基于近化学计量比Mg:Fe:LiNbO_3晶体的体全息相关识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体全息存储技术以其存储密度高、存储容量大、数据传输速率高、数据搜索时间短等优势成为一种颇具潜力的海量信息存储技术。而基于体全息存储的相关识别技术是一种新兴的光学模式识别技术。具有并行性和快速性的特点,在军事制导及目标识别等方面具有重要的研究价值及应用前景。本论文以近化学计量比Mg:Fe:LiNbO_3晶体为存储介质,在已有的理论和研究基础上,提出了若干适用于体全息相关识别的算法,推进体全息识别系统的实用化进程。
     目前制约体全息存储及相关识别技术的关键仍然在于获取高性能、高质量的光折变材料。同成分LiNbO_3晶体难以满足体全息存储对其光折变性能的要求,而且在强光照射下容易发生光致散射。为此本文利用顶部籽晶法,通过优化晶体生长的工艺参数(原料配比、温场等),研制出大尺寸、组分均匀、抗光损伤能力强的近化学计量比Mg:Fe:LiNbO_3晶体。测试结果显示:晶体中的[Li]/[Nb]比在49.7~49.8%之间,确定了Mg在晶体中的阈值浓度为2~3mol%之间,提出了掺杂离子的占位模型,晶体的头尾居里温度差在2℃以内,晶体的抗光损伤能力达到10~4W·cm~(-2),衍射效率超过60%,响应时间达到亚秒级。表明近化学计量比Mg:Fe:LiNbO_3晶体具有更好的光学均匀性和体全息存储特性,较同成分LiNbO_3晶体有显著提高,为提高体全息相关识别系统的读出图像质量打下坚实的基础。
     为了进一步降低体全息相关识别系统对全息图衍射效率均匀性的要求并提高识别率,采用基于特征识别向量的方法进行识别判断,该方法需要对相关峰光斑进行自动定位。为此,以邻域熵目标检测为基础,提出了一种基于邻域方差增长的相关峰光斑定位算法。首先选择大小合适的两邻域,通过计算两个邻域的方差增长数值来而不是熵增长值来进行目标检测和定位,同时解决了邻域熵进行目标检测受背景亮度影响的问题。针对1024×768像素大小的相关读出图像,算法定位比较准确,且平均耗时<4s。
     针对大样本问题,提出了基于自适应多尺度边缘的体全息相关识别算法,使原始图像之间的直接相关转化为特征边缘之间的相关,提高了相关峰的锐度。首先依据噪声和边缘在小波变换域的Lipschitz指数的差异性,定义多尺度边缘相关函数,对模极大值点进行检测;然后依据类内方差最小化这一准则自适应的确定二值化的双阈值,避免人为因素的干扰。以AR人脸库中图像作为原始图像,实现了1000幅全息图的存储与相关识别,对于库内图像识别准确率达到了99.50%,对于500幅库外图像都能够准确的判断为非库内图像。
     提出了一种加权二维Fisherface方法对训练样本进行特征提取和重构,来解决体全息相关识别所面临的小样本问题。算法首先使用二维主成分分析方法对原始数据进行压缩降维,使得压缩后的信息能够最大限度的表达原始输入信息;然后根据Fisher准则在降维后的空间进行特征提取,使投影后的模式样本在新的子空间中类间离散度和类内离散度的比值最大,即模式在该空间具有最佳的分离性,从而达到提取分类信息的效果。最后根据这些最具分离性的特征和最具表达性的特征对原始图像进行重构,将原始图像之间的直接相关转化为重构图像之间的相关。同时算法对那些偏离聚类中心的野值点在计算类均值时赋予较轻的权重,也在一定程度上提高了所提取的特征的准确性。在ORL和Yale人脸库上的相关识别实验取得的识别率较传统相关提高了约10%,进一步说明了算法的有效性。
With the developing of information and computer technology, the new storage system is needed urgently. Volume holographic storage has become a potential storage means for the merits of high package density, high storage capacity, fast data transfer rates and short access time. Accordingly, the correlator based on volume holographic storage is a rising optical pattern recognition technology with inherent characteristics of parallelism and rapidity.
     The preparition of photorefractive materials with high performance and better quality is the key technology to promote the development of volume holographic correlation. So, near stoichiometric Mg:Fe:LiNbO_3 crystals, which is not only heavy gauge and uniform component but also high photodamage resistance ability, were grown by Top-seeded solution growth method, and the appropriate technological conditions (mixture ratio of raw materials, thermal field et al) were adoped. By analysis, [Li]/[Nb] ratio in crystals, attributed indirectly, is about 49.7~49.8%, the threshold concentration and location of Mg in doped near stoichiometric LiNbO_3 crystals are confirmed, and the location model is given. The defference of Curie temperature between crystals’head and tail is less than 2℃. Crystals’photodamage resistance ability is increased to 10~4W·cm~(-2), diffraction efficiency is up to 60%, response time is under submicrosecond. All of these can indicate crystals’s component is uniform, and its ability of volume holographic storage and correlation is much higher than congruent Fe:LiNbO_3 crystals, which give a thick basis of volume holographic storage and correlation.
     Feature recognition vectors method is used to improve recognition accuracy under the circumstance of uneven diffraction efficiency, which must need the accurate position of correlation peaks. So, neighborhood variance increasing method based on neighborhood entropy is presented to allocate correlation peaks automatically, which can also solve the influence of background brightness. First two suitable neighborhoods are selected, then the value of variance increasing is calculated, other than entropy, to detect and locate target. It only takes less than 4 seconds to complete location, against correlation output image with size of 1024×768 pixels.
     Against large sample problems, an adaptive multi-scale edge extraction method is presented, which is used to improve the sharpness of correlation peaks. According the difference of Lipschitz exponent between noise and edge in wavelet transform domain, multi-scale edge correlation function is defined to check modulus extreme points, and then dual threshold, which is used to get binary image, is determined adaptively based on such criterion that within-class variance minimization. Volume holographic correlation systems with 1000 holograms from AR face database are realized. Recognition rate is 99.50% against stored image and all correct results are achieved towards 500 images not stored.
     Volume holographic correlation is not very effective under small sample size case. To solve this problem, a weighted two dimentional Fisherface algorithm is presented to extract features and reconstruct original information, which is used as a substitution of primary training samples and stored in crystals. First, two dimention principal component analysis is used to reduce training samples’dimension and obtain the most expressive features. Then, the most separative features is extracted by Fisher criterion, which is maximized the proportion of between-class dispersion and in-class one, and the impace of outline values is reduced by lighter weight. At last reconstructed image is rebuilt by such features. Correlation exprements based on ORL and Yale face database verify the effectivedness of the algorithm, and recognition rate is about 10% higher then that yielded by traditional volume holographic correlation.
引文
1陈家璧,苏显渝,朱伟利,孙雨南,陶世荃.光学信息技术原理及应用.高等教育出版社, 2002:208-209
    2徐端颐.高密度光盘数据存储.清华大学出版社, 2003:2-3
    3 T. D. Milster. Horizons for optical data storage. Optics and Photonics News, 2005, 16(3):2833-2839
    4 A. Sinha, G. Barbastathis, W. H. Liu and D. Psaltis. Imaging using volume holograms. Opt. Eng., 2004, 43:1959-1972
    5 H. Shin and M. Lee. Holographic angle multiplexing combined with persitrophic multiplexing in a photorefractive LiNbO3 crystal. Optics Communications. 2007, 269(2):299-303
    6 S. V. Evdokimov, A. V. Yatsenko. An analysis of the phenomenon of therostimulated long-term memory of LiNbO3 crystals. Crystallography Reports, 2009, 54(1):94-97
    7 Wu Fei, Yi Faling, Xie Changsheng. Reasearch of the file system of volume holographic storage based on virtual storage layer. Proc. of SPIE, 2008, 6912:69120G-1
    8 D. Wang and Y. Yang. A method of making a true color stereoscopic hologram. Optics Communications, 2006, 267(1):79-82
    9董怡,金伟其.超高密度光存储技术.激光与红外, 2005, 35(8):543-547
    10 A. Ashkin, G. D. Bord and J. M. Dziedzie. Optically-induced refractive index inhomogeneities in LiNbO3. Appl. Phys. Lett., 1996, 9(1):72-74
    11 R. Ince, H. Yükselici and A. T. ?nce. Crystal diffraction grating in Fe:LiNbO3 derived from interferometric volume holography. Optics and Lasers in Engineering. 2006, 44(6):509-519
    12 P. J. VanHeerden. Theory of optical information storage in solid. Appl. Opt., 1963, 2:393-395
    13 P. B. Berra, A. Ghafoor, P. Mitkas, S. Arcinkowski and M. Guizani. The impact of optics in data and knowledge base systems. IEEE Trans. on Knowl. Data. Eng., 1989, 1:111-131
    14 D. Psaltis. High order associative memories and their opticalimplementations. Neural Network. 1988, 1:149-163
    15 D. Psaltis. Holography in artificial neural networks. Nature. 1990, 343:325-330
    16 S. Wu and Q. Song. Reconfigurable interconnections using photorefractive holograms. Appl. Opt., 1990, 29(8):1118-1125
    17 W. C. Su and C. C. Su. Optical pattern interconnections using random phase encoding in volume holograms. Optics Communications. 2002, 213:259-265
    18 A. Kerbaschi, O. Momtahan, A. Adibi and B. Javidi. Optical correlation using gated localized holography. Opt. Eng., 2005, 44:085802(8)
    19 F. H. Mok, D. Psaltis and G. Burr. Spatially- and angle-multiplexed holographic random access memory. SPIE, 1992, 1773:334-345
    20 G. Burr, S. Kobras and H. Coufal. Storage of 10,000 holograms in Fe:LiNbO3. Conference on Lasers and Electro-Optics (CLEO), Anaheim, CA., 1994
    21 I. McMichael, W. Christian, D. Pletcher, T. Y. Chang and J. H. Hong. Compact holographic storage demonstrator with rapid access. Appl. Opt., 1996, 35(14):2375-2379
    22 G. W. Burr, C. Jefferson, H. Coufal, M. Jurich, J. Hoffnagle, R. Macfarlane and R. Shelby. Volume holographic data storage at an area density of 250 gigepixedes/in. Opt. Lett., 2001, 26(7):444-446
    23 S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink and R. Okas. High data rate (10Gbit/sec) demonstration in holographic disk digital data storage system. Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest. 2002:70-75
    24 O. Momtahan, G. H. Cadena, A. Makhmalbaf, A. Adibi. Two-center holographic recording in highly doped LiNbO3 crystals. Applied Physics B: Lasers and Optics, 2008, 90(3-4):519-525
    25谭小地,撅米秀嘉.同轴式光全息存储技术及其系统.光学学报, 2006, 26(6):827-830
    26 InPhase Technologies. Inphase Technologies Introduces the World’s First Holographic Driver Propotype. 2005, www.inphase-tech.com
    27 X. F. Meng, L. Z. Cai, M. Z. He, G. Y. Dong and X. X. Shen. Cross-talk free image encryption and watermarking by digital holography and random composition. Optics Communications. 2007, 269(1):47-52
    28 X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao and Y. H. Xu. Structure and photodamage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3+. Crystal Research Technology, 2002, 37(9):976-982
    29 D. Li, Y. B. Yan, Q. Z. Xue and G. F. Jin. Wavelet packet compression for volume holographic image recognition. Optics Communications. 2003, 216:105-113
    30 D. S. Zhu, J. J. Xu, H. J. Qiao, Y. L. Shi, F. Gao, W. Li, B. Fu, G. Q. Zhang and K. Zheng. Ultraviolet photorefractive effect in Mg-doped near-stoichiometric LiNbO3. Optics Communications. 2006, 266(2):582-585
    31谢敬辉,张泽明,周元林,孙萍,何庆生,邬敏贤,金国藩. Fe:LiNbO3全息图热定影及H+浓度的影响.光子学报, 2003, 32(3):344-347
    32 H. T. Li, Z. J. Sun, S. J. Ye, W. Cai and L. C. Zhao. The influences of ZnO doping concentration on structure and photorefractive properties of Zn:Fe:LiNbO3 crystals grown by TSSG method. Journal of Physics and Chemistry of Solids, 2005, 66(6):990-993
    33马强,曹良才,谭峭峰,何庆声,金国藩.基于多通道体全息相关器的二维沃尔什变换.中国激光, 2009, 36(11): 2997-3001
    34 D. A. Ivanov, T. Yu. Ivanova, O. S. Grunskii, Yu. S. Tver’yanovich. Effect of defects of the domain structure on the optical properties of ferroelectric crystals. Glass Physics and Chemistry, 2010, 36(1):10-16
    35 T. S. Chernaya, T. R. Volk, I. A. Verin and V. I. Simonov. Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality. Crystallography Reports, 2008, 53(4):573-578
    36 R. S. Weis and T. K. Gaylord. Appl. Phys. A. 1985, 37:203-206
    37 G. I. Malovichko, V. G. Grachev, L. P. Yurchemko, V. Y. Proshko, E. P. Kokanyan, V. T. Grbrielyan. Improvement of LiNbO3 microstructure by crystal growth with postassium. Phys. Stat. Sol(a)., 1992, 133:k29-k32
    38王忠敏.铌酸锂晶体的发展简况.人工晶体学报, 2002, 31(2):173-175
    39 S. Kumaragurubaran, S. Takekawa. Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalite single crystals and fabrication of periodically pole structure. Journal of Crystal Growth, 2006, 292:332-336
    40 S. Kumaragurubaran, S. Takekawa. Growth of 4-in diameter near stoichiometric lithum tantalite single crystals. Journal of Crystal Crowth,2005, 285:88-95
    41孔勇发,许京军,张光寅.多功能光电材料—铌酸锂晶体.科学出版社, 2005
    42 S. C. Abrahams and P. Marsh. Defect structure dependence on composition in lithium niobate. Acta Crystallorgr. Sect. B., 1986, 42:61-65
    43 J. Blumel, E. Born and T. Metzger. Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate. J. Phys. Chem. Solids, 1994, 55:589-593
    44 S. Kojima. Composition variation of optical phonon damping in lithium niobate crystals. J. Appl. Phys., 1993, 32:4373-4378
    45 A. P. Wilkinson, A. K. Cheetham and R. H. Jarman. The defect structure of congruently melting lithium niobate. J. Appl. Phys., 1993, 74(5):3080-3086
    46 N. Zotov, H. Boysen, F. Frey, T. Metzger and E. Born. Substitution models of congruent LiNbO3 investigated by X-ray and neutron power diffraction. J. Phys. Chem. Solids, 1994, 55:145-153
    47 O. F. Schirmer, O. Thiemann and M. Wohleche. Defects in LiNbO3-I. experimental aspects. J. Phys. Chem. Solids, 1991, 52(1):185-196
    48 J. C. Bi, B. Liu and W. Zheng. Studu of photodamage of Mg:Er:LiNbO3 waveguide substrate. Pro. SPIE, 2005, 5636:400-404
    49 Jia Baoshen, Zhao Yequan, Shen Yan, He Yanlan. Growth of near stoichiometric Mn:Fe:LiNbO3 crystal and its optical characterization. Journal of the Chinese Ceramic Society, 2007, 35(11):1535-1537
    50 M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana and E. P. Kokanyan. Electro-optic and dielectric properties of hafnium-doped congruent lithium niobate crystals. Applied Physics B: Lasers and Optics, 2008, 92(4):603-608
    51 B. H. Kang, B. K. Rhee, G. T. Joo, S. K. Lee and K. S. Lim. Measurements of photovoltaic constant and photoconductivity in Ce:Mn:LiNbO3 crystal. Optics Communication, 2006, 266(1):203-206
    52 Y. J. Guo, L. R. Liu, D. A. Liu, Z. F. Chai and R. Zhu. Effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal. Optik, 2006, 117(9):431-436.
    53 D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh and G. Cook. Understanding and eliminating photovoltaic induced instabilities in contra-directional two-beam coupling in photorefractive LiNbO3:Fe. Optical Materials, 2005, 27(11):1730-1732
    54 J. J. Amodei, D. L. Staebler and A. N. Stephaphens. Holographic pattern fixing in electro-optic crystals. Appl. Phys. Lett., 1971, 18(12):540-542
    55 W. Philliphs, J. J. Amodei and D. L. Staebler. Optical and holographic storage properties of transition metal doped lithium niobate. RCA Review, 1972, 33:94-109
    56 I. Oliveira, J. Frejlich, L. Arizmendi and M. Carrascosa. Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals. Optics Communications, 2004, 229:371-380
    57 A. Ashkin, G. D. Bord, J. M. Dziedzie, R. G. Smith, J. J. Levinstein, and K. Nassau. Optically-induced refractive index inhomogeneities in LiNbO3. Appl. Phys. Lett., 1966, 9(1):72-74
    58 J. G. Zhong, J. Jin and Z. K. Wu. Measurement of optically induced refractive-index damage of lithium niobate doped with different concentration of MgO. 11th International Quantum Electronics Conference, New York, IEEE Catalog. No. 80, CH1561-0, 1980:631
    59 T. R. Volk, V. I. Pryalkin and N. M. Rubinina. Optical-damage-resistant LiNbO3:Zn crystal. Opt. Lett., 1990, 15(18):996-998
    60 Y. F. Kong, J. K. Wen and H. F. Wang. New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In. Appl. Phys. Lett., 1995, 66(3):280-281
    61 S. Q. Li, S. G. Liu, Y. F. Kong, J. J. Xu and G. Y. Zhang. Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 codoping. Appl. Phys. Lett., 2006, 89:101-126
    62 S. Q. Li, S. G. Liu, Y. F. Kong, D. L. Deng, G. G. Gao, Y. B. Li, H. C. Gao, L. Zhang, Z. H. Hang, S. L. Chen and J. G. Xu. The optical damage resistance and absorption spectra of LiNbO3:Hf crystals. J. Phys.:Condens. Matter, 2006, 18:3527-3534
    63李树奇,刘士国,孔勇发,阎文博,刘宏德,邓东灵,高光宇,李彦波,高宏臣,许京军.四价掺杂铌酸锂晶体抗光折变形能研究.人工晶体学报, 2006, 35:474-477
    64王义杰,于海涛,徐超,刘威,于峰,徐玉恒.近化学计量比Zn:In:Fe:LiNbO3晶体位相共轭性能和全息关联存储.硅酸盐学报, 2008, 36(8):1079-1083
    65 H. F. Wang, G. T. Shi and Z. K. Wu. Photovoltaic effect in LiNbO3:Mg. Phys. Stat. Solidi, 1985, 89:k211-k214
    66 G. W. Burr, D. Psaltis. Effects of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms. Opt. Lett., 1996, 21(12):893-895
    67 L. V. Sobeleva. Compositions of melts for growth of functional single crystals of complex oxides and other compounds. Crystallography Reports, 2008, 53(7):1221-1231
    68 Xiangke He, Keyan Li, Meinan Liu. An optical spectroscopy study of defects in lithium tantalite single crystals. Optics Communication, 2008, 281:2531-2534
    69 Furukawa Y, Kitamura K, Takekawa S. The correlation of MgO:doped near-stoichiometric LiNbO3 composition to the defect structure. Crystal Growth, 2000, 211:230-236
    70 S. M. Kostritskii, M. aillerie, P. Bourson and D. Kip. Raman spectroscopy study of compositional inhomogeneity in lithium tantalite crystals. Applied Physics B: Laser and Optics, 2009, 95(1):125-130
    71 T. Zhang, B. Wang, S. Q. Fang, D. C. Ma, et al. Growth and photorefractive properties of Fe-doped near-stoichiometric LiNbO3 crystal. J. Phys. D:Appl. Phys. 2005, 38:2013-2016
    72 Yao Shuhua, Wang Jiyang, Liu Hong, Hu Xiaobo, Zhang Huaijin, Wu Jianbo, Qin Xiaoyong. Growth and characteristics of magnesium-doped near-stoichiometric lithium niobate crystal. Journal of the Chinese Ceramic Society, 2007, 35(3):281-284
    73 GB/T 18284-2000.快速响应矩阵码.
    74欧阳川,何庆声,王凤涛,等.大容量体全息相关系统.光学学报, 2003, 23(9):1095-1098
    75 J. D. Jackson. Classical Electrodynamics. New York: Wiley, 1975, 427-432
    76 Acharya and Ray. Image Processing: Principles and Applications. Wiley-Interscience, 2005, ISBN: 0471719986
    77 P. T. Jackway. Improved morphological Top-Hat. IEEE Electronics Letters,2000, 36(14):1194-1195
    78瞿宗耀,何树荣,曹良才,何庆声,金国藩.大容量体全息相关器存储时序的改进.光学技术, 2008, 34(1):52-54
    79 Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman and S. H. Lee. Incremental recording for photorefractive hologram multiplexing. Opt. Lett., 1991, 16(2):1774-1777
    80 H. Shin and M. Lee. Holographic angle multiplexing combined with peristrophic multiplexing in a photorefractive LiNbO3 crystal. Optics Communications, 2007, 269(2):299-303
    81 C. C. Sun, Y. N. Lin, S. P. Yeh, W. C. Su and Y. Ouyang. High longitudinal selectivity of shifting multiplexing in volume holograms. Optics and Laser Technology, 2002, 34(7):523-526
    82 M. Bunsen, A. Okamoto and Y. Takayama. Hologram multiplexing with photorefractive beam-fanning speckle. Optics Communications, 2004, 235(1):41-47
    83 Dongdong Teng, Biao Wang, Tao Geng, Wei Yuan and Furi Ling. Volume holographic optical correlator based on fractal-space/shift multiplexing. Optik, 2006, 117(11):546-548
    84 I. Oliverira, J. Frejlich, L. Arizmendi and M. Carrascosal. Neaaly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystal using self-stabilized recording technique. Optics Communications, 2005, 247:39-48
    85 Dongdong Teng, Biao Wang, Wei Yuan, Furi Ling and Tao Geng. Effect of the parameters on diffraction efficiency after thermal fixing for transmission geometry hologram storage in Fe:LiNbO3. Optics & Laser Technology, 2007, 39(4):763-768
    86 A. Shiozaki. Edge extraction using entropy operator. Computer Vision Graph & Image Proc., 1986, 36(4):1-9
    87王广君,田金文,刘健.基于局部熵的红外图像小目标检测.红外与激光工程, 2000, 29(4):26-29
    88周冰,王永仲,孙立辉,何永强.图像局部熵用于小目标检测研究.光子学报, 2008, 37(2):381-386
    89周雁,陶世荃,王大勇,江竹青.基于体全息图像库的模式识别算法.中国激光, 2002, 29(4):359-362
    90 A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi and M. S. Shahriar. Translation-invariant object recognition system using an optical correlator and a super-parallel holographic random access memory. Opt. Eng., 2006, 45:201-205
    91王大勇,陈孙征,袁玮,万玉红,江竹青,陶世荃.多重频谱滤波法改进体全息存储图像相关识别.光电子?激光, 2004, 15(6):719-723
    92 J. Canny. A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1986, 8(2):679~698
    93 M. C. Shin, D. B. Goldgof, K. W. Bowyer, S. Nikiforou. Comparison of edge detection algorithms using a structure from motion task. IEEE Trans. on system, man and cybernetics, 2001, 31(4):589~601
    94 S. Mallat, W. L. Hwang. Singularity detection and processing with wavelets. IEEE Trans. on Information Theory, 1992, 38(2):617~643
    95狄红卫,张文琴. Canny准则小波边缘检测在图像融合中的应用.光电工程, 2005, 32(6):79~92
    96王振明,毛士艺,袁运能,高飞.基于边缘检测小波变换的图像融合研究.电子学报, 2005, 33(8):1446~1449
    97吴上生,方飞村,段富海,苟国华. B样条二进小波在齿轮轮廓图像处理中的应用.华南理工大学学报(自然科学版), 2007, 35(8):55~58
    98李弼程,彭天强,彭波,等.智能图象处理技术.北京:电子工业出版社, 2004:160~163
    99秦前清,杨宗凯.实用小波分析.西安:西安交通大学出版社, 1994
    100 Michael D. Health, S. Sarkar, T. Sanocki. A robust visual method for assessing the relative performance of edge detection algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(12):1338~1358
    101 Nobuyuki Otsu. A threshold selection method from Gray-level histograms. IEEE Trans. on System, Man and Cybernetics, 1979, SMC-9(1):62~66
    102 D. L. Sweet, J. Y. Weng, Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 18(8):831-836
    103 P. N. Behhumeur, J. P. Hespanha, D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720
    104 C. J. Liu, H. Wechsler. Robust coding schemes for indexing and retrievalfrom large face database. IEEE Trans. Image Processing, 2000, 9(1):132-137
    105 L. Chen, H. Liao, M.Ko, J.Lin, G. Yu. A new LDA-based face recognition which can solve the small size problem. Pattern Recognition, 2000, 33(1):1713~1726
    106 H. Yu, J. Yang. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 2001, 34:2067~2070
    107 J. Yang, J. Y. Yang. From image vector to matrix: a straightforward image projection technique ? IMPCA vs. PCA. Pattern Recognition, 2002, 35(9):1997~1999
    108 J. Yang, D. Zhang, A. F. Frangi, J. Y. Yang. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 2004, 26(1):131~137
    109 Huilin Xiong, M. N. S. Swamy, M. O. Ahmad. Two-dimensional FLD for face recognition. Patter Recognition, 2005, 38:1121~1124
    110 XiaoYuan Jing, Hausan Wong, David Zhang. Face Recognition based on 2D fisherface approach. Pattern Recognition, 2006, 39:707~710
    111 Ming Li, Baozong Yuan. 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26:527~532
    112 Jian Yang, David Zhang, Xu Yong, Jingyu Yang. Two-dimensional discriminant transform for face recognition. Pattern Recognition, 2005, 38:1125~1129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700