表参量,这也为反演地表参量提供了一种新的思路。
     2)利用sMMR数据对塔克拉玛干沙漠微波辐射的时空分布研究发现,在大
    部分时间里,沙漠腹地的亮温低于沙漠边缘,亮温图仍然呈现很稳定的环状结构,
    东北和西南角明显高于腹地。这可能是受到微波辐射采样深度的影响。在一年的
    大部分时间里,SMMRV极化的观测亮温在塔克拉玛干沙漠都较为均一,标准差
    在ZK以下,H极化较V极化略微离散,标准差在2K以下或2K左右。在夏季,
    由于由降水、多云等因素的影响,离散程度较高,V极化可达10K,H极化可达
    16K。
     从时间变化上,亮温分别上半年和下半年有较好的对称性。SMMR各频率的V
    极化亮温彼此之间相差不大,但H极化则随着地温升高和由冬季转向夏季,高频
    亮温高于低频亮温且差距逐渐扩大。塔克拉玛干沙漠的微波亮温随时间呈规律性
    变化,模拟了这种时间变化,取得了较好的模拟效果。
     3)以辐射传输方程为正演模型,用带边界条件的Levenberg一Marquardt方
    法进行了塔克拉玛干沙漠地区地表要素的反演研究,这些地表要素包括地表温
    度,下垫面介电常数(含水量)、粗糙度和大气水汽含量等。利用沙漠腹地塔中站
    和沙漠周边20个气象站的气象和气候资料对反演结果进行了验证,反演的温度
    精度在2K以内。
     4)根据对塔克拉玛干沙漠地表温度的反演算法,重建了1980、1981、1983、
    1984和1985年该地区冬季的地表温度序列。在此基础上分析了塔克拉玛干沙漠
    冬季地温的空间分布规律。塔克拉玛干沙漠冬季地温分布较为均一,较为明显的
    是边缘带温度低于沙漠腹地,从边缘向腹地推进,地表温度呈环状上升。沙漠内
    地温的频度分布为近似正态分布。
     5)给出了我国自行研制发射的52一IV微波辐射计的全球观测亮温图。在对
    该数据整理分析的基础上,认为在塔克拉玛于上空,SZ一IV微波辐射计的表现是
    稳定的。通过统计回归分析,证明该辐射计23V、19H和6V通道亮温的线性组合
    与地面温度有很好的相关关系。
     6)对塔克拉玛干沙漠冬季低频亮温高于高频亮温或十分接近高频亮温的现
    象提出了一种新的解释。结合对塔克拉玛干沙漠微波辐射特性的时空分布研究,
    根据SMMR数据在塔中点的观测和SZ一工V在塔克拉玛干沙漠的观测,高频亮温在
    夏季高于低频,且差距最大。由夏季转入冬季的过程中,这种差距逐渐减小。随
    着观测角的不同,在冬季低频亮温与高频亮温接近甚至高于高频。这是由于低频
    采样深度深,冬季深层地温高于表层地温和积雪散射效应的综合影响造成的。如
    果仅仅从此前积雪的散射效应考虑,则不能很好解释SMMR数据从冬季到夏季高
    
    中国科学院遥感应用研究所博士学位论文
    频亮温与低频亮温的差距逐渐加大以及SZ一IV观测到的即使没有积雪,低频也能
    高于?
As for passive microwave remote sensing, there are at least three aspects of meaning to study on sand desert area: 1) area in sand desert take a great percentage of the whole land area on earth, there is almost no vegetation in this area, so it can be used as natural calibration site for spaceborne microwave radiometer; 2) passive microwave remote sensing on sand desert is not only related to radiation of atmosphere and land surface, but also microwave penetration effects, essentially it is a problem of near-surface remote sensing. Thus it can be used as natural validation site for varies kind of emission model; 3) it can make more space for remote sensing applications. In addition, sand storm, wind storm that occurs in this area are also hot spots for passive microwave remote sensing.
    Passive microwave remote sensing on sand desert had seldom been studied so far. In this thesis, using Takelimgan Sand Desert as an example and spaceborne radiometry data as data source, passive microwave remote sensing on sand desert has been studied systemically. It includes spatial and temporal distribution of microwave radiometry characteristics, retrieving surface parameters, distribution of surface parameters and near-surface passive microwave remote sensing on sand desert area.
    Research before has illustrated that synergism of active and passive microwave remote sensing can be helpful to choose observing parameters to retrieve surface parameters, to improve accuracy of retrieving algorithm and deepen understanding of interactions between land surface and microwave radiation. But it has not been paid
    
    
    attention enough so far. And relationship between active and passive microwave remote sensing has been studied in detail using uniform based microwave scattering and emission model.
    Here below are the main works and conclusions in this thesis:
    1) Several microwave scattering models on random roughness surface have been described in detail, these models include geometric optical model, physical optical model, small perturbation model and integrated equation model. By comparison of these models with real observation data, every model can fit for real data in there validity conditions. IEM model can be applied for a wider range.
    By simulating the natural conditions and building up a database of backscattering coefficient and emissivities using IEM model, it is found that when ratio of rms height and correlation length is in some certain range, the ratio of backscattering coefficient to reflectivity is linear or polynomial with surface roughness. This relationship is independent of soil moisture. Backscattering coefficient can be calculated from emissivity using relationship derived in thi's thesis, and thus surface parameters can be retrieved by using empirical or semi-empirical emission models. This put forward a new method to retrieve surface parameters.
    2) By study on spatial and temporal distribution of Takelimgan Sand Desert using SMMR data, it is found that in most of time, brightness temperature in inner part of the desert is lower than around the desert. Map of brightness temperature illustrate a stable ring-like structure, brightness temperature in northeast corner is above that in southwest corner obviously. This can be affected by microwave sampling depth. In most time of a year, brightness on Takelimgan Sand Desert of V polarization of every frequency of SMMR is relatively uniform; the standard deviation is below 2K. Brightness temperature of H polarization is not as concentrated as V polarization, the standard deviation is below or about 2K. In summer, brightness temperature is more dispersed with influence of precipitation and clouds, the standard deviation of V polarization can reach 10K, and 16K for H polarization.
    For temporal distribution, it is symmetry between brightness temperatures of fore-half year and back-half year. Deviation among brightness temperatures of V polarization of SMMR frequencies are small, but brightness temperatures of high frequencies are higher and higher than that of low frequencies fro
引文
[1]. M.G, Abdelsalam, R.J.Stern, "Mapping Precambrian structures in the Sahara Desert with SIR-C/X-SAR radar: The Neoproterozoic Keraf zone, NE Sudan", J.Geophys. Res-Planets.
    [2]. N. U. Ahmed, Estimating soil moisture from 6.6GHz dual polarization, and/or satellite derived vegetation index. Int. J. Remote Sensing, Vol.l 6, No.4(687-708),1995.
    [3]. P. Ashcroft and F. J. Wentz. Algorithm Theoretical Basis Document(ATBD) AMSR Level2A Algorithm. NASA.
    [4]. Bellerby T, Taberner M, Wilmshurst A, Beaument M, Barrett E, Scott J, and Durbin C. Retrieval of Land and Sea Brightness Temperatures from Mixed Coastal Pixels in Passive Microwave Data[J]. IEEE Trans. on Geos. And Remote Sensing, 1998, 36:1844-1851.
    [5]. Berlin, Tarabzouni, AI-Naser, Sheikho 和 Larson, SIR-B subsurface imaging of a sand-buried landseape-Ai Labbah Pateau, Saudi Arabia. IEEE Transactions on Geoseienee and Remote Sensing, GE-24,595-602.
    [6]. Blinn Ⅲ, J. C., Conel, et al., Microwave emission from geological materials:observations of interference effects. Journal of Geophysical Research, 77(23), 4366-4378, 1972.
    [7]. Blom, R.G., R.E., &Elachi, Detection of subsurface features in Seasat radar images of Means Valley, Majave Desert, California, Geology, 12, 346-349, 1984.
    [8]. Blumberg, Freilikher, Fuks et. al. Effects of roughness on the retrorefleetion from dielectric layers. Waves in Random Media, 12,279-192,2002.
    [9]. D. R. Brunfelt and F. T. Ulaby. Measured microwave emission and scattering in vegetation canopies. IEEE Trans. Geosci. Remote Sensing, GE-22(6),520-524(1984).
    [10]. W.J. Burke, T. Schmugge and J. F. Paris. Comparison of 2.8 and 21cm microwave observations over soils with emission model calculations. J. Geophys. Res., 84, 287-294(1979).
    [11]. Chanzy, T. J. Schmugge, J. C. Calvet, Y. Kerr, P. van Oevelen, O. Grosjean, J. R. Wang, Airbore microwave radiometry on a semi-arid area during HAPEX-Sahei. Journal of Hydrology. Vol 188-189(285-309), 1997.
    [12]. Chanzy, A., Schmugge, T.J., et al. Surface observations from airborne microwave radiometers in HAPEX-Sahel, J. Hydrol., 1995.
    
    
    [13]. B.J.Choudhury, C.J.Tucker, Satellite Observed Seasonal and Inter-Annual Variation Over the Kalahari, The Great Victoria Desert, and The Great Sandy Desert:1979-1984. Remote Sensing of Environment. 23:233-241(1987).
    [14]. B.J.Choudhury, Relectivties of Selected Land Surface Types at 19 and 37 GHz from SSM/I Observations, Remote Sensing Environ. 46:1-17(1993)
    [15]. Zhengxiao Chert, Retrieval of Semi-Arid Region Parameters from Passive Microwave Measurements Using Neural Networks Within a Bayesian Framework. IEEE proceedings, p1398-1400,1994
    [16]. Wade T. Crow, Matthias Drusch, Eric F. Wood. An obervation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval. IEEE Trans. Geosci. Remote Sensing, vol.39, No.8:1622-161631,2001.
    [17]. Dabbagh, AI-Hinai, 和 Khan, Detection of covered geologic features in the Arabian Peninsula using SIR-C/X-SAR data. Remote Sensing of Environment, 59, 375-382, 1997.
    [18]. Dellwig, L. F., An evaluation of multifrequency radar imagery of the Pisgah Crater area, California. Modern Geology, 1, 65-73,1969.
    [19]. M.C. Dobson, F. T. Ulaby, M. T. Hallikainen and M. A. El-Rayes. Microwave dielectric behavior of wet soil-Part Ⅱ: Dielectric mixing models. IEEE Trans. Geosci. Remote Sensing, GE-23, 35-46(1985).
    [20]. Data Entekhabi, Hajime Nakamura, and Eni G. Njoku, Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sensing, vol.32, No.2:438-448,1994.
    [21]. Dobson, M. C., F. Kouyate, and F.T. Ulaby, A reexamination of soil textural effects, IEEE Trans. Geosci. Remote Sensing, GE-22, No. 6, pp. 530-535, 1984.
    [22]. Paolo Ferrazzoli, Guodo Luzi, Simonetta Paloscia, etc. Comparison between the microwave emissivity and backscatter coefficient of crops. IEEE Transactions on geoscience and remote sensing. Vol. 27, No. 6, pp. 772-778, Nov. 1989.
    [23]. K. Fung, Micrwave scattering and Emission Models and Their Applications. Norwood, MA: Artech House, 1994
    [24]. John F. Ga[antowicz, Dara Entekhabi, and Eni G. Njoku, F.stimation of Soil-type heterogeneity effects in the retrieval of soil moisture from radiobrightness, 1EEE Trans. Geosci. Remote Sensing. vol.38, No. 1:312-316,2000.
    
    
    [25]. John E Galantowicz, Data Entekhabi, and Eni G. Njoku, Tests of Sequential data assimilation for retrieving profile soil moisture and temperature from observed L-band Radiobrightness, IEEE Trans. Geosci. Remote Sensing, vol.37, No.4:1860-1870,1999.
    [26]. D.Hiltbrunner, C.Matzler, etc. Monitoring Land Surface with Combined DMSP-SSM/I and ERS-1 Scatterometer Data. IEEE proceedings, p1945-1947,1994
    [27]. J.P.Hollinger, J.L.Peirce etc. SSM/1 Instrument Evaluation, IEEE Transactions on Geoscience and Remote Sensing, Vol. 28,No. 5, Sept, 1990.
    [28]. Hollinger, J. E, R. A. Mennella, Oil spills:measurement of their distributions and volumes by multifrequency microwave radiometry, Science, 181, 54-56.
    [29]. Hoekstra, P.and Delaney, A., 1974. Dielectric properties of soils at UHF and microwave frequencies, J. Geophys. Res., 76:4922-4931.
    [30]. http://trmm.gsfc.nasa.gov.
    [31]. http://www.cesbio.ups-tise.fr/indexsmos.html
    [32]. http://hydros.gsfc.nasa.gov/
    [33]. Xingzhong Huang, Ya-Qiu Jin. A simple method to estimate the soil wetness and surface roughness by using active/passive microwave data. Remote Sensing of Environment, 1995, 53:212-214.
    [34]. T.J. Jackson, Multiple resolution analysis of L-band brightness temperature for soil moisture, IEEE Trans. Geosci. Remote Sensing, vol.39, No. 1:151-164,2000.
    [35]. Thomas J. Jackson, and Ann Y. Hsu, Soil Moisture and TRMM Microwave Imager Relationships in the Southern Great Plains 1999(SGP99) Experiment, IEEE Trans. Geosci. Remote Sensing, vol.39, No.8:1632-1642.
    [36]. Jackson, T. J., Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Processes, 7:139-152. 1993.
    [37]. T.J. Jackson, David E. Le Vine, Mapping surface soil moisture using an aircraft-based passive microwave instrument:algorithm and example. Journal of Hydrology, vol (184):85-99,1996.
    [38]. T.J. Jackson. Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resources Research. Vol. 33, No. 6(1475-1484),1997.
    [39]. Jackson, T. J., and Schmugge T.J. (1989), Passive microwave remote sensing system for soil
    
    moisture:Some supporting research, IEEE Trans. Geosci. Remote Sens. 27:225-235, 1989.
    [40]. Ya-Qiu Jin, Xing-zhong Huang, Correlation of temporal variations of active and passive microwave signatures from vegetation canopy. IEEE Transactions on geoscience and remote sensing. Vol. 34, No. 1,pp. 257-263, Jan. 1996.
    [41]. Kalmykov, A.I.,Fuks, I. M., et al. Radar observation of strong subsurface scatterers. Model of subsurface reflections. Telecommunications and Radio Engineering, 52(5), 1-17,1998.(英文版)
    [42]. Yann H. Kerr and Jean Pierre Wigneron, Vegetation models and observations-A review. Passive microwave remote sensing of land-atmosphere interactions/ed. By B.J. Choudhury, Y.H. Kerr, E.G. Njoku, P. Pampaloni. 317-344. VSP Utrecht, The Netherlands(1995),
    [43]. Y.H. Kerr and Eni G. Njoku. A semi-empirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans. Geosci. Remote Sensing, 28, 3, 384-393(1990).
    [44]. Yann H. Kerr, Philippe Waldtufel, Jean-Pierre Wigneron,etc. Soil moisture retrieval from space:the soil moisture and ocean salinity(SMOS) mission. IEEE Trans. Geosci. Remote Sensing, vol.39, No.8:1729-1735, 2001.
    [45]. K.P. Kirdyashev, A. A. Chukhlantsev and A. M. Shutko. Microwave radiation of the Earth's surface in the presence of vegetation cover. Radio Eng. Electron. Phys., 24, 256-264(1979).
    [46]. Kong, J. A.,Electromagnetic Wave Theory, 2nd edn. Wiley-Interscience, New York. 1990.
    [47]. Qin Li, Jiancheng Shi, K.S.Chen, A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model, IEEE Trans. Geosci and Remote sensing. 2002, Vol. 40, No. 2, pp271-280.
    [48]. Liebe H. J., Hufford, G. A., and Cotton, M. G., Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C], Presented at an AGARD Meeting on 'Atmospheric propagation effects through natural and man-made obscurants for visible to mm-wave radiation', May, 1993.
    [49]. Yuei-An Liou, Shou-Fang Liu, and Wen-June Wang, Retrieving soil moisture from simulated brightness temperatures by a neural network. IEEE Trans. Geosci. Remote Sensing, vol.39, No.8:1662-1672,2001.
    [50]. G. Macelloni, G. Nesti, P. Pampaloni, etc. Experimental validation of surface scattering and emission models. IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 1, pp. 459-469, Jan. 2000.
    
    
    [51]. G. Macelloni, A. Paloscia, P. Pampaloni, R. Ruisi, C. Susini and J. J. Wigneron. Airborne passive microwave measurements on agricultural fields. Microwave Radiometry and Remote Sensing of The Earth's Surface and Atmosphere/ed. By P. Pampaloni and S. Paloscia. 59-69. VSP Utrecht, Boston, Koln, Tokyo, The Netherlands(2000).
    [52]. C. Matzler and A. Sume. Microwave Radiometry of Leaves. In: Microwave Radiometry and Rempte Sensing Applications, P. Pampaloni(Ed.),pp. 133-148, VSP Utrecht, The Netherlands(1989).
    [53]. M.J. McFarland, R. L. Miller, and M. V. Neale, Land Surface Temperature Derived from the SSM/I Passive Microwave Brightness Temperature, IEEE Trans. Geosci. Remote Sensing. Vol. 28, No. 5, Sept. 1990.
    [54]. McCauley, J.F., Schaber, G.G., et al., Subsurface valleys and geoarehaelology of Egypt and Sudan revealed by radar. Science, 218, 1004-1020,1982.
    [55]. McCauley, J. F., Breed, C. S., et al., Paleodrainages of the Eastern Sahara-the radar rivers revisited(SIR-A/B implications for a mid-tertiary trans-African drainage system). IEEE Transactions on Geoscience and Remote Sensing, GE-24(4),624-648, 1986.
    [56]. J.McCauley et al. "SIR-C definition of the serir Kufra river system in SE Libya." EOS Trans. Am. Geophys. Union,76(17), 1995.
    [57]. T. Mo, T. J. Schmugge, and James R. Wang, Calculations of the microwave brightness temperature of rough soil surfaces: Bare field. IEEE Trans. Geosci. Remote Sensing, Vol.GE-25, No. 1, pp. 47-54, Jan. 1987.
    [58]. T. Mo and T. J. Schmugge, A parameterization of the effect of surface roughness on microwave emission, IEEE Trans. Geosci. Remote Sensing, Voi.GE-25,pp.481-486, Jul. 1987.
    [59]. June C. Morland, David I.F. Grimes, T.J. Hewison, Satellite observations of the microwave emissivity of a semi-arid land surface, Remote Sensing of Environment, vol.77( 149-164),2001.
    [60]. P. O'Neill, N. Chauhan, T. Jackson, S. Saatchi. Synergistic use of active and passive microwave in soil moisture estimation. IGARSS'92, Vol. 1, pp. 492-494.
    [61]. E.G. Njoku and J. A. Kong. Theory for passive microwave remote sensing of near surface soil moisture. J. Geophys. Res., 82(20),3108-3118(1977).
    [62]. Eni. G. Njoku, Li Li, Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6-18GHz, IEEE Trans. Geosci. Remote Sensing. Vol. 37, No. 1 Jan. 1999. 79-93.
    
    
    [63]. Eni G. Njoku, Dara Entekhabi, Passive microwave remote sensing of soil moisture. Journal of Hydrology, 1996,184:101-129.
    [64]. Manfred Owe, Adriaan A. Van de Griend, Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing. Water Resources Research,Vol.34, No.9(2319-2327), 1998.
    [65]. Simonetta Paloscia, Microwave emission from vegetation. Passive microwave remote sensing of land-atmosphere interactions/ed. By B.J. Choudhury, Y.H. Kerr, E.G. Njoku, P. Pampaloni. 375-387. VSP Utrecht, The Netherlands(1995)
    [66]. Simonetta Paloscia and Paolo Pampaloni, Microwave Polarization index for monitoring vegetation growth, IEEE Trans. Geosci. Remote Sensing, vol.26, No.5:617-621.
    [67]. Simonetta Paloscia, Giovanni Macelloni, etc. A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites. IEEE Trans. Geosci. Remote Sensing, vol.39, No.8:1655-1661,2001.
    [68]. P.Pampaioni, Sensitivity of active and passive microwave sensors to land parameters. Passive microwave remote sensing of land-atmosphere interactions/ed. By B.J. Choudhury, Y.H.Kerr E.G. Njoku, P. Pamploni.-Utrecht:VSP. 1995.
    [69]. W. J. Parton and J. A. Logan, A Model for Diurnal Variation in Soil and Air Temperature. Agricultural Meteorology, Vol. 23,205-216, 1981.
    [70]. Pulliainen J T, Grandeli J, and Hallikainen M T. Retrieval of Surface Temperature in Boreal Forest Zone from SSM/I Data[J]. 1EEE Trans. on Geos. And Remote Sensing, 1997, 35:1188-1200.
    [71]. Rango and A. 1. Shalaby, Current operational applications of remote sensing in hydrology. WMO operational hydrology report No.43. Secretariat of the World Meteorological Organization- Geneva-Switzerland.
    [72]. S.Raju, A. Chanzy, J.P.Wignerton, et al. Soil moisture and temperature profile effects on microwave emission at low frequencies. Remote Sensing of Environment.54:85-97,1995.
    [73]. R.H. Reichle, D. B. Mclaughlin, and D. Entekhabi, Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sensing, vol.39, No.8:1708-1718.2001
    [74]. Sasan S. Saatchi. David M. Le Vine, and Roger H. Lang. Microwave backscattering and emission model for grass canopies. IEEE Transactions on geoscience and remote sensing. Vol. 32, No. 1, pp. 177-186, Jan. 1994.
    
    
    [75]. Sansan S. Saatchi, Eni G. Njoku and Urs Wegmuller. Synergism of active and passive microwave data for estimating bare soil surface moisture./ed. By B.J. Choudhury, Y.H.Kerr E.G. Njoku, P. Pamploni.-Utrecht:VSP. 1995.
    [76]. T.J. Schmugge and B. J. Choudhury. A comparison of radiative transfer for predicting emission from soils. Radio Sci., 16(5), 927-938(1981).
    [77]. Schumugge T. J., Jackson, T. J. etal, PBMR observations of surface soil moisture in Monsoon 90. Water Resour. Res. 30:1321-3127, (1994).
    [78]. T.J. Schmugge and T. J. Jackson. A dielectric model of the vegetation effects on the microwave emission from soils. IEEE Trans. Geosci. Remote Sensing, 30(4), 757-760(1992).
    [79]. Schaber G.G., McCauley, et al. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt. Remote sensing of Environment, 59, 337-363, 1997.
    [80]. Schaber, G. G. &Breed, The importance of SAR wavelength in penetrating blow sand in Northern Arizona. Remote Sensing of Environment, 69(2), 87-104,1999.
    [81]. Shestopalov, Spirdonov, Kalmykov,&Pichugin, Ring structures in space-borne radar images of the earth. Doklady Akademii Nauk SSSR, 279(4), 835-837,1984.
    [82]. Jianeheng Shi, Q. Li,etc. Numerical simulation of estimating soil moisture with L-band radiometer. Sypm. IEEE Trans. Geosci. Remote Sensing, 2001.
    [83]. Teng Xuyuan,etc. Passive Microwave Radiometry in the Gobi-Desert Region.Remote Sensing of Environment, 15:37-46,1984.
    [84]. L. Tsang, E. Njoku, and J.A.Kong, Microwave thermal emissions from a stratified medium with nonuniform temperature distributions, J. App. Phys.,Vol. 46,pp.5127-5134,1975.
    [85]. Leung Tsang, Andrew J. Blanchard, etc. A simple relation between active and passive microwave remote sensing measurements of earth terrain. IEEE Transactions on geoscience and remote sensing. Vol. GE-20, No. 4, pp. 482-485, Oct. 1982.
    [86]. L. Tsang, J. Kong, and R. Shin, Theory of Microwave Remote Sensing. New York:Wiley, 1985.
    [87]. Tsang, L., and Newton, R. W., Microwave enission from soils with rough surfaces. J. Geophys. Res., 87:9017-9024. 1982.
    [88]. Fawwaz T. Ulaby, Richard K. Moore, Adrian K. Fung, Microwave Remote Sensing-Active
    
    and Passive: Microwave Remote Sensing Fundamentals and Radiometry,1981, Addison-Wesley Publishing Company, Inc.
    [89]. F.T. Ulaby, R. K. Moore and A. K. Fung. Microwave Remote Sensing. Active and Passive, Vol. Ⅱ. Reading, MA, Addison Wesley(1982).
    [90]. F.T. Ulaby, R. K. Moore and A. K. Fung. Microwave Remote Sensing. Active and Passive, Vol. Ⅲ. Norwood, MA, Addison Wesley(1986).
    [91]. Fawwaz T. Ulaby, Myron C. Dobson and David R. Brunfeldt. Improvement of moisture estimation accuracy of vegetation-covered soil by combined active/passive microwave remote sensing. IEEE Transactions on geoscience and remote sensing. Vol. GE-21, No. 3, pp. 300-307, Jul. 1983.
    [92].F.T. Ulaby and M. A. El-Rayes. Microwave dielectric spectrum of vegetation Part Ⅱ: Dual-dispersion model. IEEE Trans. Geosci. Remote Sensing, GE-25(4), 550-557(1987).
    [93]. F. T. Ulaby and E. A. Wilson. Microwave attenuation properties of vegetation canopies. IEEE Trans. Geosei. Remote Sensing, 23,746-753(1985).
    [94]. F. T. Ulaby, A. Tavakoli and T. B. Senior. Microwave propagation constant for a vegetation canopy with vertical stalks. IEEE Trans. Geosci. Remote Sensing, 25, 714-725(1987).
    [95]. J.R. Wang and T. J. Schmugge. An empirical model for the complex dielectric permittivity of soil as a function of water content. IEEE Trans. Geosci. Remote Sensing, GE- 18,288-295(1980)
    [96]. J.R. Wang and B. J. Choudhury, Remote sensing of soil moisture content over bare field at 1.4GHz frequency. Journal of Geophysical Research. Vol. 86, No. C6, pp. 5277-5282, Jun. 20, 1981.
    [97]. Wang, J. R., O'Neill, P. E., Jackson, T. J. and Engman, E. T., Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans. Geosei. Remote Sensing, GE-21: 44-51 (1983).
    [98].James R. Wang and Bhaskar J. Choudhury, Passive microwave radiation from soil: examples of emission models and observations. Passive microwave remote sensing of land-atmosphere interactions/ed. By B.J. Choudhury, Y.H. Kerr, E.G. Njoku, R Pampaloni.423-460, VSP Utrecht, The Netherlands(1995).
    [99]. Wang J.R.. Microwave emission from smooth bare fields and soil moisture sampling depth, IEEE Trans. Geosci. Remote Sens. 25:616-622., 1987.
    [100]. Jean-Pierre Wigneron, Paolo Ferrazzoli, Jean-Christophe, etc. A parametric study on
    
    passive and active microwave observations over a soybean crop. IEEE Transactions on geoscience and remote sensing. Vol. 37, No. 6, pp. 2728-2733, Nov. 1999.
    [101]. Wigneron, J. P. Kerr, Y., Chanzy, A., and Jin, Y. Q., Inversion of surface parameters from passive microwave measurements over a soybean field. Remote Sens. Environ. 46:1-25., 1993.
    [102]. Urs Wegmuller, and Christian Matzler, Rough bare soil reflectivity model. IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 3, pp.1391-1395, May 1999.
    [103]. Urs Wegmuller, Christian Matzler and Eni G. Njoku, Canopy opacity models. Passive microwave remote sensing of land-atmosphere interactions/ed. By B.J. Choudhury, Y.H. Kerr, E.G. Njoku, P.Pampaloni. 375-387. VSP Utrecht, The Netherlands(1995)
    [104]. T.T. Wilheit. Radiative transfer in a plane stratified dielectric. IEEE Trans. Geosci. Remote Sensing, GE_16, 138-143(1978).
    [105]. Williams and Greeley, Radar attenuation by sand:Laboratory measurements of radar transmission. IEEE Transactions on Geoscience and Remote Sensing, 39(11),2521-2526, 2001.
    [106]. E. F.Wood, Dah-Syang Lin, P.A. Troch, M. Mancini and T. J. Jackson, Soil Moisture Estimation: comparisons between hydrologic model estimates and remotely sensed estimates. Passive microwave remote sensing of land-atmosphere interactions/ed. By B.J. Choudhury, Y.H. Kerr, E.G. Njoku, E Pampaloni. 77-92. VSP Utrecht, The Netherlands(1995).
    [107]. E. F.Wood, Global scale hydrology: advances in land surface modeling. Rev. Geophysics, Supplement, 193-201 (1991).
    [108]. Zwally, H. J., Microwave emissivity and accumulation rate of polar firn, J. Glaciol., 18, 195-215, 1977.
    [109].董光荣等,1990.试论全球气候变化与沙漠化的关系.第四纪研究,(1).
    [110].高前兆,塔里小南缘水资源与生态环境建设战略,冰川冻土,vol.22,№.4,2000(12)
    [111].金亚秋,星载微波SSM/T对中国西北沙漠地区遥感数据的辐射特征分析,遥感学报,Vol.1,No.3,192—197,1997.
    [112].金亚秋,星载微波SSM/I遥感在中国东北华北农田的辐射特征分析,遥感学报,Vol.2.No.1,19—24,1998.
    [113].金亚秋.电磁散射和热辐射的遥感理论。科学出版社,1998。
    
    
    [114].李江风,1991,新疆的气候.气象出版社,lO
    [115].李江风著,沙漠气候。气象出版社,2002
    [116].潘广东,王超,田国良,SSM/I微波辐射计数据陆面温度反演。遥感学报,vol.5,No.4,2001,254—258。
    [117].王振占,李芸,神舟四号飞船微波辐射计定标和检验第一部分微波辐射计外定标,遥感学报,2004.
    [118].徐希慧,塔克拉玛干沙漠雨迹卫星云图分析与研究,中国科学(B辑).1995,25(3):324—328。
    [119].杨佐涛,陈渭南,陈广庭等,塔克拉玛干沙漠腹地的气候表现.中国沙漠,vol..15,No.3,1999,9.
    [120].杨虎,植被覆盖地表土壤水分变化雷达探测模型和应用研究,中国科学院遥感应用研究所博士论文,2002。
    [121].袁亚湘,孙文瑜著,最优化理论与方法,科学出版社
    [122].张小燕,杨改河,张跃进,塔里小盆地植被背景,水土保持学报,vol.17,No.2,2003(6).
    [123].朱震达,吴正等,中国沙漠概论,修订版,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700