光分组交换网核心节点关键技术的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网业务的飞速发展给现代网络通信提出了新的挑战,尤其是光纤通信的应用极大提高了通信网数据传输的速率,但是交换容量的相对滞后问题也越来越明显。光交换技术的提出加快了核心网的发展,它主要包括光路交换(OCS)、光突发交换(OBS)和光分组交换(OPS)三种光交换技术。其中,光分组交换(Optical Packet Switching, OPS)的基本交换单位是光分组,它有较小交换粒度、高带宽利用率、大容量、高数据速率和光包格式透明等特点,另外它适用于突发性较强的业务,因此光分组交换技术成为了未来光网络发展的一个重要方向。
     本文作者所在实验室依托自身优势开展了国家自然科学基金重点项目“光分组交换关键技术与实验平台”(简称McTOPS),在该项目的实施过程中,本文作者承担了光分组交换网核心节点硬件方面的设计和实现,主要包括核心节点交换控制平台的设计和实现、核心节点光标记提取电路的设计和实现、核心节点交换矩阵的设计和实现,另外还编写了光分组交换逻辑供硬件设计参考。
     本文首先介绍了光分组交换网络的发展现状和前景,然后介绍光分组交换网络的整体架构,并将时隙光分组交换网络和非时隙光分组交换网分别加以介绍。针对本文作者在McTOPS项目中承担的工作,重点介绍了光分组交换网络中的几种关键技术,包括光标记技术、光分组报头处理技术和光分组交换的冲突解决技术等。结合McTOPS项目,介绍了光分组交换网络中的两种节点:边缘节点和核心节点,重点阐述了它们的作用和技术上的难点。
     其次,本文介绍了作者在国家自然科学基金重点项目“光分组交换关键技术与实验平台”(简称McTOPS)中所承担的主要工作,主要讨论了光分组交换网络中核心节点的硬件设计和实现,具体包括核心节点交换控制平台、核心节点光标记提取电路和核心节点SOA光交换矩阵的设计和实现。另外,本文作者还使用Verilog语言编写了核心节点交换逻辑程序。对于上述各部分的硬件平台,本文作者都做了验证和结果分析。
     第三,本文介绍了本文作者提出的一种SOA交换矩阵的功耗优化方法,主要针对SOA的偏置电流进行优化,可以有效的降低SOA交换矩阵的功耗。如果OPS网络中的负载特性在各端口体现出不均衡性,则该功耗优化方法还能够更显著地提高功耗优化效率。
     最后,总结全文的研究工作,还对光分组交换网络中核心节点的设计做了展望,并指出了进一步提高SOA交换矩阵功耗优化效率的方法。
With the rapid development of Internet and increasing transmission data rates, switching capacity is still one of primary bottlenecks of the network. Optical switching technology includes optical circuit switching (OCS), optical burst switching (OBS) and optical packet switching (OPS). Among them, OPS technology has advantages of finer transmission and switching granularity, much flexibility and higher bandwidth utilization, and is so regarded as one of the evolution solution of future all-optical network.
     The laboratory where the author works has undertaken several research projects on OPS technology. This thesis summaries what the authors have done in NSFC-funded Key Project of "Multicasting capable Testbed of Optical Packet Switch (McTOPS)". The scope of this thesis focuses on the key technologies of OPS networks, including optical packet switch controlling platform, optical label extracting circuits and optical switching fabric based on Semiconductor Optical Amplifier (SOA).
     Firstly, the generic architecture of OPS networks and the differences between synchronous and asynchronous OPS networks are introduced. The key technologies such as the label extracting, label processing and contention resolution are respectively introduced. The general functions and structures of edge node and core node are summarized, and we also discuss these two kinds of nodes in McTOPS.
     Secondly, implementation scheme of core node in the McTOPS project based on FPGA and SOA switching fabric is promoted. We focus on the optical label extracting circuit, optical packet switching controlling platform and SOA based optical packet switching fabric. Moreover, optical packet switching algorithm of core node in McTOPS is presented.
     Thirdly, we propose a scheme to optimize the power consumption in Optical Packet Switching (OPS) node based on Semiconductor Optical Amplifiers (SOA). This optimization algorithm is used to reduce bias current of each output SOA in switching fabric. By simulation, it demonstrates that the scheme as proposed can reduce switching fabric power consumption by about 10%, and we also get that the efficiency will be larger with unbalanced traffic load.
     Finally, we conclude the thesis with the outlook on the future research and implementation both in core node design and optimization of power consumption of switching array.
引文
[1]杨俊杰,“光分组交换若干关键技术的研究”,上海交通大学博士论文,2005.
    [2]王文睿,“光分组交换网络中关键技术的研究”,天津大学博士论文,2010.
    [3]黄晖,“光分组交换网络边缘节点高速数据接口设计和实现”,上海交通大学硕士论文,2008.
    [4] S. J. B. Yoo,―Optical packet and burst switching technologies for the future photonic internet,‖IEEE J. Lightwave Technol., 2006, vol. 24, no. 12, pp. 4468-4492.
    [5]任海兰,刘德明。“光通信信号处理[M]”,北京:电子工业出版社,2006
    [6] Shilin Xiao, Qingji Zeng, Jianxin Wang,―Multi-wavelength label optical switching technology‖, Proceedings of SPIE vol.4582, APOC 2001, vol.4, pp.133-138,2001.
    [7] J.J.V. Olmos and et al.,‖Simultaneous optical label erasure and insertion in a single wavelength conversion stage of combined FSK/IM modulated signals‖, IEEE Photon. Technol. Lett.,2004,vol. 16(9), pp. 2144–2146
    [8] N. Wada, W. and et al.,―1.28 Tb/s (160 Gb/s?8 wavelengths)throughput variable length packet switching using optical code based label switch,‖in Proc. IEEE—Post-Deadline Papers. 27th. Eur. Conf. Opt. Commun. (Cat. No. 01TH8551), Piscataway, NJ, 2001, vol. 6, pp. 62–63.
    [9] N. Wada and et al., "Optical packet switching network based on ultra-fast optical code label processing", IEICE Trans.Electron.,2004,vol.E87C, no. 17, pp. 1090–1096.
    [10] N. Wada and et al.,―Multi-hop, 40 Gb/s variable length photonic packet routing based on multi-wavelength label switching, waveband routing and label swapping‖,OFC Post conference Tech.2002, vol.1,pp. 216–217.
    [11] J. J. Yu, and et al.,―Optical label swapping in a packet-switched optical network using optical carrier suppression, separation, and wavelength conversion‖, IEEE Photon. Technol. Lett.,2004, vol. 16, no. 9, pp. 2156–2158.
    [12] S. Xiao, et al., "Realization of multiwavelength label optical packet switching," Photonics Technology Letters, IEEE, vol. 15, pp. 605-607, 2003.
    [13] G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Poti,―Ultrafast Integrable and Reconfigurable XNOR, AND, NOR, and NOT Photonic Logic Gate‖, IEEE Photon. Technol. Lett., 2006, 18(8): 917-919.
    [14] H. Sun, Q. Wang, H. Dong, Z. Chen, N.K. Dutta, J.Jaques, A.B. Piccirilli,―All-optical logic xorgate at 80 Gb/s using SOA-MZI-DI‖, J. of Lightwave Technol., 2006, 42(8): 747-751.
    [15] F. Ramos, E. Kehayas, J. M. Marginez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, P. V. Holm-Nielsen, N. Chi, P. Jeppesen, N. Yan, I. Tafur Monroy, A. M. J. Koonen, M. T. Hill, Y. Liu, H. J. S. Dorren, R. Van Caenegem, D. Colle, M. Pickavet, and B. Riposati,―IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops‖, IEEE J. of lightwave Technol., 2005, 23(10): 2993-3011.
    [16] E. Kehayas, D. Tsiokos, P. Bakopoulos, D. Apostolopoulos, D. Petrantonakis, L. Stampoulidis, A. Poustie, R. Mcdougall, G. Maxwell, Y. Liu, S. Zhang, H. J. S. Dorren, J. Seoane, P. Van Holm-Nielsen, P. Jeppesen, H. Avramopoulos,―40-Gbs All-Optical Processing Systems Using Hybrid Photonic Integration Technology‖, IEEE J. of Lightwave Technol., 2006, 24(12): 4903-4911.
    [17] C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer,―All-optical signal processing using X2 nonlinearities in guided-wave devices‖, IEEE J. of Lightwave Technol., 2006, 24(7): 2579-2592.
    [18] T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, S. Sawa,―All-optical logic gates containing a two-mode nonlinear waveguide‖, IEEE J. of Lightwave Technol., 2002, 38(1): 37-46.
    [19] Y. Wu,―All-optical logic gates by using multi-branch waveguide structure with localized optical nonlinearity‖, IEEE J. of Selected Topics in Quantum Electronics, 2005, 11(2): 307-312.
    [20] A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini and P. Ghelfi,―Regenerative and reconfigurable all-optical logic gates for ultra-fast applications‖, Electronics Letters, 2005, 41(7): 435-436.
    [21] A. Bogris, P. Velanas, D. Syvridis,―Numerical Investigation of a 160Gbs Reconfigurable Photonic Logic Gate Based on Cross-Phase Modulation in Fibers‖, IEEE Photon. Technol. Lett., 2007, 19(6): 402-404.
    [22] S. Mikroulis, H. Simos, E. Roditi, A. Chipouras, D. Syvridis,―40-Gbs NRZ and RZ operation of an all-optical AND logic gate based on a passive InGaAsPInP microring resonator‖, J IEEE J. of Lightwave Technol., 2006, 24(3): 1159-1164.
    [23] V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho,―Optical signal processing using nonlinear semiconductor microring resonators‖, IEEE J. of Selected Topics in Quantum Electronics, 2002, 8(3): 705-713.
    [24]张治中,曾庆济,王建新,雒江涛,“光分组交换网络中的冲突解决:用光纤延迟线还是波长转换器”,Journal of Electronics and Information Technology., Vol. 26, No. 11, Nov. 2004.
    [25] S. L. Danielsen, et al.,―Optical packey switched network layer without optical buffers‖, IEEEPhotonics Technology Letters, 1998, 10(6): 896-898.
    [26] S. L. Danielsen, et al.,―Wavelength conversion in optical packet switching‖, IEEE J. of Lightwave Technology, 1998, 16(12): 2095-2108.
    [27] V. Eramo, M. Listanti, P. Pacifici,―A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures‖, IEEE J. of Lighwave Technology, 2003, 21(2): 340-355.
    [28] V. Eramo, M. Listanti,―Wavelength converter sharing in a WDM optical packet switch: dimensioning and performance issues‖, Computer Networks, 2000, 32(8): 633-651.
    [29] S. Yao, et al., "A unified study of contention-resolution schemes in optical packet-switched networks," Journal of Lightwave Technology, vol. 21, p. 672, 2003.
    [30]吴重庆,“全光缓存器研究的新进展”,半导体光电,2005年10月第26卷第五期, 369-373.
    [31]吴重庆,袁宝忠,“光速减慢和光缓存技术”,物理学与信息科学技术专题,物理:922-926
    [32]隋志成,姜希军,吴志坚,“光分组交换网络结构”,现代有线传输,pp.31-35, 2002(1).
    [33] Lei Zheng, Deming Wu, Anshi Xu,―Optical Packet Switching Node Technology‖, ZTE Communications, pp. 14-18, 2002(05)
    [34] Guiling Wu, Jianping Chen, Xinwan Li,―Performance Analysis of Optical Packet Switching Employing Partially Shared Buffering and Shared Wavelength Converter‖, Acta Electronica Sinica, vol. 31, no. 11, pp. 1626-1629, 2003.
    [35] Min Zhang, Yongpeng Zhao, et al.,―Structure and Evolution of Optical Packet Switching Node: with an Eye to the Future Optical Networks‖, Optical Communication Technology, no. 5, pp. 15-19, 2003.
    [36] Wei Ji, Min Zhang, Peida,―The Researching of Optical Buffering Technology in Optical Switching Networks‖, Optical Communication Technology, no. 10, pp. 26-18, 2004.
    [37] Junjie Yang, Hao Zhang, Shilin Xiao,―Performance study on optical packet switch with feedback optical buffer‖, Optical Communication Technology, no. 4, pp. 26-28, 2006.
    [38] Zhengyi Shi, Junjie Yang, Hao he,―Performance Analysis on OPS with Fixed Wavelength Converter‖, Semiconductor Optoelectronics, vol. 27, no. 2, pp. 188-192, 2006.
    [39] Junjie Yang, Shilin Xiao, Hao Zhang,―Technology for space switching type optical packet switch‖, Optical Communication Technology, no. 05, pp. 10-12, 2006.
    [40] Junjie Yang, Qingji Zeng, and Zhengyi Shi,―Control Strategy in Shared Optical Buffers‖, Semiconductor Optoelectronics, vol. 27, no. 2, pp. 181-184, 2006.
    [41] Junjie Yang, Hao Zhang, Qingji Zeng,―Performance Analysis on Novel OPS with Output OpticalBuffers‖, Semiconductor Optoelectronics, vol. 27, no. 6, pp. 752-755, 2006.
    [42]梁铮,“光分组交换网中的缓存与转发技术研究”,上海交通大学博士论文,2008.
    [43] P. Gambini, M. Renaud, et al.,―Transparent optical packet switching: Network architecture and demonstration in the KEOPS project‖, IEEE J. select. Areas in Commun., vol. 16, no. 7, pp. 1245-1259, 1998.
    [44] Christian Guillemot, et al.,―Transparent optical packet Switching: The European ACTS KEOPS Projects Approach‖, J. Lightwave Techno., vol. 16, no. 12, pp. 2117-2134, 1998.
    [45] L. Xu, H. G. Perros, and G. Rouskas,―Techniques for optical packet switching and optical burst switching‖, IEEE Communications Magazine., 2001, Vol. 39(1): 136-142.
    [46] M. Dueser, I. de Miguel, P. Bayvel, et al.,―Timescale analysis for wavelength-routed optical network architectures‖, 27th ECOC 2001. Vol. 4: 616-619.
    [47] C. Qiao, M. Yoo,―Choices, features and issues in optical burst switching‖, Optical Network Magazine 2000, Vol. 1(2): 36-44.
    [48] J. Y. Wei, R. I. McFarland,―Just-In-Time signaling for WDM optical burst switching networks‖, Journal of Lightwave Technology 2000, Vol 18(12): 2019-2037.
    [49]江涛,陈艳,“半导体光放大器[J]”,激光与光电子进展,2000,416(8):40-45.
    [50]贾正根,“半导体光放大器[J]”,半导体情报,2000,37(3):45-47.
    [51]王敏学,“基于半导体光放大器的全光网络关键技术研究与应用”,北京邮电大学博士论文,2010.
    [52] Slavisa Aleksic,―Analysis of power consumption in future high-capacity network nodes,‖IEEE/OSA JOCN 2009vol.1, no.3, pp.245-258.
    [53] Joseph D. et,.―Photonic Switching Mdules Designed with Laser Diode Amplifiers‖, IEEE Communication Magazine 1988, Vol. 6(7): 1087-1095.
    [54] Slavisa Aleksic,―Electrical Power Consumption of Large Electronic and Optical Switching Fabrics‖, Photonics Society Winter Topicals Meeting Series (WTM), 2010 IEEE, p95-96.
    [55] Pascal Morel, et al.,―Wideband gain and noise figure modeling in SOA,‖Optical and Quantum Electronics, 38, 231-236, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700