基于半导体光放大器的全光网络关键技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光信号处理技术是实现未来高速、大容量、高可信型全光网络的关键所在。近年来,半导体光放大器(SOA)以其体积小、功耗低、易于与其他光学器件集成等优势成为全光网络中实现全光信号处理技术的关键器件之一。本论文主要基于SOA的两种非线性效应,非线性偏振旋转(NPR)效应和交叉相位调制(XPM)效应,对全光网络关键技术进行了深入的研究。主要研究了全光波长变换,全光2R再生,全光开关键控一偏振位移键控(OOK-PolSK)码型转换,全光频率上变换,全光可调谐梳状滤波,同时多波道时分复用(OTDM)解复用技术等。
     论文首次提出并实现了一种基于SOA-NPR效应的偏振不灵敏的全光2R再生和同时正、反相波长变换技术。首先研究了线偏振态保持模式下,偏振不灵敏SOA的输出偏振态与探测光功率、泵浦光功率、偏置电流、泵浦光偏振态以及波长等参量的变化关系。计算得到了泵浦光输入SOA引起NPR效应时,适合进行2R再生的阶梯状(Step-Like)非线性功率传输函数。其次,实验中首次实现了仅在一支偏振分束器(PBS)两端口同时得到两路正、反相波长变换信号的实验结果,并且输出信号伴有2R再生效果。实验中,一方面测量了PBS两端口的偏振开关现象,证明了通过合理的调整泵浦光双电平的功率,单支PBS就能够同时输出两路正、反相的信号;另一方面,实验测量了输入、输出10Gb/s信号的时域波形图、光谱图、以及误码率(BER)值。与背对背的传输相比,BER为10-9时,加载ASE噪声后的信号功率代价为1.8dB,但是经过SOA-NPR效应转换后的信号功率代价有所减小,反相信号的功率代价降低了1.2dB,正相信号降低了0.8dB,证明了同时输出的正、反相两路信号得到了再生。该技术具有偏振不敏感,同时正、反相输出、信号可再生、且可应用于整个C波段的特点。
     论文首次提出并实现了基于SOA-NPR效应中线偏振态保持模式下的全光OOK-PolSK码型转换与波长变换技术。应用两支SOA级联的结构,消除了交叉增益调制(XGM)对输出功率波动的影响,相比采用单支SOA,功率波动由10dB以上降低至小于0.6dB,得到了功率均衡的输出信号,利用NPR效应完成了强度信息到偏振信息的转换。再经过起偏器进行偏振到强度的转换,得到的两路正、反相信号消光比(ER)大于30dB。该技术具有可处理偏振调制码型,以及整个C波段应用的优点。
     论文首次提出并实现了一种基于SOA-NPR效应的波长与波长间隔均可调的Lyot双折射梳状滤波器。该滤波器由两片偏振片夹着光纤型差分群时延线(DGDL)和一个SOA构成,具有波长及波长间隔均可独立进行调谐的功能。滤波器的波长间隔或自由光谱范围(FSR)可通过调整可编程DGDL进行调整,转换时间约为250μs,调节范围为±45ps。滤波器中心波长的调谐是基于SOA-NPR效应完成的。我们首次提出一种基于SOA-NPR效应的光控相位差连续可调技术,这种技术使用注入SOA的光束强度来控制SOA在产生NPR效应过程中,输入探测光TE和TM分量之间的相位差。实验证明,当输入光强从-10dBm到17dBm变化时,所产生的相位差从0到π具有连续可调的特性。实验中,通过改变输入SOA泵浦光的功率值,从而实现了Lyot双折射梳状滤波器快速而连续的中心波长调谐。在不同的滤波器波长间隔条件下,当泵浦光从-10dBm到17dBm变化时,该可调滤波器的波长调谐范围均能达到波长间隔或FSR的50%。
     论文首次提出并且实验验证了一种基于SOA-XPM效应的新型可级联全光串并变换技术,并将其应用到同时多波道OTDM解复用技术中。在泵浦-探测模式下,将复用信号作为探测信号,速率减半的时钟信号作为泵浦信号将同时注入SOA中。基于XPM效应,泵浦时钟的上沿将对探测信号调制一个负啁啾,相应的光谱将会产生红移;而泵浦时钟的下沿将对探测信号调制一个正啁啾,相应的光谱将会产生蓝移。因此,探测信号的两个信道能够通过XPM效应从光谱上分隔开来,再使用一个同时能将两个信道滤出的滤波器,就能够完成1:2解复用。对于20Gb/s OTDM信号进行了解复用验证性实验,使用阵列波导光栅(AWG)同时对称的滤出了并行的两路10Gb/s的信号。其中红移信道眼图的ER达到了9.65dB,蓝移信道的ER达到9.1dB。BER测试中,红移信道功率代价为1dB,蓝移信道为2dB。该方案具有结构简单、对称滤波、高速率、可级联和同时多波道输出的优点。
All-optical signal processing techniques play an important role in future high-speed, large capacity and highly trustworthy all-optical networks. All-optical signal processing based on semiconductor optical amplifiers (SOAs) has attracted considerable attention during the past years due to their features such as small footprint, low power consumption, and potential photonic integration with other optical components. In this dissertation, the key techniques in all-optical networks are studied based on SOA nonlinear polarization rotation (NPR) effect and cross-phase modulation (XPM) effect. Base on such nonlinearities, many useful applications have been applied, such as all-optical wavelength conversion (WC), all-optical 2R regeneration, all-optical On-Off Keying (OOK) to Polarization-Shift Keying (PolSK) format conversion, all-optical up-conversion, tunable birefringent Lyot filter and simultaneously multi-channel Optical Time Domain Multiplexing (OTDM) system demultiplexing.
     We have proposed and demonstrated a simultaneous inverted and non-inverted polarization-insensitive WCs with 2R regeneration based on SOA-NPR effect, at the frist time. We have characterized the NPR effect with linear polarization maintenance arising in polarization-insensitive SOAs in terms of probe and pump power, bias current, pump polarization, and wavelength. The step-like nonlinear power transfer function for 2R regeneration, during the pump-signal-induced NPR arising in SOAs, is obtained by calculated the measured results. The complementary WC with 2R regeneration is achieved at the two output ports of a single polarization beam splitter (PBS). The polarization switching phenomena is measured by complementary output powers of the probe light with respect to the pump light injection after passing through the PBS. Therefore, both the inverted and non-inverted WC can be achieved simultaneously by properly setting the binary power level of the pump light. The temporal waveforms, optical spectrum and bit error rate (BER) are further measured. The results have shown simultaneous power penalty reductions of 1.2 dB for inverted WC and 0.8 dB for non-inverted WC at a lOGb/s BER of 10-9 compared to the back-to-back result which has loaded the amplified spontaneous emission (ASE) noise source. Thus simultaneous inverted and non-inverted WCs with 2R regeneration based on SOA-NPR effect are approved. Moreover, this technique features polarization-insensitive and can be applied for the whole C-band.
     The NPR with linear polarization maintenance is applied to perform OOK to PolSK format conversion in conjunction with WC function, where the power fluctuation caused by the SOA cross gain modulation (XGM) is successfully mitigated using two cascaded SOAs. The power fluctuation of the converted PolSK signal is reduced to less than 0.6 dB, compared with 10 dB fluctuation in single SOA scheme. The power to polarization conversion is accomplished through the NPR effect. The extinction ratio (ER) of polarization modulation is maintained at larger than 30 dB which is measured after a polarizer. This technique can be applied in the whole C-band.
     We have proposed and experimentally demonstrated a tunable fiber-optical Lyot birefringent comb filter with independent tuning of the channel spacing and wavelength using NPR in an SOA, at the frist time. The filter configuration is based on sandwiching a fiber-optic programmable differential group delay line (DGDL) and a SOA between two polarizers. The channel spacing of the filter can be tuned by adjusting the programmable DGDL. The switching time of the programmable DGDL is around 250μs, while the tunable range is±45ps. Using the NPR effect in the SOA, we have proposed an optically controlled technique to continuously verify the phase shift. The phase shift from 0 toπbetween the transverse electric (TE) and the transverse magnetic (TM) components of the input probe beam can be adjusted by varying the power of the pump light from-10 dBm to 17 dBm. Hence fast and continuously wavelength tuning of the filter can also be achieved. The wavelength tuning range is up to 50% of the arbitrary channel spacing (or FSR) when the pump power is increased from-10 dBm to 17 dBm.
     We have proposed and experimentally demonstrated a novel structure of a cascadable photonic serial-to-parallel converter (SPC) based on the XPM effect in a SOA for simultaneous multiple-channel OTDM demultiplexing. The serial signal and the half rate clock signal are injected into an SOA as probe and pump, respectively. The two channels of the probe signals are set at the rise and fall slopes of the pump clock pulse, respectively. As the XPM effect arises in an SOA, the probe channel which interacts mainly with the leading edge of the pump pulse has a negative XPM-induced chirp and the spectrum has only red-shifted components, while the neighbouring channel which interacts with the trailing edge has a positive chirp and its spectrum is shifted towards blue. Thus the two channels are separated in frequency domain. Then a two channel narrow bandpass filter can be used to select each channel. Consequently, the simultaneous 1:2 serial-to-parallel conversion is achieved. A proof-of-concept experiment is carried out to demonstrate error-free operation of simultaneous two-channel demultiplexing for a 20 Gbit/s OTDM signal. A subsequent array waveguide grating (AWG) is used to symmetrically filtering the optical spectra. The red-shifted signal has an ER of 9.65 dB while the blue-shifted one has an ER of 9.1 dB. In the BER test, error-free 20 Gb/s simultaneous two-channel OTDM demultiplexing is experimentally demonstrated. The red-shifted signal has a power penalty of 1 dB while the blue-shifted one has 2 dB. The proposed SPC features cascadability, compact structure, symmetrically filtering, high-speed operation, and simultaneous two-channel operation.
引文
[1]ITU Internet Report 2005:The Internet of Things. Tunisia,7th edition,2005.
    [2]Christian Floerkemeier, Marc Langheinrich, Elgar Fleisch Friedemann Mattern, Sanjay E. Sarma. The Internet of Things. Springer,2008.
    [3]智慧的地球-IBM动态基础架构白皮书,2009.
    [4]蒋林涛,“下一代网络中的机遇与挑战”,世界电信,第七期,2005.
    [5]黄晓庆,唐剑锋,徐荣,PTN-IP化分组传送,北京邮电大学出版社,2009.
    [6]韦乐平,光同步数字传送网(修订版),人民邮电出版社,2001.
    [7]王健全,万春,张杰,顾畹仪,沈文粹,城域MSTP技术,机械工业出版社,2005.
    [8]Rosen E, Wiswanathan A, Callon R, et al. Multiprotocol Label Switching Architecture RFC 3031, IETF,2001.
    [9]B. Niven-Jenkins, D. Brungard, M. Betts, et al. Requirements of an MPLS Transport Profile RFC 5654, IETF,2009.
    [10]刘国辉,毛谦,光传送网原理与技术,北京邮电大学出版社,2004.
    [11]J. X. Cai, B. Bakhshi, and M. Nissov, "Transmission of 8x40Gb/s RZ-DQPSK Signals Over a 401 km Unrepeatered Link," OFC'08, OMQ5,2008.
    [12]C. Zhang, Y. Mori, et al., "Demodulation of 640Gbit/s Polarizatio-multiplexed OTDM QPSK Signals using a Digital Coherent Receiver," OFC'08, PDP6,2008.
    [13]Shaoliang Zhang, Lei Xu, Jianjun, Pooi Yuen Kam, et al., "Experimental Demonstration of Decision-Aided Maximum Likelihood Phase Estimation in 8-Channel 42.8-Gbit/s DWDM Coherent PolMux-QPSK System," OFC'10, OMK1,2010.
    [14]E.Ciaramella, Y. Arimoto, G. Contestabile, et al., "28 Terabit/s (32x40 Gbit/s) WDM transmission over a double-pass free space optical link," OFC'09,OMN7, 2009.
    [15]H. Wada, N. Harai, H. Naruse, et al., "Demonstration of 10 Gbit Ethernet/ Optical-Packet Converter for IP Over Optical Packet Switching Network," J. Lightwave Technol., vol.27, no.13, pp.2379-2380,2009.
    [16]D. Chiaroni, G. Buforn, C. Simonneau, et al., "Successful Demonstration of the Compatibility of Optical Packet and Wavelength Circuit Switching in Optical Networks," ECOC'09, Paper P5.16,2009.
    [17]Architecture for the automatic switched optical networks (ASON), G.8080, ITU-T, 2003.
    [18]张继军,基于SDH的自动交换光网络(ASON)关键技术研究,[学位论文],武汉:华中科技大学.
    [19]D. Fedyk, L. Berger, L. Andersson. Generalized Multiprotocol Label Switching (GMPLS) Ethernet Label Switching Architecture and Framework, RFC5828, IETF,2010.
    [20]M. Tatipamula, F. Le Faucheur, T. Otani, H. Esaki, "Implementation of IPv6 services over a GMPLS-based IP/optical network," IEEE Communications Magazine, vol.43, issue.5,2005.
    [21]Ivan P. Kaminow, Tingye Li, Alan E. Willner. Optical Fiber Telecommunications. USA, Elsevier, the 5th edition,2008.
    [22]Chongjin Xie, "Two-Stage Constant Modulus Algorithm Equalizer for Singularity Free Operation and Optical Performance Monitoring in Optical Coherent Receiver," OFC'10, OMK3,2010.
    [23]A. O. J. Wiberg, C-S. Bres, B. P-P. Kuo, et al., "Polychromatic Sampling for High-Speed Real-Time Processing," OFC'10, invited OWB1,2010.
    [24]Amy Fu, Mark D. Pelusi, Benjamin J. Eggleton, "Simultaneous Monitoring of In-Band Optical Noise for WDM Signals using Stimulated Brillouin Scattering," OFC'10, OWB2,2010.
    [25]Haifeng Lu, Zhuangqi Cao, Honggen Li, et al., "Polarization-independent and tunable comb filter based on a free-space coupling technique", Optics Lett., vol.31, no.3, pp.386-388,2006.
    [26]J. Xu, X. L. Zhang, J. J. Dong, D. M. Liu and D. X. Huang, "All-optical differentiation based on cross-gain modulation in semiconductor optical amplifier", Optics Lett., vol.32, no.20, pp.3029-3031,2007.
    [27]G. T. Zhou, K. Xu, J. Wu, C. S. Yan, Y. K. Su, J. T. Lin, "Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-WaveMixing in Highly Nonlinear Optical Fiber", IEEE Photon. Technol. Lett., vol.18, no.22, pp.2389-2391,2006.
    [28]郭永娟,孙军强,王健,“基于PPLN光波导和频与差频级联型全光波长转换的研究,”光学与光电技术,vol.5,no.2,pp.65-68,2007.
    [29]L. F. K. Lui, L. Xu, C. C. Lee, et al., "All-Optical Clock Recovery Using Erbium-Doped Fiber Laser Incorporating an Electroabsorption Modulator and a Linear Optical Amplifier," IEEE Photon. Technol. Lett., vol.19, no.10, pp. 720-722,2007.
    [30]C. W. Chow and A. D. Ellis, "Asynchronous Digital Optical Regenerator by an EAM-loop for 4 x 40Gb/s WDM to 160Gb/s OTDM Conversion," OFC 2007, JThA54,2007.
    [31]D. Cotter, R. J. Manning, K. J. Blow, et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science., vol.286, pp.1523-1528,1999.
    [32]Omar R. Qasaimeh, "Ultra-Fast Gain Recovery and Compression Due to Auger-Assisted Relaxation in Quantum Dot Semiconductor Optical Amplifiers", J. Lightwave Technol., vol.27, no.13, pp.2530-2536,2009.
    [33]J. M. Martinez, Y. Liu, R. Clavero, A. M. J. Koonen, J. Herrera, F. Ramos, H. J. S. Dorren, and J. Marti, Member, "All-Optical Processing Based on a Logic XOR Gate and a Flip-Flop Memory for Packet-Switched Networks," IEEE Photon. Technol. Lett., vol.19, no.17, pp.1316-1319,2003.
    [34]Y. Liu, M. T. Hill, E. Tangdiongga, et al., "Wavelength Conversion Using Nonlinear Polarization Rotation in A Single Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett., vol.15, no.1, pp.90-92,2003.
    [35]Maxwell G., "Hybrid Integration Technology for High Functionality Devices in Optical Communications," OFC'08, OWI3,2008.
    [36]David W Smith, "Reducing the Optical Component Cost for Future Fibre Access," ECOC'09, Paper 4.7.4,2009.
    [37]Ellis A.D., Kelly A.E., and Nesset D, "Error Free 100Gbit/s Wavelength Conversion Using Grating Assisted Cross-Gain Modulation in 2mm Long Semiconductor Amplifier", Electron. Lett.,34(20):1958-1959,1998.
    [38]X. Zheng, F. Liu, and A. Kloch, "Experimental Investigation of the Cascadability of a Cross-Gain Modulation Wavelength Converter," IEEE Photon. Technol. Lett., vol.12, no.3, pp.272-274,2000.
    [39]J. Dong, X. Zhang, D. Huang, et al., "Analytical Solution for SOA-Based All-Optical Wavelength Conversion Using Transient Cross-Phase Modulation," IEEE Photon. Technol. Lett., vol.18, no.24, pp.2554-2556,2006.
    [40]J. Dong, X. Zhang, D. Huang, et al., "Semiconductor-Optical-Amplifier-Based Inverted and Non-inverted Wavelength Conversion at 40Gb/s Using a Detuning Optical Bandpass Filter," Chinese Physics Letters, vol.24, no.12, pp.3450-3453, 2007.
    [41]Liu Y., Chen L. G., Zhang S. J., et al., "High-Speed Wavelength Converter Capable of Converting the Same Wavelength Using a Single SOA in a Counterpropagation Scheme," IEEE Photon. Technol. Lett., vol.21, no.11, pp. 697-699,2009.
    [42]J. Leuthold, C. H. Joyner, B. Mikkelsen, et al., "100 Gbit/s All-Optical Wavelength Conversion with Integrated SOA Delayed-Interference Configuration," Electron. Lett., vol.36, no.13, pp.1129-1130,2000.
    [43]S. Nakamura, Y. Ueno, K. Tajima, "168-Gb/s All-Optical Wavelength Conversion with a Symmetric-Mach-Zehnder-Type Switch," IEEE Photon. Technol. Lett., vol. 13,2001, pp.1091-1093.
    [44]Tomkos I., Zacharopoulos I., Syvridis D., et al., "Improved Performance of a Wavelength Converter Based on Dual Pump Four-Wave Mixing in a Bulk Semiconductor Optical Amplifier," Applied physics letters, vol.72, pp.2499-2501, 1998.
    [45]Contestabile G., Presi M., and Ciaramella E., "Multiple Wavelength Conversion for WDM Multicasting by FWM in an SOA," IEEE Photon. Technol. Lett., vol. 16, no.7, pp.1775-1777,2004.
    [46]董建绩,张新亮,黄德修,“基于半导体光放大器四波混频效应的多种调制格式的波长转换实验研究,”光学学报,vol.28,no.7,pp.1327-1331,2008.
    [47]M. F. C. Stephens, M. Asghari, R. V. Penty, and I. H. White, "Demonstration of Ultrafast All-Optical Wavelength Conversion Utilizing Birefringence in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett., vol.9, no.4, pp.449-451,1997.
    [48]Motoharu Matsuura, Naoto Kishi, Member, and Tetsuya Miki, "Ultrawideband Wavelength Conversion Using Cascaded SOA-Based Wavelength Converters", J. Lightwave Technol., vol.25, no.1, pp.38-45,2007.
    [49]S. Fu, M. Wang, W. D. Zhong, P. Shum, Y. J. Wen, J. Wu, Jintong Lin, "SOA Nonlinear Polarization Rotation with Linear Polarization Maintenance: Characterization and Applications," IEEE J. Select. Topics Quantum Electron., vol.14, pp.816-825,2007.
    [50]D. Norte and A. E. Willner, "Experimental Demonstrations of All-Optical Conversion Between RZ and NRZ Data Formats Incorporating Noninverting Wavelength Shifting Leading to Format Transparency," IEEE Photon. Technol. Lett., vol.8, pp.712-714,1996.
    [51]A. T. Clausen, K. S. Jepsen, H. N. Poulsen, et al., "Interface for 10 Gbit/s Bit-Synchronisation and Format and Wavelength Conversion with 3R Regenerative Capabilities," Electron. Lett., vol.34, no.16, pp.1554-1555,1998.
    [52]B. Mikkelsen, M. Vaa, H. N. Poulsen, et al., "40 Gbit/s All-Optical Wavelength Converter and RZ-to-NRZ Format Adapter Realised by Monolithic Integrated Active Michelson Interferometer," Electron. Lett., vol.33, no.2, pp.133-134, 1997.
    [53]C. G. Lee, Y. J. Kim, C. S. Park, et al., "Experimental Demonstration of 10-Gbit/s Data Format Conversion Between NRZ and RZ Using SOA-loop-mirror," J. Lightwave Technol., vol.23, pp.834-841,2005.
    [54]C. H. Kwok, et al, "Polarization-Insensitive All-Optical NRZ-to-RZ Format Conversion by Spectral Filtering of a Cross Phase Modulation Broadened Signal Spectrum," IEEE J. Select. Topics Quantum Electron., vol.12, no.3, pp.451-458, 2006.
    [55]J. Dong, et al, "Single-to-dual Channel NRZ-to-RZ Format Conversion by Four-Wave Mixing in Single Semiconductor Optical Amplifier," Electron. Lett., vol.44, no 12,2008.
    [56]Fu SN, Zhong WD, Shum PP, Wen YJ, "All-Optical NRZ-OOK-to-RZ-OOK Format Conversions With Tunable Duty Cycles Using Nonlinear Polarization Rotation of a Semiconductor Optical Amplifier," Optics Communications, vol. 282, issue.11,pp.2143-2146,2009.
    [57]T. Silveira, et al, "40-Gb/s Multichannel NRZ to CSRZ Format Conversion Using an SOA," IEEE Photon.Technol.Lett., vol.20, no.19, pp.1597-1599,2008.
    [58]Wu BB, Fu SN, Wu J, et al., "40 Gb/s Multifunction Optical Format Conversion Module With Wavelength Multicast Capability Using Nondegenerate Four-Wave Mixing in a Semiconductor Optical Amplifier," J. Lightwave Technol., vol.27, no.20, pp.4446-4454,2009.
    [59]W. Astar, et al., "10 Gbit/s RZ-OOK to BPSK Format Conversion by Cross-Phase Modulation in Single Semiconductor Optical Amplifier," Electron. Lett., vol.42, no.25,2006.
    [60]C. Yan, et al., "All-Optical Format Conversion from NRZ to BPSK Using a Single Saturated SOA," IEEE Photon. Technol. Lett., vol.18, no.22, pp. 2368-2370,2006.
    [61]P. L. Li, and D. X. Huang, "40Gb/s All-Optical Format Conversion From NRZ to PolSK Using a Single SOA Assisted by Optical Bandpass Filter", ACP'09, vol. 7631,2009.
    [62]G. Gavioli, and P. Bayvel, "Novel 3R Regenerator Based on Polarization Switching in a Semiconductor Optical Amplifier-Assisted Fiber Sagnac Interferometer," IEEE Photon. Technol. Lett., vol.15, no.9, pp.1261-1263,2003.
    [63]G. Gavioli, Benn C. Thomsen, V. Mikhailov, and P. Bayvel, "Cascadability Properties of Optical 3R Regenerators Based on SOAs," J. Lightwave Technol., vol.25, no.9, pp.2766-2775,2007.
    [64]G. Contestabile, R. Proietti, M. Presi and E. Ciaramella, "40 Gb/s Wavelength Preserving 2R Regeneration for both RZ and NRZ Signals", OFC'08,OWK1, 2008.
    [65]A. D. Errico, G. Contestabile, R. Proietti, et al., "2R Optical Regeneration Combining XGC in a SOA and a Saturable Absorber", OFC'08,OWK4,2008.
    [66]G. Contestabile, A. Maruta, S. Sekiguchi, et al., "Regenerative Amplification in a Quantum Dot SOA", OFC'10, OMT2,2010.
    [67]C. Schubert et al., "Comparison of Interferometric All-Optical Switches For Demultiplexing Applications in High-Speed OTDM Systems," J. Lightwave Technol., vol.20, pp.618-624,2002.
    [68]P. Parolari, P. Boffi, L. Marazzi, et al., "Two-stage Sagnac Demultiplexer", J. Lightwave Technol., vol.21, no.8, pp.1808-1812,2003.
    [69]E. Tangdiongga, et al., "320-to-40Gbs Demultiplexing Using a Single SOA Assisted By an Optical Filter," IEEE Photon. Technol. Lett, vol.18, no.8, pp.908-910,2006.
    [70]C. S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, et al., "Single-Gate 320-to-8×40 Gb/s Demultiplexing", OFC'09, PDPA4,2009.
    [71]Porzi C, Bogoni A, Poti L, et al., "Polarization and Wavelength-Independent Time-Division Demultiplexing Based on Copolarized-Pumps FWM in an SOA", IEEE Photon. Technol. Lett, vol.17 no.3, pp.633-635,2005.
    [72]J. Dong, X. Zhang, Y. Wang, J. Xu and D. Huang, "40Gbit/s Reconfigurable Photonic Logic Gates Based on Various Nonlinearities in Single SOA", Electron. Lett, vol.43, no.16,2007.
    [73]G. Berrettini, et al., "Ultrafast Integrable and Reconfigurable XNOR, AND, NOR, and NOT Photonic Logic Gate," IEEE Photon. Technol. Lett., vol.18, no.8, pp. 917-919,2006.
    [74]Wu BB, Fu SN, Wu J, et al., "Simultaneous Implementation of All-Optical OR and AND Logic Gates for NRZ/RZ/CSRZ ON-OFF-Keying Signals," Optics Communications, vol.283, issue.3, pp.349-354,2010.
    [75]Zhizhong Li, Guifang Li, "Ultrahigh-Speed Reconfigurable Logic Gates Based on Four-Wave Mixing in a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett, vol.18 no.12, pp.1341-1343,2006.
    [76]Li Pei-li, Huang De-xiu, Zhang Xin-liang, Chen He-ming, "Ultrahigh-Speed Multifunctional All-Optical Logic Gates Based on FWM in SOAs with PolSK Modulated Signals," OFC'08, JWA37,2008.
    [77]D. Tsiokos, E. Kehayas, K. Vyrsokinos, et al., "10-Gb/s All-Optical Half-Adder with Interferometric SOA Gates," IEEE Photon. Technol. Lett, vol.16 no.1, pp.284-286,2004.
    [78]P. Ghelfi, E. Lazzeri, M. Scaffardi, "All-Optical Full Adder Exploiting Cascade of Semiconductor Optical Amplifier-Based Modular Blocks," OFC'08, JWA76, 2008.
    [79]Zhang Junyi, Wu Jian, Feng Chuanfen, et al.,"All-Optical Logic OR Gate Exploiting Nonlinear Polarization Rotation in an SOA and Red-Shifted Sideband Filtering", IEEE Photon. Technol. Lett., vol.19, no.1, pp.33-35,2007.
    [1]Saitoh T., Mukai T., "1.5 μm GaInAsP Traveling-Wave Semiconductor Laser Amplifiers," IEEE J. Select. Topics Quantum Electron., vol.23, no.6, pp.1010-1020,1987.
    [2]张瑞英,半导体光学放大器的研制和窄条宽选区-MOVPE技术的开发,[学位论文],北京:中国科学院半导体研究所.
    [3]Michael J. Connelly. Semiconductor Optical Amplifier. Kluwer Academic Press, 2002.
    [4]D. A. O. Davies, "Small-Signal Analysis of Wavelength Conversion in Semiconductor Laser Amplifiers via Gain Saturation," IEEE Photon. Technol. Lett., vol.7, no.6, pp.617-619,1995.
    [5]R. S. Grant, G. T. Kennedy, and W. Sibbett, "Cross-Phase Modulation in Semiconductor Optical Amplifier," Electron. Lett., vol.27, no.10, pp.801-803, 1991.
    [6]A. Mecozzi, S. Scotti, A. D'Ottavi, et al., "Four-Wave Mixing in Traveling-Wave Semiconductor Amplifiers," IEEE Journal of Quantum Electronics, vol.31, no.4, pp.689-699,1995.
    [7]H. Soto, D. Erasme, and G Guekos, "Cross-Polarization Modulation in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett., vol.11, no.8, pp.970-972,1999.
    [8]N. Calabretta, Y. Liu, F. M. Huijskens, et al., "Optical Signal Processing Based on Self-Induced Polarization Rotation in a Semiconductor Optical Amplifier," J. Lightwave Technol. vol.22, no.2, pp.372-381,2004.
    [9]S. Diez, C. Schmidt, D. Ludwing, et al., "Effect of Birefringence in a Bulk Semiconductor Optical Amplifier on Four-Wave Mixing," IEEE Photon. Technol. Lett., vol.10, no.2, pp.212-214,1998.
    [10]Govind P. Agrawal, and N Anders Olsson, "Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Select. Topics Quantum Electron., vol.25, no.11, pp.2297-2306,1989.
    [11]Willatzen M., Uskov A., Mork J., et al., "Nonlinear Gain Suppression in Semiconductor Lasers Due to Carrier heating," IEEE Photon. Technol. Lett., vol. 3, no.7, pp.606-609,1991.
    [12]Mork J., and Mecozzi A., "Theory of The Ultrafast Optical Response of Active Semiconductor Waveguide," J.Opt. Soc. Am.B., vol.13, no.8, pp.1803-1816,1996.
    [13]Uskov A., Mork J., and Mark J. "Four-Wave Mixing in Semiconductor Laser Amplifiers Due to Carrier Heating and Spectral-Hole Burning," IEEE J.Quantum Electronics, vol.30, no.8, pp.1769-1781,1994.
    [14]Hsieh J. T., Gong P. M., Lee S. L., et al., "Improved Dynamic Characteristics on Four-Wave Mixing Wavelength Conversion in Light-Holding SOAs," IEEE J. Select. Topics Quantum Electron., vol.10, no.5, pp.187-1196,2004.
    [15]Wu Bingbing, Fu Songnian, Wu Jian, et al.,"40 Gb/s Multifunction Optical Format Conversion Module With Wavelength Multicast Capability Using Nondegenerate Four-Wave Mixing in a Semiconductor Optical Amplifier," J. Lightwave Technol., vol.27, no.20, pp.4446-4454,2009.
    [16]H. J. S. Dorren, D. Lenstra, Y. Liu, et al., "Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers:Theory and Application to All-Optical Flip-Flop Memories," IEEE J. Quantum Electron., vol.39, no.1, pp.141-148, 2003.
    [17]L. G. Guo and M. J. Connelly, "A Mueller-Matrix Formalism for Modeling Polarization Azimuth and Ellipticity Angle in Semiconductor Optical Amplifiers in a Pump-Probe Scheme," J. Lightwave. Technol., vol.25, pp.410-420,2007.
    [18]S. Zhao, C. Q. Wu, M. Cheng, Z. Y. Li, and Z. Feng,"Poincare Sphere Method for Optimizing the Wavelength Converter Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers," IEEE J. Quantum Electron., vol.45, pp.1006-1013,2009.
    [19]Jiang H., Wen H., Han L., et al., "All-Optical NRZ-OOK to BPSK Format Conversion in an SOA-Based Nonlinear Polarization Switch," IEEE Photon. Technol. Lett., vol.19, no.24, pp.1985-1987,2007.
    [20]Martinez J. M., Liu Y, Clavero R., et al., "All-Optical Processing Based on a Logic Xor Gate and a Flip-Flop Memory for Packet-Switched Networks," IEEE Photon. Technol. Lett., vol.19, no.17, pp.1316-1318,2007.
    [21]吴重庆,光波导理论(第2版),北京:清华大学出版社,2005.
    [1]X. Yang, A. K. Mishra, R. J. Manning and R. Giller, "All-optical 40 Gbit/s NRZ to RZ Format Conversion by Nonlinear Polarization Rotation in SOAs", Electron. Lett., vol.43, no.8,2007.
    [2]N. Calabretta, Y. Liu, F. M. Huijskens, et al., "Optical Signal Processing Based on Self-Induced Polarization Rotation in a Semiconductor Optical Amplifier", J. Lightwave Technol., vol.22, no.2, pp.372-381,2004.
    [3]Y. Liu, M. T. Hill, E. Tangdiongga, et al., "Wavelength Conversion Using Nonlinear Polarization Rotation in A Single Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett., vol.15, no.1, pp.90-92,2003.
    [4]M. F. C. Stephens, M. Asghari, R. V. Penty, and I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers," IEEE Photon. Technol. Lett., vol.9, pp.449-451, 1997.
    [5]H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett., vol.11, pp.970-972,1999.
    [6]S. Fu, W. Zhong, P. Shum, Y. Wen, "Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers With Linear Polarization Maintenance", IEEE Photon. Technol. Lett., vol.19, no.23, pp.1931-1933,2007.
    [7]S. Fu, M. Wang, W. D. Zhong, P. Shum, Y. J. Wen, J. Wu, Jintong Lin, "SOA nonlinear polarization rotation with linear polarization maintenance: characterization and applications," IEEE J. Select. Topics Quantum Electron., vol.14, pp.816-825,2007.
    [8]X. Yang, Z. Li, E. Tangdiongga, et al., "Sub-Picosecond Pulse Generation Employing an SOA-based Nonlinear Polarization Switch in a Ring Cavity," Opt. Express., vol.12, pp.2448-2453,2004.
    [9]H. J. S. Dorren, Xuelin Yang, A. K. Mishra, Zhonggui Li, Heongkyu Ju, H.De Waardt, G D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama,Y, "All-optical logic based on ultrafast and index dynamics in a semiconductor optical amplifier," IEEE J. Select. Topics Quantum Electron., vol.10, no.5, pp.1079-1092,2004.
    [10]N. Calabretta, G Contestabile, A. D'Errico, and E. Ciaramella, "All-optical label processing techniques for pure DPSK optical packets", IEEE J. Select. Topics Quantum Electron., vol.12, no.4, pp.686-696,2006.
    [11]H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill and G.D. Khoe, "Nonlinear Polarization rotation in semiconductor optical amplifiers:theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron., vol.39, no.1, pp.141-148,2003.
    [12]B. S. Gopalakrishnapillai, M. Premaratne, A. Nirmalathas, C. Lim, "Power Equalization Using Polarization Rotation in Semiconductor Optical Amplifiers", IEEE Photon. Technoi. Lett., vol.17, no.8, pp.1695-1697,2005.
    [13]M. Zhao, J. D. Merlier, G. MOrthier, and R. Baets, "Bynamic birefringence of the linear optical amplifier and application in optical regeneration," IEEE J. Select. Topics Quantum Electron., vol.8, no.6, pp.1399-1404,2002.
    [14]B. S. G Pilai, M. Premaratne, D. Abramson, K. L. Lee, A. Nirmalathas, C. Lim, S. Shinada, N.Wada, T. Miyazai, "Analytical Characterization of Optical Pulse Propagation in Polarization-Sensitive Semiconductor Optical Amplifiers," IEEE J. Quantum Electron., vol.42, pp.1062-1077,2006.
    [15]L. G Guo and M. J. Connelly, "A Mueller-Matrix formalism for modeling polarization azimuth and ellipticity angle in semiconductor optical amplifiers in a pump-probe scheme," J. Lightwave. Technol., vol.25, pp.410-420,2007.
    [16]S. Zhao, C. Q. Wu, M. Cheng, Z. Y. Li, and Z. Feng,"Poincare Sphere Method for Optimizing the Wavelength Converter Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers," IEEE J. Quantum Electron., vol.45, pp.1006-1013,2009.
    [17]C. D. Poole, and R. E. Wagner, "A Phenomenological Approach to Polarization Dispersion in Long Single Mode Fibers," Electron. Lett., vol.22, no.19, pp.1029-1030,1986.
    [18]C.D.Poole, "Statistical Treatment of Polarization Dispersion in Single Mode Fiber," Optics Lett., vol.13, pp.687-689,1988.
    [19]C.D.Poole, "Measurement of Polarization Mode Dispersion in Single Mode Fiber," Optics Lett., vol.14, pp.523-525,1989.
    [20]C. D. Poole, D. L. Favin, "Polarization Mode Dispersion Measurement Based on Transmission Spectra through a Polarizer," J. Lightwave Technol., vol.12, no.7, pp.917-929,1994.
    [21]C. D. Poole, C. R. Giles, "Polarization Dependent Pulse Compression and Broadening Due to Polarization Dispersion in Dispersion Shifted Fiber," Optics Lett., vol.13, pp.155-157,1989.
    [22]C. D. Poole, J. H. Winters, J. A. Negel, "Dynamical Equation for Polarization Dispersion," Optics Lett., vol.16, no.6, pp.372-374,1991.
    [23]W. Shieh and H. Kogelnik, "Dynamic Eigenstates of Polarization," IEEE Photon. Technol. Lett., vol.13, no.1, pp.40-42,2001.
    [24]Herwig Kogelnik and C. J. McKinstrie, "Dynamic Eigenstates of Parametric Interactions in Randomly Birefringent Fibers," IEEE Photon. Technol. Lett., vol. 21, no.15, pp.1036-1038,2009.
    [25]Zhengyong Li, Chongqing Wu, Hui Dong, and P. Shum, "Cascaded Dynamic Eigenstates of Polarization Analysis for Piezoelectric Polarization Control," Optics Lett., vol.32, no.19, pp.2900-2902,2007.
    [26]S. Benedetto, and P. Poggiolini, "Theory of Polarization Shift Keying Modulation," IEEE Transactions on communications, vol.40, no.4, pp.708-721, 1992.
    [27]E. Ciaramella, A. D'Errico, R. Proietti, and G. Contestabile, "WDM-POLSK Transmission Systems by Using Semiconductor Optical Amplifiers," J. Lightwave. Technol., vol.24, no.11, pp.4039-4046,2006.
    [28]Jianjun Yu, Gee Kung Chang, John Barry, and Yikai Su, "40Gbit/s Signal Format Conversion from NRZ to RZ Using a Mach-Zehnder Delay Interferometer," Optics Communications, vol.248, pp,419-422,2005.
    [29]S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Select. Topics Quantum Electron., vol.3, pp.1208-1222,1997.
    [30]L. Xu, B. C. Wang, V. Baby, "All-Optical Data Format Conversion between RZ and NRZ Based on a Mach-Zehnder Interferometric Wavelength Converter," IEEE Photon. Technol. Lett., vol.15, pp.308-310,2003.
    [31]X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, "All-Optical 40Gbit/s NRZ to RZ Format Conversion by Nonlinear Polarization Rotation in SOAs," Electron. Lett., vol.43, pp.469-471,2007.
    [32]G. W. Lu, L. K. Chen, and C. K. Chan, "Novel NRZ-to-RZ Format Conversion with Tunable Pulsewidth Using Phase Modulator and Interleaver," OFC2006, JThB32,2006.
    [33]J. Zhang, D. E. Leaird, and A. M. Weiner, "Width and Wavelength-Tunable Optical RZ Pulse Generation and RZ-to-NRZ Format Conversion at 10 GHz Using Spectral Line-by-Line Control," IEEE Photon. Technol. Lett., vol.17, pp.2733-2735,2005.
    [34]徐坤,李建强,面向宽带无线接入的光载无线系统,北京:电子工业出版社出版,2009.
    [35]Y. K. Seo, C. S. Choi, and W. Y. Choi, "All-Optical Signal Up-Conversion for Radio-on-Fiber Applications Using Cross-Gain Modulation in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett., vol.14 no.10, pp.1448-1450, 2002.
    [36]Lee US, Jung HD, Han SK, "Optical Single Sideband Signal Generation Using Phase Modulation of Semiconductor Optical Amplifier", IEEE Photon. Technol. Lett., vol.16, no.5, pp.1373-1375,2004.
    [37]H. J. Song, J. S. Lee and J. I. Song, "Error-Free Simultaneous All-Optical Upconversion of WDM Radio-Over-Fiber Signals," IEEE Photon. Technol. Lett., vol.17, no.8, pp.1731-1733,2005.
    [38]J. Yu, J. Gu, X. Liu, and G. K. Chang, "Seamless Integration of an 8x2.5 Gb/s WDM-PON and Radio-Over-Fiber Using All-Optical Up-Conversion Based on Raman-Assisted FWM," IEEE Photon. Technol. Lett., vol.17, no.9, pp. 1986-1988,2005.
    [39]Z. Jia, J. Yu and G. K. Chang, "All-optical 16x2.5Gb/s WDM Signal Simultaneous Up-conversion Based on XPM in an NOLM in ROF systems," IEEE Photon. Technol. Lett., vol.17, no.12, pp.2724-2726,2005.
    [40]J. H. Seo, C. S. Choi, Y. S. Kang, et al.,"SOA-EAM Frequency Up/Down-Converters for 60-GHz Bi-Directional Radio-on-Fiber Systems", IEEE Trans. on Microwave Theory and tech., vol.54, no.2, pp.959-966,2006.
    [41]Jianjun Yu, Zhensheng Jia, Lilin Yi, et al.,"Optical Millimeter-Wave Generation or Up-Conversion Using External Modulators", IEEE Photon. Technol. Lett., vol.18, no.1, pp.265-267,2006.
    [1]邹喜华,光梳状滤波器在光通信和微波信号处理中的研究及应用,[学位论文],重庆:西南交通大学.
    [2]S. Cao, J.Chen, J. N. Damask, et al., "Interleaver Technology:Comparisons and Applications Require," J. Lightw. Technol., vol.22, no.1, pp.281-289,2004.
    [3]C. R. Giles, "Lightwave Applications of Fiber Bragg Grating," J. Lightw. Technol., vol.15, no.8, pp.1391-1404,1997.
    [4]M. E. Fermann, V. da Silva, D. A. Smith, et al., "Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses," Integrated Photonics Research (IPR), Postdeadline,1992.
    [5]Liu XM, "A dual-wavelength sampled fiber Bragg grating and its application in L-band dual-wavelength erbium-doped fiber lasers," IEEE Photon. Technol. Lett., vol.18, no.20, pp.2114-2116,2006.
    [6]P. Petropoulos, M. Ibsen, M. N. Zervas, et al.,"Generation of a 40-GHz Pulse Stream by Pulse Multiplication with a Sampled Fiber Bragg Grating," Opt. Lett., vol.25, no.8, pp.521-523,2000.
    [7]Z. H. Zou, J. P. Yao, "An Optical Approach to Microwave Frequency Measurement with Adjustable Measurement Range and Resolution," IEEE Photon. Technol. Lett., vol.20, no.23, pp.1989-1991,2008.
    [8]Liu XM, Gong YK, Wang LR, et al., "Identical Dual-Wavelength Fiber Bragg Gratings," J. Lightw. Technol., vol.25, no.9, pp.2706-2710,2007.
    [9]B. Lyot, "Optical Apparatus with Wide Field Using Interference of Polarized Light," C.R. Acad. Sci. (Paris), vol.197, pp.1593,1933.
    [10]P. D. Kumavor, E. Donkor, B. C. Wang, et al., "All-Optical Lyot-Filter-Assisted Flip-Flop Operation Using a Semiconductor Optical Amplifier," IEEE J. Select. Topics Quantum Electron., vol.12, no.4, pp.697-701,2006.
    [11]I. Yoon, Y. W. Lee, J. Jung, and B. Lee. "Tunable Multiwavelength Fiber Laser Employing a Comb Filter Based on a Polarization-Diversity Loop Configuration," J. Lightw. Technol., vol.24, no.4, pp.1805-1811,2006.
    [12]M. P. Fok, C. Shu, W. W. Tang, "A Cascadable Approach to Produce Widely Selectable Spectral Spacing in Birefringent Comb Filters", IEEE Photon. Technol. Lett., vol.18, no.18, pp.1937-1939,2006.
    [13]M. P. Fok, K. L. Lee, C. Shu, "Waveband-Switchable SOA Ring Laser Constructed with a Phase Modulator Loop Mirror Filter," IEEE Photon. Technol. Lett., vol.17, no.7, pp.1393-1395,2005.
    [14]S. Roh, S. Chung, Y. W. Lee, et al., "Channel-Spacing-and Wavelength-Tunable Multiwavelength Fiber Ring Laser Using Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett., vol.18, no.21, pp.2302-2304,2006.
    [15]G. Shabtay, E. Eidinger, Z. Zalevsky, D. Mendlovic and E. Marom "Tunable Birefringent Comb Filter-Ooptimal Iterative Design" Opt. Express, vol.10, no.26, pp.1534-1541,2002.
    [16]K. Lee, M. P. Fok, S. Wan, and C. Shu, " Optically Controlled Sagnac Loop Comb Filter," Opt. Express, vol.12, no.25, pp.6335-6340,2004.
    [17]S. Fu, W. D. Zhong, P. Shum, C. Q. W and J. Q. Zhou, "Nonlinear Polarization rotation in semiconductor optical amplifiers with linear polarization maintenance," IEEE Photon. Technol. Lett., vol.19, no.23 pp.1931-1933,2007.
    [18]L. G. Guo and M. J. Connelly, "A Mueller-Matrix formalism for modeling polarization azimuth and ellipticity angle in semiconductor optical amplifiers in a pump-probe scheme," J. Lightwave. Technol., vol.25, pp.410-420,2007.
    [1]Nakamura S.and Tajima K, "Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect," Applied Physics Letters, vol.70, no.26, pp.3498-3500,1997.
    [2]E. Tangdiongga, Y. Liu, H. de Waardt, et al., "320-to-40Gbs demultiplexing using a single SOA assisted by an optical filter," IEEE Photon. Technol. Lett, vol.18, no.8,pp.908-910,2006.
    [3]E. Tangdiongga, Y. Liu, G. D. Khoe, et al., "All-optical demultiplexing of 640 to 40Gbits/s using filtered chirp of a semiconductor optical amplifier," Optics Lett., vol.32. no.7, pp.835-837,2007.
    [4]Hao Hu, Jinlong Yu, Litai Zhang, et al. "40-Gb/s All-Optical Serial-to-Parallel Conversion Based on a Single SOA," IEEE Photon. Technol. Lett, vol.20, no.13, pp.1181-1183,2008.
    [5]M. L. Nielsen, B. Lavigne, B. Dagens, "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electron. Lett., vol. 39,no.18,pp.1334-1335,2003.
    [6]Z. Li, Y. Liu, S. Zhang, et al., "All-optical logic gates using semiconductor optical amplifier assisted by optical filter," Electron. Lett., vol.41, no.25, pp.1397-1399, 2005.
    [7]J. Dong, X. Zhang, J. Xu, et al., "40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter," Opt. Express, vol.15, no.6, pp.2907-2914,2007.
    [8]J. Dong, X. Zhang, D. Huang, et al., "Ultrawideband monocycle generation using cross phase modulation in a semiconductor optical amplifier," Optics Lett., vol.32, no.10, pp.1223-1225,2007.
    [9]H. Weber, R. Ludwig, S. Ferber, et al., "Ultrahigh-speed OTDM-transmission technology," J. Lightwave Technol., vol.24, no.12, pp.4616-4622,2006.
    [10]S. Kawanishi, "Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing," IEEE J. Sel. Topics Quantum Electron., vol.6, no.6, pp.1363-1374,2000.
    [11]S. Kodama et al., "500-Gb/s demultiplexing operation of monolithic PD-EAM gate", ECOC 2003.
    [12]K. Uchiyama, S. Kawanishi, and M. Saruwatari, "100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel foru-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett, vol.10, no.6, pp.890-892,1998.
    [13]M. L. Dennis, W. I. Kaechele, W. K. Burns, et al., "Photonic serial-parallel conversion of high-speed OTDM data," IEEE Photon. Technol. Lett, vol.12, no.10, pp.1561-1563,2000.
    [14]I. Shake, H. Takara, K. Uchiyama, et al., "160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC," Electron. Lett., vol.38, no.1,pp.37-38,2002.
    [15]R. Morais, R. Meleiro, P. Monterio, et al., "OTDM-to-WDM conversion based on wavelength conversion and time gating in a single optical gate," OFC'08, OTuD5, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700