秸秆苯酚液化物环氧树脂的合成及其水性涂料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于环境问题的日益严重及石油等化石资源的不可再生性,包括农业废弃物秸秆在内的生物质资源作为一种可再生资源的研究已日益引起人们重视。“液化”技术被认为是高效利用生物质资源最有效的方法之一已经引起国内外学者的高度关注。
     本文首先对四种生物质废弃物玉米秆、榛子壳、稻草和木粉的主要化学成分进行分析,对比研究了其在苯酚中的液化特性,并以玉米秆为研究对象,深入研究了反应时问、反应温度、苯酚与玉米秆的物料比(液比)对玉米秆在苯酚中液化反应的影响,通过GPC、HPLC、FTIR、NMR分析工具对玉米秆液化产物的分子量及其分布、结合酚、结构特征等进行了系统表征。结果表明,木粉的液化效果最好,榛子壳、玉米秆次之,稻草最差。液比为4:1,反应温度为150℃为佳,反应时间太长会出现“再凝聚的残渣”玉米秆苯酚液化前后化学结构变化很大,其在液化过程中发生了降解、酚化、缩聚等非常复杂的化学反应。玉米秆液化产物随着液化反应时间的延长,其分子量分布曲线逐渐变窄,液化物的高分子量和低分子量部分逐渐减少,液化物的组成物质分子量逐渐趋于均一化。
     以玉米秆液化物为原料,在碱性条件下与环氧氯丙烷反应合成出玉米秆基环氧树脂,并对树脂化过程中的影响因素和工艺进行了深入的研究。利用多种仪器分析方法:FTIR、13C-NMR、GPC对合成树脂的结构、分子量及其分布性能表征进行分析。以聚酰胺(PA-650)为固化剂进行固化,并利用TGA、DSC和剪切强度测试手段对固化物的热力学性能进行测试分析。结果发现,玉米秆基环氧树脂合成的最佳条件为:环氧氯丙烷与玉米秆液化物的结合酚摩尔比为20:1、氢氧化钠与玉米秆液化物的结合酚的摩尔比为4:1、反应时间4h和反应温度100℃,此时合成树脂的环氧值为0.292。以液化30mmin时液化物为基材合成的树脂分子量分布曲线最宽,而液化时间低于或者高于30min¨时,以其相对应的玉米秆液化物合成的环氧树胼分子量分们变窄。玉米秆基环氧树脂的必切强度段好,最高可达5.5MPa,且热稳定性较好,其固化物在热失重5%时对应的温度(Td)最高为264.5℃。
     采用AEO-9和SDS复配做乳化剂,通过相反转技术乳化玉米秆基环氧树脂,研究了复配乳化剂的HLB值、乳化剂用量、乳化温度、搅拌速度对相反转乳化过程中乳液临界含水量Rf值、乳液平均粒径及稳定性的变化规律,采用扫描电镜(SEM)对玉米秆基水性环氧树脂乳液粒子进行微观表征。研究表明,有利于乳化剂在油/水界面上的吸附并有利于增大乳化剂与水相之间作用力的因素将使环氧树脂从W/O型向O/W型的相反转容易发生,表现为Rf较小。在不利的情况下,通过增加水的相体积分数,相反转能够发生,但所得到的乳状液的稳定性较差。乳化剂的HLB值为17、浓度为8%、乳化温度为35°C、搅拌速度为800rmp时,玉米秆基水性环氧树脂乳液稳定性最好,其对应的乳液平均粒径最小为1.57μm。
     以玉米秆基水性环氧树脂乳液作为成膜基材,采用不同水性固化剂固化成膜,从双组份水性环氧树脂涂料的成膜机理研究了乳化剂对玉米秆基水性环氧树脂乳液成膜性能的影响,以及对比研究了固化剂种类和以水性聚酰胺(KINGCURE 525W60)为固化剂时固化剂与玉米秆基环氧树脂的当量比对涂膜性能变化规律。实验结果表明,乳化剂对涂膜的物理机械性能影响主要表现为高浓度乳化剂乳液成膜后残留于涂膜中的乳化剂起到增塑作用和低浓度乳化剂乳液粒子影响涂膜的固化成膜过程。以KINGCURE525W60为固化剂固化玉米秆基水性环氧树脂制得的涂膜的物理机械性能较好。且它与玉米秆基环氧树脂的当量比为1或者稍大于1时,其涂膜的各项性能可以达到相对较好的平衡。
In recent years, environmental concern and restricted availability of petrochemical resource have attracted considerable attention, followed by the utilization of renewable biomass, including corn barn, because of its biodegradability, availability, and renewable nature. Liquefaction of biomass is considered to be an effective method for utilizing lignoellulosic materials.
     Four kinds of biomass waste (wood, hazelnut shell, rice straw and corn barn) were selected as materials. The main chemical components and liquefaction characteristics in phenol of them were firstly investigated. The factors influencing corn barn liquefaction, including reaction time, reaction temperature and the mass ratio of phenol to corn barn (liquid ratio), were analyzed. By means of GPC, HPLC, FTIR and NMR analysis, the molecular weight, bound phenol content and the structural characteristics of liquefied corn barn under different reaction conditions were investigated. The result shows that:Liquefaction efficiency of wood is better than hazelnut shell, rice straw and corn barn. The optimum condition of liquefied corn barn indicates that liquid ratio is 4:1, liquefaction temperature is 150℃and there will be recondensed residue when the liquefaction time is too long. The chemical structure of corn barn was changed greatly before and after liquefaction in phenol. Decomposition, phenolation and recondensation were all occured in liquefaction process. When increasing of the reaction time, the molecular weight distributions shift downward. Moreover, both low and high molecular weight parts are drastically diminished, and the molecular weight of liquefied product tends to homogenization.
     The liquefied corn barn-based epoxy resin (LCBER) was synthesized through the glycidyl etherification reaction from liquefied corn barn (LCB), which has groups of bound phenol, and epichlorohydrin under alkali conditions. The effective factors and technology of the resinification process has been studied. The structure and the molecular weight of LCBER has been analysed by many methods of instrumental analysis:FTIR,13C-NMR and GPC. The LCBER was cured with polyamide-650 (PA-650) and the thermal and mechanical properties were evaluated by TGA, DSC and lap shear strength measurement. The results showed that: the optimum conditions were obtained as molar ratio of epichlorohydrin to bound phenol of liquefaction product 20:1, molar ratio of sodium hydroxide to bound phenol of liquefaction product 4:1, reaction time 4h and reaction temperature 100℃. A highest epoxy index of 0.292 was obtained under these conditions. The distribution of retention volume of the synthesized resin (LCBER-30) from the corresponding LCB-30 is faster than the others. Before or after that, the distribution of retention volume of LCBER tends to narrow. The cured resins present good adhesive shear strength and have a highest value of 5.5 MPa. The cured resins have good thermal stability and the higher decomposition temperature at 5% weight loss (Td) is 264.5℃
     The waterborne dispersions of LCBER were prepared by the phase inversion emulsification technique using AEO-9 and SDS as compound emulsifier. The relationship among the critical water content of phase inversion (Rf) of LCBER, particle average size and the centrifugal stability of emulsion, and experiment condition such as HLB value of compound emulsifier, emulsifier content, emulsification temperature, stirring force was studied. The microtopography of emulsion was also observed. It shows that the factors for absorption of emulsifier and increasing its acting force with water will phase inversion from W/O to O/W easily, while under unfavourable conditions, phase inversion may occur through increasing volume fraction of water, but emulsion is very unstable. The optimum conditions were obtained as HLB value of compound emulsifier 17, emulsifier content 8%, emulsification temperature 35℃and stirring force 800rmp. The particle average size of emulsion was 1.57μm under these contions.
     The coating film has been prepared used home-made waterborne liquefied corn barn-based epoxy resin emulsion as base and different waterborne curing agent. The effect of emulsifier on film performance was discussed based on the film formation mechanism of double-pace waterborne epoxy resin coatings. The performance of waterborne liquefied corn barn-based epoxy resin film was further compared with different kinds of curing agent and the ratio of amine hydrogen with KINGCURE 525W60 as curing agent. The experiment results show that the emulsifier has a strong effect on physical mechanical properties of film: emulsifier residue in the film played plasticization using high concentration of emulsifier emulsion after the film formation. The curing process of film was affected by particle of low concentration of emulsifier emulsion. The physical mechanical properties of film was better than others with KINGCURE 525W60 as curing agent. The performance of waterborne liquefied corn barn-based epoxy resin film was satisfactory when the ratio of amine hydrogen with KINGCURE 525 W60 as curing agent was slightly greater than or equal to 1.
引文
[1]张景强,林鹿,何北海,等.不同结晶指数纤维素的x射线光电子能谱分析[J].林产化学与工业,2009,29(5):30-34.
    [2]刘广青,董仁杰,李秀金.生物质能源转化技术[M].北京:化学工业出版社,2009.
    [3]梁凌云.秸秆热化学液化工艺及机理的研究[D].北京:中国农业大学,2005.
    [4]路明,王思强.中国生物质能源可持续发展战略研究[M].北京:中国农业科学技术出版社,2010.
    [5]沈志远.生物质能源利用的新探索[D].南京:南京林业大学,2009.
    [6]钱伯章.新能源—后石油时代的必然选择[M].北京:化学工业出版社,2007.
    [7]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [8]Desappa S, Sridhar H V, Sridhar G, et al. Biomass gasification-a substitute to fossil fuel for heat application [J]. Biomass Bioenergy.2003,25(6):637-649.
    [9]程备久.生物质能学[M].北京:化学工业出版社,2008.
    [10]Gullu D, Demirbas A. Biomass to methanol via pyrolysis process [J]. Energy Convers. Manage.2001, 42:1349-1356.
    [11]姚建中,陈洪章,张均荣,等.玉米秸秆快速热解[J].化工冶金,2000,21(4):434-437.
    [12]Babu B V, Chaurasia A S. Modeling, simulation, and estimation of optimum parameters in pyrolysis of biomass [J]. Energy Convers. Manage.2003,44(13):2135-2158.
    [13]王智微,苏学泳,程从明,等.流化床中生物质热解气化的实验研究[J].新能源,2000,22(3):5-9.
    [14]Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks [J]. Energy Convers. Manage.2004,45(5):651-671.
    [15]Fierz H E. Chemistry of wood utilization [J]. Chem. Ind. Rev.1925,44:942.
    [16]谌凡更,欧义芳.木质纤维原料的热化学液化[J]_纤维素科学与技术,2000,8(1):44-57.
    [17]Appell H R, Fu Y C, Illing E G, et al. Convertion of cellulosic waste to oil. Bureau of Mines Report of Investigation [C]. Pittsburgh Energy Research Center. Pittsburgh, PA.1971,7; 560.
    [18]张建安,刘德华.生物质能源利J用j技术[M].北京:化学工业出版社,2008.
    [19]Figueroa C, Schaleger L L, Davis H G. LBL continuous bench-scale liquefaction unit, operation and results.6th Annual Conference on Energy from Biomass wastes [C]. Lake Buena Vista, Florida,1982, 1097-1112.
    [20]黄余田,高冠慧.沙柳及柠条灌木材液化产物的核磁共振谱分析[J].林产化学与工业,2009,29(4):10l-104.
    [21]杨爱荣,黄金田.沙柳木粉苯酚、乙二醇液化产物的结构分析[J].内蒙古农业大学学报,2010,31(2):236-239.
    [22]张晨霞.沙柳、柠条和杨木苯酚液化及其产物的树脂化研究[D].内蒙古:内蒙古农业大学,2006.
    [23]胡春平,方桂珍,王献玲,等.麦草碱木质素环氧树脂的合成[J].东北林业大学学报,2007,35(4):53-55.
    [24]郑志峰.核桃壳树脂化基础研究[D].黑龙江:东北林业大学,2006.
    [25]谌凡更,谢涛,卢卓敏.蔗渣液化产物改性环氧树脂的制备和性能研究[J].林业化学与工业,2007,27(3):111-115.
    [26]Xie T, Chen F G. Fast Liquefaction of bagasse in ethyiene carbonate and preparation of epoxy resin from the liquefied product [J]. J. Appl. Polym. Sci.2005,98,1961-1968.
    [27]赵炜.农作物秸秆在亚/超临界醇中的液化[D].北京:中国矿业大学,2009.
    [28]张求慧.木材的苯酚液化及其生成物的树脂化[D].北京:北京林业大学,2005.
    [29]伍波.废纸的苯酚液化及其生成物的树脂化研究[D].北京:北京林业大学,2010.
    [30]张天吴.大豆豆渣苯酚液化及其生成物的树脂化[D].北京:北京林业大学,2009.
    [31]焦真真.芦竹的苯酚液化及其在发泡材料中的应用[D].北京:北京林业大学,2008.
    [32]刘春雨.白蜡枝桠材混合溶剂液化及其树脂化利用[D].北京:北京林业大学,2010.
    [33]张求慧,赵广杰.术材的苯酚和多羟基醇液化[J].北京林业人学学报,2003,25(6):71-76.
    [34]张求慧,赵广杰.木材液化及其液化生成物的利用[J].国际木业,2003,8:14-17.
    [35]张求慧,赵广杰,陈金鹏.酸性催化剂对木材苯酚液化能力的影响[J].北京林业大学学报,2004,26(5):66-70.
    [36]张求慧,赵广杰.木材液化技术研究的现状及其产业化发展趋势[J].木材工业,2005,3:5-7.
    [37]罗蓓.木材的苯酚液化及产物的树脂化研究[D].北京:中国林业科学研究院,2004.
    [38]罗蓓,秦特夫,李改云.木材的液化及其利用[J].木材工业,2004,18(5):5-7.
    [39]李改云.褐腐预处理木材的苯酚液化及产物的树脂化研究[D].北京:中国林业科学研究院,2007.
    [40]张金萍,林盂浩,王敬文,等.毛竹多元醇液化及液化产物的分析[J].纤维素科学与技术,2010,18(2):15.-1.
    [41]童朝晖.麦草化学液化及其机理研究[D].天津:天津轻工业学院,2000.
    [42]陈秋玲.麦秆液化制备可降解聚氨酯泡沫材料方法及机理研究[D].云南:昆明理工大学,2010.
    [43]栾复友.竹材树脂化的基础研究[D].浙江:浙江农林大学,2010.
    [44]孙绍晖,臧哲学,孙培勤,等.泡桐直接催化液化产物的红外光谱分析[J].河南化工,2008,25(4),25-28.
    [45]Zhang Y C, Ikeda A, Hori N, et al. Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid [J]. Bioresour. Technol.2006,97(2):313-321.
    [46]张文明,孙岩峰,李阳,等.秸秆苯酚液化的工艺[J].大连工业大学学报,2008,27(1):73-75.
    [47]张文明,孙岩峰,李阳,等.秸秆液化物环氧树脂胶黏剂的制备与表征[J].高分子材料科学与工程,2009,25(6):139-142.
    [48]林进兴.稻草的常压热化学液化研究[D].江苏:江南大学,2007.
    [49]Pu S, Shiraishi N. Liquefaction of wood without a catalyst I time course of wood liquefaction with phenols and effects of wood/phenol ratios [J]. Mokuzai. Gakkaishi.1993,39(4):446-452.
    [50]Pu S, Shiraishi N. Liquefaction of wood without a catalyst Ⅱ weight loss by gasification during wood liquefaction and effects of temperature and water [J]. Mokuzai. Gakkaishi.1993,39(4):453-458.
    [51]Pu S, Shiraishi N. Liquefaction of wood without a catalyst IV effect of additives, such as acid, salt, and neutral organic solvent [J]. Mokuzai. Gakkaishi.1994,40(8):824-829.
    [52]I in L Z, Yao Y G, Yoshioka M, et al. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts-Multi-condensation [J]. Holzforschung.1997,51(4):333-335.
    [53]Ono H, Yamada T, Hatano Y, et al. Adhesives from waste paper by means of phenolation [J]. J. Adhes.1996,59(1):135-145.
    [54]Alma M H, Yoshioka M, Yao Y, et al. Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials [J]. Mokuai, Gakkaishi,1995,41(8):741-748.
    [55]Alma M H, Yoshioka M, Yao Y, et al. Preparation and characterization of the phenolated wood using hydrochloric acid as catalyst [J]. Wood. Sci. Technol.1995,30:39-47.
    [56]Alma M H, Yoshioka M, Yao Y, et al. The preparation and the flow properties of HCl catalyzed phenolated wood and its blends with commercial Novolak resin [J]. Holzforschung.1996,50:85-90.
    [57]Alma M H, Yoshioka M, Yao Y, et al. Preparation of oxalic acid-catalyzed resinified phenolated wood and its characterization [J]. Mokuai. Gakkaishi.1995,58(1):297-304.
    [58]Lin L, Yoshioka M,Yao Y, et al. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood [J]. J. Appl. Polym. Sci.1994,52: 1629-1636.
    [59]Lin L, Yoshioka M, Yao Y, et al. Physical properties of moldings from liquefied wood resins [J]. J. Appl. Polym. Sci.1995,55:1563-1571.
    [60]Lin L, Yoshioka M,Yao Y, et al. Preparation of oxalic acid-catalyzed resinified phenolated wood and its characterization [J]. Mokuai. Gakkaishi.1995,41(8):1122-1131.
    [61]Li G Y, Qin T F, Ikeda A. Preparation and characterization of the phenolated wood using sulfuric acid as a catalyst I:Liquefaction behavior of plantation wood [J]. Chin. Forest. Sci. Tech.2002,1(4): 63-66.
    [62]Li G Y, Qin T F, Ikeda A. Atsushi preparation and characterization of the phenolated wood using sulfuric acid as a catalyst II:FT-IR and GPC characterization [J]. Chin. Forest. Sci. Tech.2003,2(2): 43-49.
    [63]谌凡更,涂宾,卢卓敏.麦草催化热化学液化产物的组成分析[J].林产化学与工业,2003,23(1):78-82.
    [64]傅深渊,马灵飞,李文珠.竹材液化及竹材液化树脂胶性能研究[J].林产化学与工业,2004,24(3):42-46.
    [65]李改云,秦特夫,黄洛华.酸催化下用苯酚液化木材的制备与表征[J].木材工业,2005,19(2):28-31.
    [66]罗蓓,秦特夫,李改云.人工林杉木、杨树的苯酚液化及其产物的树脂化研究I-液比和催化剂对催化反应的影响[J].木材工业,2005,19(6):15-18.
    [67]秦特夫,罗蓓,李改云.人工林木材的苯酚液化及树脂化研究Ⅱ-液化木基酚醛树脂的制备和性能表征[J].木材工业,2006,20(5):8-10.
    [68]Maldas D, Shiraishi N. Liquefaction of wood in the presence of phenol using sodium hydroxide as a catalyst and some of its characterization [J]. Polym-Plast. Technol. Eng.1996,35(6):917-933.
    [69]Maldas D, Shiraishi N, Harada Y. Phenolic resol resin adhesives prepared from alkali-catalyzed liquefied phenolated wood and used to bond hardwood [J]. J. Adhes. Sci. Technol.1997,11(3):305-316.
    [70]Maldas D, Shiraishi N. Liquefaction of biomass in the presence of phenol and H2O using alkalies and salts as the catalyst [J]. Biomass Bioenergy.1997,12(4):273-279.
    [71]Kurimoto Y, Shirakawa K, Yoshioka M, et al. Liquefaction of untreated wood with polyhydric alcohols and its application to polyurethane foams [C]. Chemical Modification of Ligncellulosics, New Zealand.1992,176:155-162.
    [72]Yao Y G, Yoshioka M, Shiraishi N. Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent [J]. Mokuzai. Gakkaishi.1993,39(8):930-938.
    [73]Maldas D, Shiraishi N. Liquefaction of wood in the presence of polyol using NaOH as a catalyst and its application to polyurethane foams [J]. Int. J. Polym. Mater.1996,33(1):61-71.
    [74]Yamada T, Ono H. Characterization of the products resulting from ethylene glycol liquefaction of cellulose [J]. J. Wood. Sci.2002,47(6):458-464.
    [75]庞浩,柳雨生,廖兵,等.甘蔗渣多元醇制备聚氨酯硬泡得研究[J].林产化学与工业,2006,26(2):57-60.
    [76]戈进杰,张志楠,徐江涛.基于玉米棒的环境友好材料研究(Ⅰ)玉米棒的液化反应及植物多元醇的制备[J].高分子材料科学与工程,2003,19(3):194-197.
    [77]戈进杰,张志楠,徐江涛.基于玉米棒的环境友好材料研究(Ⅱ)以玉米棒为原料的聚氨酯的合成及生物降解性[J].高分子材料科学与:l:程,2003,19(4):177-180.
    [78]Alma M H, Shiraishi N. Preparation of polyurethane-like foams NaOH-catalyzed liquefied wood [J]. Holz. Roh. Werkst.1998,56(4):245-246.
    [79]Demirbas A. Mechanisms of liquefaction and pyrolysis reaction s of biomass [J]. Energ. Convers. Manage.2000,41(6):633-646.
    [80]Kurimoto Y, Doi S, Tamura Y. Species effects on wood-liquefaction in polydric alcohols [J]. Holzforchung.1999,53(6):617-622.
    [81]Yamada T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate [J]. Bioresour. Technol.1999,70(1):61-67.
    [82]Ono H, Yamada T. Cellulosic materials-potential source for adhesive [J]. Chem. Adhes.2000, (74): 44-49.
    [83]Jakab E, Liu K, Meuzelaar H L C. Thermal decomposition of wood and cellulose in the presence of solvent vapors [J]. Ind. Eng. Chem. Res.1996,36(6):2087-2095.
    [84]钟杰,张求慧.木质纤维原料的苯酚液化[J].木材加工机械,2005,16(5):34-38.
    [85]Lin L, Yao Y, Yoshioka M, et al. Liquefaction mechanism of in the presence of phenol at elevated temperature without catalysts-Structural characterization of the reaction products [J]. Holzforschung. 1997,51:316-324.
    [86]Lin L, Yao Y, Yoshioka M, et al. Liquefaction mechanism of in the presence of phenol at elevated temperature without catalysts-Reaction pathway [J]. Holzforschung.1997,51:325-332.
    [87]Lin L, Yao Y, Yoshioka M, et al. Liquefaction mechanism of in the presence of phenol at elevated temperature without catalysts-Multi-condensation [J]. Holzforschung.1997,51:333-337.
    [88]Lin L Z, Yao Y G, Shiraishi N. Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysts part 1 identification of the reaction products [J]. Holzforschung.2001,55(6):617-624.
    [89]Lin L Z, Nakagame S, Yao Y, et al. Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysts part 2 reaction behavior and pathways [J]. Holzforschung. 2001,55(6):625-630.
    [90]Ono H, Ohara S. Characterization of the products resulting from direct liquefaction of cellulose 1 Identification of intermediates and the relevant mechanism in direct phenol liquefaction of cellulose in the presence of water [J]. Mokuzai. Gakkaishi.1996,42(11):1098-1104.
    [91]Shiraishi N, Tamura Y, Tsujimoto N. Dissolution of wood and its application to the preparation of adhesives (1) [J]. Mokuzai. Gakkaishi.1987,33:492-498.
    [92]Shiraishi N, Tamura Y, Tsujimoto N. Dissolution of wood and its application to the preparation of adhesives (2) [J]. Mokuzai. Gakkaishi.1988,34:2-6.
    [93]Hassan E B, Kim M, Wan H. Phenol-formaldehyde-type resins made from phenol-liquefied wood for the bonding of particeboard [J]. J. Appl. Polym. Sci.2009,112:1436-1443.
    [94]Kobayashi M, Hatano Y, Tomita B. Viscoelastic properties of liquefied wood/epoxy resin and its bond strength [J]. Holzforschung.2011,55:667-671.
    [95]Kobayashi M, Hatano Y, Tomita B. Application of liquefied wood to a new resin syetem synthesis and properties of liquefied wood/epoxy resins [J]. Holzforschung.2000,54(1):93-97.
    [96]Toshiyuki A, Masahlko K, Bunichiro T, et al. Syntheses and properties of liquefied products of ozone treated wood/epoxy resins having high wood contents [J]. Holzforschung,2007,81:14-18.
    [97]Lin L Z, Yao Y G, Yoshioka M, et al. Preparation and properties of phenolated wood/phenol/ formaldehyde cocondensed resin [J]. J. Appl. Polym. Sci.1995,58:1297-1304.
    [98]Alma M H. The use of wheat straw-phenol condensation products as molded materials [J]. J. Polym. Eng.1997,17(4):311-322.
    [99]Alma M H, Kelley S, Bektas I. The tensile properties of molding products obtained by the condensation of various tree barks and phenol by using sulfuric acid as a catalyst [J]. J. Mater. Sci. Lett.2000,19(17):1517-1520.
    [100]Alma M H, Maldas D, Shiraishi N. Liquefaction of several biomass wastes into phenol in the presence of various alkalis and metallic salts as catalysts [J]. J. Polym. Eng.1998,18(3):161-177.
    [101]Alma M H, Shiraishi N. Preparation of sulfuric acid-catalyzed phenolated wood resin [J]. J. Polym. Eng.1999,18(3):179-189.
    [102]Hakki M, Kelley S. Conversion of barks of several tree species into bakelite-like thermosetting materials by their phenolysis [J]. J. Polym. Eng.2000,20(5):365-378.
    [103]Lee S H, Yoshioka M, Shiraishi N. Preparation and properties of phenolated corn bran (CB)/phenol/ formaldehyde cocondensed resin [J]. J. Appl. Polym. Sci.2000,77:2901-2907.
    [104]Lee S H, Yoshioka M, Shiraishi N. Liquefaction and product identification of corn bran (CB) in phenol [J]. J. Appl. Polym. Sci.2000,78(2):311-318.
    [105]Lee S H, Teramato Y, Shiraishi N. Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to Novolak-type phenolic resin [J]. J. Appl. Polym. Sci.2002,83:1473-1481.
    [106]Lee S H, Yoshioka M, Shiraishi N.Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam [J]. J. Appl. Polym. Sci.2002,84:468-472.
    [107]Lee S H, Yoshioka M, Shiraishi N. Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol [J]. J. Appl. Polym. Sci.2000,78(2):319-325.
    [108]Lee S H, Teramoto Y, Shiraishi N. Biodegrade polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genltoxicity [J]. J. Appl. Polym. Sci.2002,83(7):1482-1489.
    [109]Yao Y G, Yoshioka M, Shiraishi N. Combined liquefaction of wood and starch in a polyethylene glycerin blended solvent [J]. Mokuzai. Gakkaishi.1993,39(8):930-938.
    [110]Kurimoto Y, Koizumi A, Dio S, et al. Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood [J]. Biomass Bioenergy. 2001,21(5):381-390.
    [111]Tao A, Kamiyama T, Fujmorik, et al. Biomass-derived polyols and biodegradable polyurethanes [P]. JP,2002037867.
    [112]曲敬序,刘孝碧,李栋,等.聚碳酸乙烯酯代替乙二醇碳酸酯液化玉米秭秆的效果研究[J].农业工程学报,2006,22(9):172-175.
    [113]钱伯章.生物质能技术与应用[M].北京:科学出版社,2010.
    [114]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2008.
    [115]http://news.qq.com/a/20090907/002745_1.htm(腾讯网)
    [116]钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用[J].资源科学,2003,25(4):62-67.
    [117]胡代泽.我国农作物秸秆资源的利用现状与前景[J].资源开发市场,2000,16(1):19-20.
    [118]施良和.凝胶色谱法[M].北京:科学出版社,2008.
    [119]Alma M H, Shiraishi N. Novolak-resin type moldings from phenolate wood prepared in the presence of sulfuric acid as a catalyst [J]. J. Polym. Eng.1998,18(3):197-220.
    [121]白石信夫,迁本直彦,大谷要.公开特许公报,昭61-215676.1986.
    [122]白石信夫,小野寺祥,大谷要.公开特许公报,昭61-171744,1986.
    [124]Yamada T, Ono H. Characterization of the products resulting from ethylene glycol liquefaction of cellulose [J]. J. Wood. Sci.2001,47(6):458-464.
    [125]Ono H, Zhang Y C, Yamada T. Dissolving behavior and fate of celluose in phenol liquefaction [J]. Trans. Mat. Res. Soc. Japan.2001,26(3),807-812.
    [126]程能林.溶剂手册[M].北京:化学工业山版社,2002.
    [127]黄培强,靳立人,陈安齐.有机合成[M].北京:高等教育版社,2004.
    [128]邢其毅,徐瑞秋,周政.基础有机化学(第二版)[M].北京:高等教育版社,1994.
    [129]薛永兵,凌开成,邹纲明.煤直接液化中溶剂的作用和种类[J].煤炭转化,1999,22(4):1-4.
    [130]郭贵全,王红娟,谌凡更.植物纤维在供氢溶剂中的液化反应[J].纤维素科学与技术,2003,11(2):41-50.
    [131]Avin B E, Suib S L, Coughlin R W. Free radical formation in lignin during pyrolysis [J]. Holzforschung.1985,39:33-40.
    [132]Avin B E, Coughlin R W, Solomon P R, et al. Mathematical modeling of lignin pyrolysis [J]. Fuel. 1985,64(11):1495-1501.
    [133]顾继友.胶黏剂与涂料[M].北京:中国林业出版社,1999.
    [134]Alma M H, Yoshioka M, Yao Y G, et al. Preparation of sulfuric acid-catalyzed phenolated wood resin [J]. Wood. Sci. Technol.1998,32:297-308.
    [135]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000.
    [136]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2002.
    [137]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2002.
    [138]李坚.木材波谱学[M].北京:科学出版社,2003.
    [139]山田电彦.木材の液化技术の开发と反应棧構の解明[J].术材工业,1999,54(1):2-7.
    [140]Tymchyshyn M, Xu C. Liquefaction of bio-mass in hot compressed water for the production of phenolic compounds [J]. Bioresour. Technol.2010,101:2483-2490.
    [141]Kishi H, Fujita A, Miyazaki H, et al. Synthesis of wood-based epoxy resins and their mechanical and adhesive properties [J]. J. Appl. Polym. Sci.2006,102:2285-2292.
    [142]孙曼灵.环氧树脂应用原理与技术[M].北京:机械:工业出版社,2002.
    [143]饶建波,易英,黄畴,等.含氟环氧树脂的合成工艺研究[J].化学工程与装备,2009,5:13-15.
    [144]贺英,颜世锋.涂料树脂化学[M].北京:北京化学工业出版社,2007.
    [145]Simionescu C I, Rusan V 1, Turta K I. Synthesis and characterization of someiron-lignosulfonae-based lignin epoxy resins [J]. Cellulose. Chem. Technol.1993,27:627-632.
    [146]吴若峰.涂料树脂物理[M].北京:北京化学业出版社,2007.
    [147]周天寿.水性环氧树脂的研究及其固化[J].化学建材,2001,5:16-18.
    [148]李丽娟.双组份水性环氧树脂研究进展[J].热固性树脂,2006,21:46-51.
    [149]Griffin W C. Classification of surface-active agents by HLB [J] J. Soc. Cosmet. Chem.1949,1: 311-326.
    [150]Griffin W C. Calculation of HLB Values of Non-Ionic Surfactants [J]. J. Soc. Cosmet. Chem.1954, 5:235-249.
    [151]王文芳,李少香,王扬利,等.木器漆用低VOC水性环氧.丙烯酸酯杂化乳液的合成与研究[J].涂料工业,2007,37(11):30-34.
    [152]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000.
    1153] Shinoda K, Friberg S. Emulsion and Solubilization [M]. New York:Wiley,1986.
    [154]杨振忠,赵得禄,许元泽,等.高分子水基微粒形态与界面膜性质的关系[J].高分子学报,1997,5:636-640.
    [155]王进,杜宗良、李瑞霞,等.环氧树脂水基分散体系的相反转乳化[J].功能高分子学报,2000,2:141-144.
    [156]Philip A, Reitano, T S. Using emulsifier to improve water-reducible resin system [J]. Mod. Paint. Coat.1990,7:44-47.
    [157]Alex W. Chemical resistance of waterborne epoxy/amine coatings [J]. Prog. Org. Coat.1997,32: 231-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700