异源图像融合及其评价方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异源图像融合是协同使用不同类型的图像传感器,并将各种图像信息有效地结合起来,形成高性能感知系统来获取对同一目标的一致性描述的过程。该技术从多信息的视角进行处理,可综合各图像之间的互补信息和冗余信息,扩大传感器的工作范围,增加置信度、改善系统的可靠性和可维护性,降低对单一传感器的性能要求,可更为准确、可靠、全面地获取对目标或场景的信息描述,不仅可以使处理后的图像更适合人的视觉观察,而且可以为进一步的图像处理提供更有效的信息。
     将异源图像中具有代表性的红外图像和可见光图像作为研究对象,结合红外技术、图像处理与人工智能理论,分析、吸收国内外关于图像融合的成功经验,设计了基于空间域和变换域的两类新型异源图像融合算法,并建立了一种新型的融合图像质量综合评价标准,在此基础上,建立了闭环式图像自适应融合体系,可由系统自动选择符合用户需求的融合方案,其分层式处理结构保证了融合算法的快速性和准确性,增强了图像融合的自动化程度。
     首先研究了基于空间域的异源图像融合方法。对现有的空间域融合方法进行了分析,如加权平均融合法、灰度极值法等,通过融合实验,比较了各自的优缺点。在此基础上,提出了一种基于K-L变换(Karhunen-Loeve Transform)的自动加权融合算法。它保持了现有的加权平均融合法的快速实用性,通过主成分分析,将源图像中的有用信息集中到相互独立的新主成分矩阵中,由此确定加权平均融合方法中源图像的加权系数,以实现更加理想的融合效果。实验结果表明,基于K-L变换的自动加权融合算法的效果优于现有的常用空间域融合算法。
     重点研究了基于变换域的异源图像融合方法。对变换域中典型的多尺度分析理论进行了论述,对其中具有代表性的小波变换技术及其在图像融合中的应用做出了详细说明,结合具体的实验,讨论了不同小波基、不同分解层数和不同融合规则对融合效果的影响,分析了小波变换融合法的优势和局限性。在此之上,重点讨论了各向异性多尺度分析融合法,以NSCT(Non-sampled Contourlet Transform,非下采样Contourlet变换)为主要工具,给出了该方法在图像融合中应用的特点,并以此为基础,设计了全新的融合规则,提出了一种基于NSCT和PCNN(Pulse Couple Neural Network,脉冲耦合神经网络)的异源图像融合方法,充分利用了NSCT的各向异性、多方向性和平移不变性,消除了以往多尺度分解带来的频率混叠现象,又结合了PCNN的全局耦合特性,利用其特有的生物学背景,提高融合图像的整体视觉效果。实验结果表明,使用该方法得到的融合图像清晰自然,适合人眼观察,其融合效果优于现有的小波变换法等变换域融合算法。
     研究和分析了异源图像融合质量的综合评价方法。在介绍了现有主、客观图像评价方法的基础上,对已有的多种评价指标进行了分类,讨论了不同融合目的下的指标选取规则以及单个评价指标的局限性;而后,重点研究了现有的多评价指标综合化方法,比较了几种典型方法的优缺点。并在此基础上,提出了一种基于FNN(Fuzzy Neural Network,模糊神经网络)的图像融合质量综合评价方法,结合了模糊逻辑推理的结构性知识表达能力和神经网络的自学习能力,将多种典型的图像融合客观评价指标进行模糊化,以主观评价结论作为先验知识,通过网络学习自动生成评价指标权重等相关参数,并通过动量因子提高了网络的学习效率。实验结果表明,该方法可对图像融合质量进行全面、准确的评价,在很大程度上克服了单纯由人眼判决产生的主观性和单因素客观评价指标的片面性。
     研究了异源图像融合自适应体系。基于上一章中给出的图像融合综合评价方法,建立了一种闭环式的自适应图像融合模型,以融合算法的复杂度为标准进行分层,将多种特性不同的图像融合算法进行串行排列,由系统自动选取符合用户需求的融合方案,克服了开环融合系统灵活性差的缺点。此外,模型内的算法可灵活添加,具有很好的可扩展性。为了验证模型的有效性,选择加权平均融合法、小波变换融合法、Contourlet融合法和NSCT-PCNN融合法为算法集进行融合实验。实验结果表明,该体系建立了融合结果与用户需要之间的有机联系,融合过程中无需人为参与,图像融合的自动化程度得到了加强。
Different-source image fusion is the process of forming a high-performance sensing system by collaborating different types of image sensors and gathering all kinds of image information effectively in order to obtain a coherent description of the same object. This technology processes the information from multiple perspectives and combines complementary information and redundant information of several different images. The working available range of sensors can be expanded. The reliability and maintainability of the sensing system can be improved. The requirements of the single sensor can be reduced. The description of information of the target or the scene can be more accurate, reliable and comprehensive, which not only benefit the visual observation process by human, but also provide more effective information for further image processing.
     The infrared and visible images are selected as the study objects, which are representative images from different source images. Based on infrared technology, image processing and artificial intelligence, two kinds of image fusion algorithms for different source images, including spatial domain and transform domain, are designed with the help of analyzing and absorbing the successful experience from home and abroad. A novel method for image fusion quality evaluation is established. According to this newly-designed criterion, a closed-loop adaptive image fusion scheme is proposed. The scheme can select the most optimized fusion program automatically. The hierarchical structure ensures the speed and accuracy of the fusion algorithm. The degree of automation is thereby enhanced.
     An image fusion algorithm based on principle component analysis is presented. Current image fusion algorithms of spatial domain are analyzed and compared, such as weighted average method and gray-level extreme value method. After that, an automatic weighted average method based on K-L (Karhunen-Loeve) transform is proposed. This algorithm preserves the practicability of the current weighted average method. Through the principle component analysis, useful information is concentrated into the independent new matrixes. The weighted coefficients of original images in weighted average method are calculated correspondingly, so that a better fusion result is achieved. Experimental results show that on the use of this image fusion algorithm based on K-L transform, the fused image is superior to the images of the existing fusion method of spatial domain.
     Image fusion methods of transform domain is researched. The typical multi-scale analysis theory in transform domain is introduced, especially the representative wavelet transform technology and its application in image fusion. Experiments are carried through in order to deduce the advantages and disadvantages of wavelet transform. Based on the analysis above, the image fusion methods of anisotropic multi-scale analysis is emphasized. The NSCT (Non-sampled Contourlet Transform) is used as the main tool. The application of NSCT in image fusion is proposed and a novel fusion strategy is designed correspondingly. A new image fusion method based on NSCT and PCNN (Pulse Coupling Neural Network) is developed. This method takes advantage of the properties of anisotropic, multi-directional and shift invariance of NSCT. The frequency-aliasing problem of the previous multi-scale decomposition is eliminated. The general coupling characteristic of PCNN is also adopted. The view effect of the fused image can be improved with the help of its biological background. Experimental results show that the fused images based on the new method are clear and natural, which is suitable for the human observation. Compared with the current wavelet method, the better fusion effect is achieved.
     Comprehensive evaluation method for different source image fusion quality is studied. Based on the analysis of the existing subjective and objective image evaluation methods, multiple evaluation factors are classified. The factor selection rule and the limitation of single factor are also discussed. Thereafter, current integration methods for multiple factors are researched and compared. Based on the information above, a mathematical model for image fusion evaluation is designed on the foundation of FNN (fuzzy neural network), which combines the structural knowledge expression ability of fuzzy logic and the self-learning ability of neural network. Multiple typical image fusion objective evaluation factors are fuzzificated with the model. The subjective evaluation results are used as the prior knowledge. The weight factors of the evaluation parameters are generated by the network study. The efficiency of the network study is improved through a momentum factor. Experimental results show that the newly-developed evaluation method can conduct a comprehensive and accurate evaluation, which overcomes the one-sidedness from the human subjective judgments and the single objective evaluation factors.
     Adaptive image fusion scheme for different source images is investigated. Based on the above new comprehensive evaluation method, a close-loop adaptive image fusion model is established. The layers in the model are assorted serially according to the calculation complexity of fusion algorithms, including multiple fusion methods of various features. The scheme can select the optimized fusion scenario according to the user requirement. The shortcoming of the shortage of flexibility of the open-loop system is overcome. Furthermore, the algorithms in the model can be supplemented easily, which has a good expandability. In order to verify this model, weighted average fusion method, wavelet-based fusion method, Contourlet-based fusion method and NSCT-PCNN-based fusion method are selected as the algorithm group of the experiment. Experimental result shows that the new scheme set up the relationship between fusing result and the user requirement. The total fusion process is unmanned and the automation degree is improved.
引文
[1] Abidi M A, Gonzalez R C. Data Fusion in Robotics and Machine Intelligence, San Diego: Academic Press Inc, 1992
    [2] Pohl C, Van Genderen J L. Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications. International Journal of Remote Sensing, 1998, 19 (5): 823-854
    [3] Sadjadi F. Comparative Image Fusion Analysis. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (8): 8-15
    [4] Schistad Solberg A H, Jain A K, Taxt T. Multi-source Classification of Remote Sensed Data Fusion of Landsat TM and SAR Images. IEEE Transactions on Geoscience and Remote Sensing. 1994, 32 (4): 768-778
    [5]王宏,敬忠良,李建勋.多分辨率图像融合的研究与发展.控制理论与应用, 2004, 21 (1): 145-151
    [6]夏明革,何友,黄晓冬.多传感器图像融合应用评述.舰船电子对抗, 2002, 25 (5): 38-44
    [7]毛士艺,赵巍等.多传感器图像融合技术综述.北京航空航天大学学报, 2002, 28 (5): 512-517
    [8]武锋强,臧德彦,王建强.数字图像融合研究现状及其评述.水利科技与经济, 2007, 13 (1): 49-51
    [9]刘松涛,周晓东.图像融合技术研究的最新进展.激光与红外, 2006, 36 (8): 627-631
    [10] Smith M I, Rood G. Image Fusion of II and IR Data for Helicopter Pilotage. SPIE Optical Science and Technology, 2000 (4126): 156-160
    [11] http://www.waterfallsolutions.co.uk/
    [12] Jasiunas, M D, Kearney, D A, Hopf, J, et al. Image Fusion for Uninhabited Airborne Vehicles, Proceedings of IEEE International Conference on Field-Programmable Technology, 2002: 348-351
    [13] Wald L, Ranchin T, Mangolini M. Fusion of Satellite Images of Different Spatial Resolutions: Assessing the Quality of Resulting Images. Photogrammetric Engineering and Remote Sensing. 1997, 63 (3): 691-699
    [14]夏明革,多传感器图像融合效果评价方法研究,电光与控制, 2003, 10 (2): 35-38
    [15]周前样,敬忠良,姜世忠.不同光谱和空间分辨率遥感图像融合方法的理论研究.遥感技术与应用. 2003. 18 (1): 41-46
    [16]夏明革,何友,欧阳文.像素级图像融合方法与融合效果评价.遥感技术与应用, 2002, 17 (4): 224-229
    [17]崔岩梅,倪国强,钟堰利等.利用统计特性进行图像融合效果分析及评价.北京理工大学学报, 2000, 20 (1): 102-106
    [18]裘晓宁,张建宝,赵宗涛.多源遥感图像融合及应用.计算机工程与科学, 2001, 23(6): 15-17
    [19] Le Thanh, Sides S C. Comparision of Three Difference Methods to Merge Multiresolution and Multispectual Data. Remote Sensing, 1991 (57): 295-303
    [20] Petrovic V, Xydeas C. Optimizing Multiresolution Pixel-level Image Fusion. Proceedings of SPIE, 2001 (4385): 96-107
    [21] Carper W J, Lillesand T M, Kiefer R W. The Use of Intensity-hue-saturation Transformations for Merging SPOT Panchromatic and Multispectual Image Data. Photogrametric Engineering and Remote Sensing, 1990 (56): 459-467
    [22] Chibani Y, Houacine A. The Joint Use of IHS Transform and Redundant Wavelet Decomposition for Fusing Multispectual and Panchromatic Images. International Journal of Remote Sensing, 2002, 23 (18): 3821-3833
    [23] Yang X, Liang J M, Yang W H, Pei J H. Fusion Multispectual and High Resolution Image Using Evolutionary Strategies and IHS Transform. ACTA Electronica Sinica, 2001, 29 (10): 1388-1391
    [24] Ehlers M. Multisensor image fusion techniques in remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 1991 (46): 19-30
    [25] Wang Zhijun, Djemel Ziou, Costas Armenakis, et al. A Comparative Analysis of Image Fusion Methods. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43 (6):1391-1402
    [26] Achalakul T, Taylor S. Real-time Multispectral Image Fusion. Concurrency and Computation: Practice and Experience, 2001, 13 (12): 1063-1081
    [27] Tseng D C, Chen Y L, Liu M S. Wavelet-Based Multispectral Image Fusion. IEEE International Conference on IGARSS, 2001, 4: 1956-1958
    [28]王海晖,彭嘉雄,吴巍.评价多传感器图像融合效果方法的比较.红外与激光工程, 2004, 33 (2): 189-193
    [29]倪国强.多波段图像融合算法研究及其新发展.光电子技术与信息, 2002, 14 (5), 11-17
    [30]敬忠良,肖刚,李振华.图像融合——理论与应用.北京:高等教育出版社, 2007
    [31]李敏,谭正,李晓燕.多传感器图像融合技术及评价方法研究.计算机工程与应用. 2006 (6): 39-41
    [32]赵天昀.像素级图像融合技术研究.成都:成都理工大学, 2004
    [33] Burt P J, Adelson E H. The Laplacian Pyramid as a Compact Image Code. IEEE Transactions on Communications, 1983, 31 (4): 532-540
    [34] Toet A. Image Fusion by a Ratio of Low-pass Pyramid. Pattern Recognition Letters, 1989, 9 (4): 245-253
    [35] Burt P J. A gradient Pyramid Basis for Pattern Selective Image Fusion. Proceedings of the Society for Information Display Conference. 1992: 467-470
    [36] Blum R S, Xue Z, Zhang Z. Multisensor Image Fusion and its Applications. CRC Press, 2005
    [37] Hassainia F, Magafia I, Langevin F, et al. Image fusion by orthogonal wavelet transform and comparison with other methods. Proceedings of International Conference on Engineering in Medicine and Biology Society, 1992: 1246-1247
    [38] Chipman L J, Orr T M, Graham L N. Wavelets and Image Fusion, Proceedings of International Conference on Image Processing, 1995: 248-251
    [39] Herrington W F Jr., Horn B K P, Masaki I. Application of the Discrete Haar Wavelet Transform to Image Fusion for Night-time Driving. Intelligent Vehicles Symposium, 2005: 273-277
    [40] Koren I., Laine A, Taylor F. Image Fusion Using Steerable Dyadic Wavelet Transform, Proceedings of International Conference on Image Processing. 1995: 232-235
    [41] Liu Z, Tsukada K, Hanasaki K, et al. Image Fusion by Using Steerable Pyramid. Pattern Recognition Letters, 2001, 22(9) : 929-939
    [42] Mallat S G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7): 674-693
    [43] Zhang Z, Blum R S. A Categorization of Multiscale-decomposition-based Image Fusion Schemes with a Performance Study for a Digital Camera Application. Proceedings of the IEEE, 1999, 87 (8): 1315-1326
    [44] Oliver R. Image Sequence Fusion Using a Shift Invariant Wavelet Transform. Proceedings of International Conference on Image Processing. 1997: 288-291
    [45] Nunez J, Otazu X, Fors O, et al. Multiresolution-based Image Fusion with Additive Wavelet Decomposition. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (3):1204-1211
    [46] Velisavljevic V, Beferull-Lozano B, Vetterli, M, et al. Directionlets: Anisotropic Multidirectional Representation with Separable Filtering. Proceedings of IEEE Transactions on Image Processing, 2006, 15 (7): 1916-1933
    [47] Tessens, L, Ledda A, Pizurica A, et al. Extending the Depth of Field in Microscopy Through Curvelet-Based Frequency-Adaptive Image Fusion. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Volume 1, 2007: 861-864
    [48] Barmas S M, Contourlet-based Multispectral Image Fusion, Proceedings of the Seventh IASTED International Conference on Visualization, Imaging, and Image Processing, 2007: 11-14
    [49] Donoho D L. De-Noising by Soft-Thresholding, IEEE Transactions on Information Theory, 1995, 41 (3): 613-627
    [50] Cunha A L, Zhou Jianping, Minh N Do. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications. IEEE Transactions on Image Processing, 2005(5): 231-235
    [51] Ramin Eslami, Hayder Radha. The Contourlet Transform for Image De-noising UsingCyclic Spinning. Asilomar Conference on Signals, Systems and Computers, 2003: 85-90
    [52] Jia Jian, Jiao Licheng, Sun Qiang. The Nonsubsampled Contourlet Transform in Multisensor Images Fusion. Acta Electronica Sinica, 2007, 35 (10): 1934-1938
    [53] Burt P J. The Pyramid as a Structure for Efficient Computation: Multiresolution Image Processing and Analysis. London: Springer-Verlag, 1984
    [54] Burt P J, Koiczynski R. J. Enhancement with Application to Image Fusion. Proceedings of the 4th International Conference on Computer Vision. Los Alamitos: IEEE Computer Society, 1993: 173-182
    [55]陶冰洁,王敬儒,许俊平.基于小波分析的不同融合规则的图像融合研究.红外技术, 2006, 28 (7): 431-434
    [56] Qu Guihong, Zhang Dali, Yan Pingfan. Information Measure for Performance of Image Fusion. Electronics Letters, 2002, 37 (7): 313-315
    [57]王海晖,彭嘉雄,吴巍.评价多传感器图像融合效果方法的比较.红外与激光工程, 2004, 33 (2): 189-193
    [58]张新曼,韩九强.基于视觉特性的多尺度对比度塔图像融合及性能评价.西安交通大学学报, 2004, 38 (4): 380-383
    [59]崔岩梅,倪国强.利用统计特性进行图像融合效果分析及评价.北京理工大学学报, 2004, 20 (1): 102-106
    [60]徐宝昌,陈哲.基于模糊choquet积分的图像融合效果评价.光电工程, 2004, 31 (11): 42-46.
    [61]杨晓慧,金海燕.基于DT-CWT的红外与可见光图像自适应融合.红外与毫米波学报, 2007, 26 (6): 419-424
    [62]刘松涛,沈同圣.基于自适应融合规则的多分辨率图像融合算法.激光与红外, 2007, 37 (8): 788-791
    [63] Mitianoudis Nikolaos, Stathaki Tania. Adaptive image fusion using ICA bases. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, 2006 (2): 829-832
    [64] Liu Yuan, Yin Dong, et al. Study on the Image Fusion of Closed-loop Structure Using Discrete Multiwavelet Transform. Journal of Compurational Information Systems, 2006, 2 (3): 1111-1118
    [65] Li Min, Cai Wei, et al. A Region-based Multisensor Image Fusion Scheme Using Pulse-coupled Neural Network, Pattern Recognition Letters, 2006, 27 (16): 1948-1956
    [66] Jin Jianqiu, Wang Zhangye, et al. Optimal Fusion of Multispectral Images under Correlation Coefficient Criteria. Journal of Computer Aided Design & Computer Graphics. 2004, 16 (12): 1656-1661
    [67] Das S, Krebs W K. Sensor Fusion of Multispectral Imagery. Institution of Electrical Engineers: Electronics Letters, 2000 (36): 1115-1116
    [68]阳方林,郭红阳,杨风暴.像素级图像融合效果的评价方法研究.测试技术学报, 2002, 6 (4): 276-279
    [69]吴秀清,周蓉.一种多分辨率图像数据融合方法及实现.计算机工程, 2000 (3): 31-32
    [70] Scribner D A, Warren P, Schuler J, et al. Infrared Color Vision: An Approach to Sensor Fusion. Optics and Photonics News, 1998 (8): 27-32
    [71]李弼程,彭天强,彭波等.智能图像处理技术.北京:电子工业出版社, 2004
    [72]袁小滨.用于目标识别的多传感器信息融合算法研究.西安公路交通大学学报, 2000, 20 (2): 90-92
    [73]张强,王炯琦,周海银.多传感器图像融合流程建模及仿真.计算机工程与应用. 2007. 43 (34): 89-92
    [74] Jia Y H. Fusion of Landsat TM and SAR Images Based on Principle Component Analysis. Remote Sensing Technology and Application, 1998, 13 (1): 46-49
    [75] Mallat S G. Multifrequency Channel Decomposition of Images and Wavelet Models. IEEE Transactions on Acoustic, Speech and Signal Processing, 1989, 37 (12): 2091-2110.
    [76] Maria G A, Jose L S, Raquel G C, et al. Fusion of Multispectual and Penchromatic Images Using Improved IHS and PCA Mergers Based on Wavelet decomposition. IEEE Transactions on Geosciences and Remote Sensing, 2004, 42 (6): 1291-1299
    [77] Do M. N, Vetterli M. Frame Reconstruction of the Laplacian Pyramid. Proceedings of International Conference on Acoustics, Speech and Signal Processing, 2001: 3641-3644
    [78] Aiazzi B, Alparone L, Argenti F, et al. Multispectral Fusion of Multisensor Image Data by the Generalized Laplacian Pyramid. Proceedings of Geoscience and Remote Sensing Symposium, 1999: 1183-1185
    [79] Zhou Y T. Multisensor image fusion. Proceedings of International Conference on Image Processing. 1994: 193-197
    [80]刘贵喜,杨万海.基于多尺度对比度塔的图像融合方法及性能评价.光学学报, 2001, 21 (11): 1336-1342
    [81] Pinz Axel, Renate Bart. Information Fusion in Image Understanding. Proceedings of IEEE, 1992: 366-370
    [82] Sharma Ravi Krishna. Probabilistic Model-based Multisensor Image Fusion. USA: Oregon Graduate Institute of Science and Technology Doctor′s Thesis, 1999
    [83]王振明,高飞.对拉普拉斯金字塔和对比度金字塔图像融合方法的性能比较.广西科学院学报. 2004 (4): 283-285
    [84]汤志伟.使用小波分析的图像融合算法.电子科技大学学报, 2000, 29 (2): 122-125
    [85]刘贵忠,邸双亮.小波分析及其应用.西安:西安电子科技大学出版社, 1992
    [86]蒋晓瑜.小波变换在多光谱图像融合中的应用.电子学报, 1997, 25 (8): 105-108
    [87]崔岩梅.一种基于小波变换的多尺度多算子图像融合方法.光学技术. 1999 (4): 37-39
    [88] MALLAT S G. Multifrequency Channel Decompositions of Images and Wavelet Models. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37 (12):2091-2110.
    [89] Vetterli M, Herley C. Wavelets and Filter Banks: Theory and Design. IEEE Transactions on Signal Processing, 1992, 40 (9): 2207-2232
    [90] Aldroubi A, Abr Y. P, Unser M. Construction of Biorthogonal Wavelets Starting from Any Two Multiresolutions. IEEE Transactions on Signal Processing, 1998, 46 (4): 1130-1133
    [91] Li H, Manjuath B S, Mitra S. Multisensor Image Fusion Using the Wavelet Transform. Graphical Models and Image Processing, 1995, 57 (3): 235-245
    [92] Ramac L C, Uner M K, Varshney P K. Morphological Filters and Wavelet Based Image Fusion for Concealed Weapons Detection. Proceedings of SPIE on Sensor Fusion: Architectures, Algorithms and Application, 1998: 110-119
    [93] Yan D, Zhao Z. Wavelet Decomposition Applied to Image Fusion. Proceedings of International Conference on Info-tech and Info-net, 2001: 291-295
    [94]杨福生.小波变换的工程分析与应用.北京:科学出版社, 1999
    [95] Daubechies I. The Wavelet Transform, Time-frequency Location and Signal Analysis. IEEE Transactions of Information Theory, 1990, 36 (5): 961-1005
    [96]彭玉华.小波分析与工程应用.北京:科学出版社, 1999
    [97] Wilson T A, Rogers S K, Myers L R. Perceptual-based Hyperspectral Image Fusion Using Multiresolution analysis. Optical Engineering, 1995, 34 (11): 3154-3164
    [98] Nikolov S G, Bull D R, Canagarajah C H, et al . Image fusion Using a 3-D Wavelet Transform. Proceedings of International Conference on Image Processing and Its Applications, 1999: 235-239
    [99]陶冰洁,王敬儒,张启衡.基于小波系数相关性的图像融合新方法.激光与红外, 2006, 36 (3): 227-230
    [100]侯建华,熊承义,喻胜辉.基于小波局部能量特征的多分辨率图像融合.中南民族大学学报(自然科学版), 2006, 25 (2): 47-50
    [101] Wang Z C, Tian Y, Liu J, et al. Wavelet Fusion Method Based on Local Energy and Local Entropy. Proceedings of SPIE, 2005, 5960: 1790-1797
    [102] Eslami R, Radha H. The Contourlet Transform for Image De-noising Using Cyclic Spinning. Proceedings of Asilomar Conference on Signals, Systems and Computer, 2003 (11): 1982-1986
    [103] Kingsbury N. Complex Wavelets for Shift Invariant Analysis and Filtering of Signals. Journal of Application and Computer Harmonic Analysis, 2001, 10 (3): 234-253
    [104] Nason G P, Silverman B W. The Stationary Wavelet Transform and Some Statistical Applications in Wavelet and Statistics, Lecture Notes in Statistics. SpingerVerlag, 1995: 281-299
    [105] Candes J. Ridgelet: Theory and Applications. Ph.D. dissertation. Stanford University, 1998
    [106] Filippo N, Andrea G, Stefano B, et al. Remote Sensing Image Fusion Using the CurveletTransform, Information Fusion, 2007, 4 (8): 143-156
    [107] Andrea G, Filippo N, Luciano A. Multiresolution Fusion of Multispectral and Panchromatic Images through the Curvelet Transform. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2005: 2838-2841
    [108] Vladimir P, Costas X. Objective Image Fusion Performance Characterisation, Proceedings of the 10th IEEE International Conference on Computer Vision, 2005
    [109] Lu Y, Do M. N. CRISP-Contourlets: A Critically Sampled Directional Multiresolution Image Representation. Proceedings of SPIE Conference on Wavelet Applications in Signal and Image Processing, 2003
    [110]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报, 2003, 31 (12A): 1975-1981
    [111] Bamberger R H, Smith M J. A Filter Bank for the Directional Decomposition of Images: Theory and Design. IEEE Transactions on Signal Processing, 1992, 40 (4): 882-893
    [112] Do M N, Vetterli M. Contourlets: Beyond Wavelets. Academic Press, 2002
    [113] Meyer F G., Coifman R R. Brushlets: A Tool for Directional Image Analysis and Image Compression. Journal of Application and Computing Harmonic Analysis, 1997, 6 (4): 147-187
    [114] Piella G, Heigmans H. A New Quality Metric for Image Fusion. Proceedings of IEEE International Conference on Image Proceeding. Barcelona, Spain, 2003.
    [115] Lewis J J, O’Callaghan R J, Nikolov S G.. Region-based Image Fusion Using Complex Wavelets. Proceedings of the 7th International Conference on Information Fusion. Stockholm, Sweden, 2004.
    [116]李光鑫,王珂.基于Contourlet变换的彩色图像融合算法.电子学报, 2007, 35 (1): 112-117
    [117] Candes E J, Donoho D L. Curvelets: a Surprisingly Effective Non-adaptive Representation for Objects with Edges. Curves and Surfaces. Nashville: Vanderbilt University Press, 1999
    [118] Piella G A General Framework for Mutiresolution Image Fusion: from pixels to regions. Information Fusion, 2003, 4 (4): 259-280
    [119] Andrew P. Shift-invariance in the Discrete Wavelet Transform. Proceedings VIIth Digital Image Computing: Techniques and Applications. Sydney, Australia, 2003: 29-38
    [120] Cunha A L, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design and Applications. IEEE Transactions on Image Processing, 2005
    [121] Cohen A, Matei B. Nonlinear Subdivisions Schemes: Applications to Image Processing. Tutorial of Multiresolution in Geometric Modeling. Springer, 2002: 93-97
    [122] Olshausen B A, Field D J. Emergency of Simple Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, 1996, 381: 607-609
    [123] Donoho D L. Data Compression and Harmonic Analysis. IEEE Transactions on Information Theory, 1998, 44 (6): 2435-2476
    [124] Zheng Yongan, Song Jianshe, Zhou Wenming, et al. False Color Fusion for Multi-band SAR Images Based on Contourlet Transform. Acta Automatica Sinica, 2007, 33 (4): 337-341
    [125] Qu Xiaobo, Xie Guofu, Yan Jingwen, Zhu Ziqian, et al. Image Fusion Algorithm Based on Neighbors and Cousins Information in Nonsubsampled Contourlet Transform Domain. Proceedings of International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China: IEEE, 2007, 1797-1802
    [126] Zhang Z, Blum R S. A Categorization of Multiscale-decomposition-based Image Fusion Schemes with a Performance Study for a Digital Camera Application. Proceedings of the IEEE, 1999, 87 (8): 1315-1326
    [127] Hall D L, Linas J. An Introduction to Multi-sensor Data Fusion. Proceedings of the IEEE, 1997, 85 (1): 6-23
    [128]阮秋琦.数字图像处理学.北京:电子工业出版社, 2001
    [129]王岭雪,金伟其,刘广荣等.夜视图像的彩色融合方法综述.红外技术, 2002, 24 (2): 9-13
    [130] Yocky D A. Image Merging and Data Fusion by Means of the Discrete Two-dimensional Wavelet Transform. Journal of Optical Society of America. 1995, 12 (9): 1834-1841
    [131]强赞霞,彭嘉雄,王洪群.基于小波变换局部方差的遥感图像融合.华中科技大学学报(自然科学版). 2003, 31 (6): 89-91
    [132] Butte A J, Kohane I S. Mutual Information Relevance Networks: Functional Genomic Clustering Using Pair-wise Entropy Measurements. Children’s hospital informatics program and division of endocrinology. USA.
    [133]晁锐,张科,李言俊.一种基于小波变换的图像融合算法.电子学报, 2004, 32 (5): 75-79
    [134] Tao G Q, Li D P, Lu G H. On Image Fusion Based on Different Fusion Rules of Wavelet Transform. Acta Photonica Sinica, 2004, 33 (2): 222-226
    [135] Johnson J L, Padgett M L. PCNN Models and Applications. IEEE Transactions on Neural Networks, 1999, 10 (3): 480-498
    [136] Randy P B, Steven K R, Mark E O, et al. Physiologically Motivated Image Fusion for Object Detection Using a Pulse Coupled Neural Network. IEEE Transaction on Neural Networks, 1999, 10 (3): 554-563
    [137] Gu Xiaodong, Zhang Liming, Yu Daohen. General Design Approach to Unit-linking PCNN for Image Processing, Proceedings of the IEEE International Joint Conference on Neural Networks, 2005: 1836-1841
    [138] Bi Yingwei, Qiu Tianshuang. An Adaptive Image Segmentation Method Based on a Simplified PCNN. Acta Electronica Sinica, 2005, 33 (4): 647-650
    [139] Fang Yong, Qi Feihu, Pei Bingzhen. PCNN Implementation and Applications in Image Processing. Infrared and Millimeter Waves. 2005, 24 (4): 291-295
    [140] Li Wei, Zhu Xuefeng. A New Algorithm of Multi-modality Medical Image Fusion Based on Pulse-coupled Neural Networks. Lecture Notes in Computer Science, 2005, 3610 (1): 995-1001
    [141] Xu Baochang, Chen Zhe. A Multisensor Image Fusion Algorithm Based on PCNN. Proceeding of 5th World Congress on Intelligent Control and Automation, 2004, 3679-3682
    [142] Qu Xiaobo, Yan Jingwen, Zhu Ziqian, Chen Bengang. Multi-focus image fusion algorithm based on regional firing characteristic of Pulse Coupled Neural Networks. Proceedings of International Conference on Bio-Inspired Computing: Theories and Applications, Publishing House of Electronics Industry, 2007: 563-565
    [143]闫敬文,许建航,屈小波.改进基于小波变换的PCNN图像融合算法.厦门理工学院学报, 2006, 14 (4): 13-18
    [144]张军英,梁军利.基于脉冲耦合神经网络的图像融合.计算机仿真, 2004, 21 (4): 102-104
    [145] Blasch E P. Biological Information Fusion Using a PCNN and Belief Filtering. Proceedings of the International Joint Conference on Neural Networks, 1999 (4): 2792-2795
    [146] Wang Qiang, Shen Yi and Zhang Ye. A Quantitative Method to Evaluate the Performance of Hyper-spectral Data Fusion. IEEE Instrumentation and Measurement Technology Conference Anchorage, 2002 (5): 21-23
    [147]阳方林.像素级图像融合效果的评价方法研究.测试技术学报, 2002, 16 (4): 276-279
    [148] Hamid R S, Muhammad F S, Alan C B. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Transactions on Image Processing. 2006, 15 (11): 3441-3452
    [149]石美红,张军英,张晓滨等.基于改进型脉冲耦合神经网络的图像二值分割.计算机仿真, 2002, 19 (7): 42-46
    [150]李树涛.多传感器图像融合的客观评价与分析.仪器仪表学报, 2002, 23 (6): 23-26
    [151]王昱.数字遥感影像构像质量评价方法初探,遥感信息, 2000, 15 (4): 32-33
    [152]赵鲁燕,尹君.图像融合效果评价方法研究.应用技术. 2005 (4): 156-158
    [153]石俊生,金伟其,王岭雪等.微光与红外图像融合质量视觉评价实验.红外技术, 2004, 26 (3): 22-32
    [154] Krebs W K, Sinai M J. Psychophysical Assessments of Image-sensor Fused Imagery. Human Factors, 2002, 44: 257-271
    [155]郑永安,宋建社,周文明.基于图像质量因子的图像融合客观评价方法.系统工程与电子技术. 2006, 28 (3): 15-17
    [156]王鸿南,钟文,汪静等,图像清晰度评价方法研究,中国图象图形学报, 2004, 9 (7): 828-831
    [157]王蓉,柴玉华,高立群等.图像融合技术及融合效果评价的研究.农机化研究,2006, 1 (1): 87-89
    [158]胡良梅,高隽,何柯峰.图像融合质量评价方法的研究.电子学报, 2004, 32 (12A): 218-221
    [159] Eskicioglu A M, Fisher E. Image Quantity Measures and Their Performance. IEEE Transactions of communication, 1995, 43 (12): 2959-2965
    [160]王海晖,彭嘉雄,吴巍.评价多传感器图像融合效果方法的比较.红外与激光工程2004, 33 (2): 65-68
    [161] Hu X, Cercone N. Learning in Relational Database: A Rough Set Approach. Computational Intelligence, 1995, 11 (2): 323-338
    [162] Xydaes C, Petrovi V. Objective Image Fusion Performance Measure. Electronic Letters, 2000, 36 (4): 308-309
    [163]杨伦标,高英仪.模糊数学原理及应用.广州:华南理工大学出版社, 1995: 315-325
    [164]沙福泰.模糊信息处理与模糊神经网络.舰船电子对抗, 1999 (3): 33-37
    [165]张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社, 1998
    [166]杨华芬,魏延.基于模糊神经网络的水质评价模型研究,云南民族大学学报(自然科学版), 2007, 16 (3): 255-258
    [167]刘永祥,黎湘,庄钊文等.基于choquet积分的决策层信息融合目标识别.电子与信息学报. 2003, 25 (5): 695-699
    [168]席一凡,王超,聂兴信.基于模糊神经网络的供应链绩效评价方法研究.情报杂志, 2007 (9): 77-79
    [169]田启华,杜义贤.基于模糊神经网络的机械产品性能评价.中国制造业信息化, 2004 (9): 26-29
    [170]潘莹,梁京章,黎慧娟.基于K-means算法的校园网用户行为聚类分析.计算技术与自动化, 2007, 26 (1), 66-69
    [171]申艳光,王伟,靳书和.基于BP网络模型的立项评估研究与应用.微计算机信息, 2007, 23 (2): 250-252
    [172] Chaudhuri S P, Khanh L. Adaptive All-source Data Fusion System Development. Proceedings of IEEE Militiary Communications Conference. 1998 (3): 924-928
    [173] Sharma, R, Pavel M. Adaptive and Statistical Image Fusion. Proceedings of SID. 1996: 969-972
    [174]胡钢,刘哲,高瑞等.基于小波变换的自适应图像融合算法.西安理工大学学报, 2007 (03): 286-290
    [175]柴艳妹,任金昌,赵荣椿.一种基于小波分析的自适应图像融合方法.中国体视学与图像分析, 2002 (4): 280-283
    [176] Petrovic V, Cootes T. Objectively Adaptive Image Fusion. Information Fusion, 2007,8 (2): 168-176
    [177] Nichol J, Wong M S. Detection and Interpretation of Landslides Using Satellite Images. Land Degradation & Development Land Degrad. Develop, 2005 (16): 243-255
    [178] Lallier E, Farooq M. A Real-time Pixel-level Based Image Fusion via Adaptive Weight averaging. The 3rd International Conference on Information Fusion. Paris, France, 2000
    [179]易继锴,候媛彬.智能控制技术,北京:北京工业大学出版社, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700