寡聚酰胺-丝组二肽缀合物的设计合成、质谱解析及其切割DNA活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸切割剂在核酸化学研究领域中有至关重要的作用。在DNA突变、癌变以及细胞死亡等研究领域,核酸切割剂是一个很好的分子生物学工具,更是设计基因药物的模版。基于丝组二肽对DNA的切割活性和聚酰胺的特异性识别功能,本论文主要研究了寡聚酰胺-丝组二肽缀合物(NO_2-PyPyIm-SerHis)的设计合成、质谱解析及其切割DNA活性研究。
     1.通过卤仿反应和DCC/HOBt偶合反应合成酰胺键,首次合成了寡聚酰胺-丝组二肽缀合物。该合成路线反应条件温和,产率适中。在目标分子的合成设计中,由寡聚酰胺作为该分子的DNA识别片断(DNA-BindingMotif,DBM),同时,柔性链(Linker Motif,LM)与活性片断(Active Motif,AM)Ser-His的组氨酸残基C端相连,保证切割活性基团-丝氨酸残基上氨基和侧链羟基的状态和相对位置。生物活性实验验证此设计是合理的。
     2.利用高分辨质谱、红外光谱、核磁共振谱(~1H NMR和~(13)C NMR)和电喷雾质谱(ESI-MS和ESI-MS/MS)分析鉴定化合物的结构,并分析总结了其质谱裂解规律。
     3.在电喷雾质谱研究过程中,首次发现:质谱裂解过程中产生的某些酰胺类碎片离子和酯类化合物在离子阱中容易发生水解现象,并利用分子内的氨基催化分子离子水解反应的原理对此不常见的特征性裂解进行了详细解释。这可为同类酰胺或酯的质谱裂解规律和结构解析提供快捷、准确的依据。
     4.论文首次提出在电喷雾质谱的裂解过程中,分子离子/碎片离子经过四元环、五元环和六元环过渡态发生氢重排,失去一个较为稳定的中性分子,趋于生成共轭体系的碎片离子。而当分子有羟基存在时容易发生酰胺键脱水现象。
     5.利用紫外光谱和琼脂糖凝胶电泳两种方法测定了在B-R和Tri-HCl缓冲溶液中寡聚酰胺-丝组二肽缀合物与DNA的相互作用。发现Tri-HCl抑
    
    摘要
     制目标分子切割DNA。两种方法得到的实验结论是相吻合的。虽然我们
     没有观察到寡聚酞胺一丝组二肤缀合物特异性地切割DNA,但琼脂糖凝
     胶电泳图谱证明我们所合成的寡聚酞胺一丝组二肤缀合物
     (N 02一PyPylm一serHis)切割DNA的活性明显高于丝组二肤。这可归因
     于识别片断·(DBM)寡聚酞胺的存在增加了活性片断(AM)Se卜His的
     局部浓度,相应地提高了活性片断(AM)丝组二肤切割DNA的活性。
     寡聚酞胺一丝组二肤缀合物(N仇一PyPylm一serHis)是一个高效全新的DNA
    切割剂,同时具有发展成为抗肿瘤前药的潜力。为设计合成更有效的特异性切割
    DNA化合物,提供了理论和实践基础。
Artificial nucleic acid cleavage agents have attracted considerable attention on synthetic and biological part. As we all know, the amino acids histidine (His) and serine (Ser) function together as key catalytic amino acids in the active sites of such diverse enzymes as chymotrypsin, trypsin and uridine phosphorylase, and dipeptide seryl-histidine(Ser-His) is the shortest peptide ever reported to show DNA-cleavage activity, which mechanism and roles of functional group have been well documented. Besides, inspired by naturally occurring antibiotic distamycin A and its analogues, polyamide containing N-methylpyyrole/N-methylimidazolelt amino acids have been synthesized, and moreover, it was proved that these molecules recognized and binded in the minor groove of predetermined DNA sequence with high affinity and specificity.
    To expand the possible efficient utility of Ser-His for wide range of biological and biomedical application that require more molecular recognition of DNA, we designed and synthesized the oligopolyamide-Seryl-Histidine conjugate, which is composed of DNA-recognizing polyamide chosen as DNA-binding motif (DBM), DNA-cleaving seryl-histidine acted as active motif (AM), and heptyldiamine (Linker Motif, LM) connected with carbon termini of histidine residues. Therefore, the hydroxyl functional group of N-terminal serine residue, and the imidazole function group of histidine residue can preserve their efficient, requisite function for DNA cleavage.
    We schemed out the synthesis route for the oligopolyamide-Seryl-Histidine conjugate. By the use of haloform and DCC/HOBt couple reaction, the building blocks prepared such as NO2-Py-COOH and NO2-PyPy-COOH and other materials Boc-L-His-OH, Boc-L-Ser(Bn)-OH were effectively connected to construct the target molecule. The synthetic condition is mild and the yield is moderate. The chemical structure was identified by the use of HRFAB-MS, IR, 1H NMR, 13C NMR and
    
    
    
    ESI-MS, ESI-MSn.
    The structures of those compounds were positively identified by electrospray ionization tandem mass sepectrometry (ESI-MSn). During the identification of monoimidazole/polyamine amides, we observed an odd fragmentation pathway in which the characteristic fragment ions m/z 183 or 197 always produced the fragment ion at m/z 172 by the apparent expulsion of 'impossible' neutral fragments of mass 11 or 25 Da. In order to clarify this phenomenon, we synthesized additional relevant compounds and specifically deuterated molecules. A proposed mechanism led to a good understanding of the fragmentation pathway in which amides and esters hydrolyzed, presumably in the ion trap itself, and were catalyzed by the intramolecular amino group.
    Since successful application of ESI-MS in the areas such as drug metabolism, degradant identification and pharmacokinetics depends on a thorough understanding of ESI-MS and ESI-MS/MS data of the compounds. The dissertation reveals some unique features of ESI-MS/MS spectra of this important class of oligopolyamide-Seryl-Histidine conjugate. The analysis of the ESI-MS/MS data showed protonated compounds undergoes complicated gas-phase rearrangements in addition to simple bond cleavages. Rearrangement can be followed by elimination of a neutral fragment, which occurs with the migration of a positive center via four, five, six-center. The target molecule easily eliminated water contributing to the hydroxyl group of serine residue.
    It was found that there is hyperchromic effect and red-shift on UV absorption spectrom as -DNA was interacted with the small molecule oligopolyamide-Seryl-Histidine conjugate in B-R buffer. In addition, as the mixture was incubated in B-R buffer at 50C for 48hours, agarose gel analysis showed that -DNA was cleaved into heterogeneous smear. However, in the same condition, when the Tri-HCl buffer was chosen as incubation condition instead of B-R buffer, there was no cleavage for double-stranded -DNA, which was consistent with the UV results. Then it could be proved that Tri-HCl inhibited the target molecule from
    
    
    interacting with A, -DN
引文
1. Sigman D.S, Mazumder A, Perrin D.M. Chemical Nuclease. Chemical Rev, 1993, 93:2295~2316
    2. Dervan P.B. Design of Sequence-specific DNA-binding molecule. Science, 1986, 232:464-471
    3. Barton J.K. Metals and DNA: Molecular-left-handed complements. Science, 1986, 232:727-734
    4. Sigman D.S. Nuclease activity of 1,10-phenanthroline-copper ion. Acc Chem Res, 1986, 19:180-186
    5.吴梧桐.生物化学.北京:人民卫生出版社
    6.万荣.丝组二肽切割DNA机理的研究(博士学位论文).北京:清华大学化学系2000
    7.万荣,赵刚,赵玉芬等.人工核酸切割试剂研究进展.科学通报,2000,8:785-798
    8. Pogozelski W.K, Tullius T.D. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev, 1993, 3: 1089-1108
    9. Breslow R. Bifunctional acid-base catalysis by imidazole groups in enzyme mimics. J Molecular Catalysis, 1994, 91:161-174
    10. Podyminogin M.A, Vlassov V.V, Synthesic RNA-cleaving molecules mimicking ribonuclease an active center: design and cleavage of tRNA transcripts. Nucleic Acids Res, 1993, 21:5950-5956
    11. Lorente A, Espinosa J.F. et al. Synthesis of imidazole-acridine conjugates as ribonuclease A mimics. Tatrahedron Letters, 1996, 37:4417-4420
    12. Breslow R. How do imidazole groups catalyze the cleavage of RNA in enzyme models and in enzymes Acc Chem Res, 1991, 24:317-324
    13. Komiyama M, Matsumura K. Unprecedentedly fast hydrolysis of the RNA dinucleoside monophosphates ApA and UpU by rare earth metal ions. J.Chem. Soc, Chem Commun, 1992, 8:640-641
    
    
    14. Barbiet B, Brack A. Conformation-controlled hydrolysis of polyribonucleotides by sequential basic polypeptides. J. Am.Chem. Soc, 1992, 114:3511-3515
    15. Li X H, Wan R, Zhang Q et al. The interactions of amino acids and peptides with DNA. ⅪⅤ International conference on phosphorus chemistry. Cincinnati, Ohio, 1998, 130
    16.赵玉芬,李向红,麻远,等.丝氨酰组氨酸、磷酰化丝氨酸、磷酰化苏氨酸用作核酸切割试剂.中国专利号.ZL 961 14313.4.1996
    17. Parac T.N, KosticN.M. New Selectivity and Turnover in Peptide Hydrolysis by Metal Complexes. A Palladium(Ⅱ) Aqua Complex Catalyzes Cleavage of Peptides Next to the Histidine Residue. J. Am. Chem .Soc, 1996, 118:51-58
    18. Frey P.A, Whitt S.A. A Low-barrier hydrogen-bond in the catalytic triad of serine proteases. Science, 1994, 266:1927-1930
    19. Zhou G.W, Guo J,Huang W.et al. Crystal-structrue of catalytic antibody with a serine-proteases active-site. Science, 1994,266(19): 1059-1064
    20. Schrag J.D, Li Y.G. et al. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature, 1991,351 (27):761-764
    21. Li Y S, Zhao Y F, Hatfield S, et al. Dipeptide seryl-histidine and related Oligopeptides cleaved DNA, protein and a carboxyl ester. Bio.Med.Chem, 2000,8:2675-2680
    22.万荣,王宁,赵玉芬.丝组二肽对DNA的切割作用的研究.高等学校化学学报,2001,22:598-600
    23.陈晶,万荣,刘海 等.丝组二肽对牛血清蛋白的切割作用研究,2001,22:1349-1351
    24.万荣,王宁,赵玉芬.丝组二肽所含官能团在切割DNA反应中的作用.高等学校化学学报,2000,21:1864-1866
    25. Doan T.L, Perrouault L, Praseuth D. et al. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by and oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res, 1987, 15:7749-7760
    26. Wade W.S, Mrksich M, Dervan P.B. Design of peptides that bind in the minor
    
    groove of DNA at 5'-(A,T)G(A,T)C(A,T)-3' sequences by a dimeric side-by-side motif. J Am Chem Soc, 1992, 114:8783
    27. Wade W.S, Mrksich M, Dervan P.B. Binding affinities of synthetic peptides, pyridine-2-carboxamidonetropsinand 1 -methylimidazole-2-carboxamidonetropsin, that form 2:1 complexes in the minor groove of double-helical DNA. Biochemistry, 1993, 32:11385
    28. Pelton J.G, Wemmer D.E. Proc. Natl. Acad. Sci.U.S.A, 1989, 86:5723
    29. Wade W.S, Mrksich M, Dervan P.B. Design of peptides that bind in the minor groove of DNA at 5'-(A,T)G(A,T)C(A,T)-3' sequences by a dimeric side-by-side motif J. Am Chem Soc, 1992, 114:8783-8794
    30. Mrksich M, Dervan P.B. Antiparallel side-by-side heterodimer for sequence-specific recognition in the minor groove of DNA by a distamycin/1-methylimidazole-2-carboxamide-netropsin pair. J. Am Chem Soc, 1993, 115:2572-2576
    31. Trauger J.W, Baird E.E, Mrksich M, Dervan RB. Extension of Sequence-Specific Recognition in the Minor Groove of DNA by Pyrrole-Imidazole Polyamides to 9-13 Base Pairs J. Am Chem Soc, 1996, 118:6160-6166
    32. Dervan P.B, Burli R.W. Sequence-specific DNA recognition by polyamides.Curr. Opin.Chem.Biol, 1999, 3:688-693
    33. Mrksich M, Parks M.E, Dervan RB. Hairpin Peptide Motif. A New Class of Oligopeptides for Sequence-Specific Recognition in the Minor Groove of Double-Helical DNA. J Am Chem Soc, 1994, 116:7983-7988
    34. Swalley S.E, Baird E.E, Dervan P.B. Effects of γ-Turn and β-Tail Amino Acids on Sequence-Specific Recognition of DNA by Hairpin Polyamides. J. Am Chem Soc, 1999, 121:1113-1120
    35. Cho J, Parks M.E, Dervan EB. Cyclic polyamides for recognition in the minor-groove ofDNA. Proc. Natl. Acad. Sci.U.S.A, 1995, 92:10389
    36. Herman D.M, Turner J.M, Baird E.E, Dervan P.B. Cycle Polyamide Motif for Recognition of the Minor Groove of DNA. J Am Chem Soc, 1999, 121: 1121-1129
    
    
    37. Turner J.M, Swalley S.E, Baird E.E, Dervan P.B. Aliphatic/Aromatic Amino Acid Pairings for Polyamide Recognition in the Minor Groove of DNA .J Am Chem Soc, 1998, 120:6219
    38. Herman D.M, Baird E.E, Dervan P.B. Tandem hairpin motif for recognition in the minor groove of DNA by pyrrole-imidazole polyamides. Chem Eur. J., 1999, 5: 975-983
    39. Dervan P.B. Molecular recognition of DNA by small molecules. Bioorg. Med. Chem. Eur. J, 2001, 9:2215-2235
    40. Zhou J, Yuan G. Recent process in DNA recognition molecules. Chin. J. Org. Chem. 2003, 6:526-541
    41. Tao Z.F, Saito I, Sugiyama H. Highly Cooperative DNA Dialkylation by the Homodimer of Imidazole-Pyrrole Diamide-CPI Conjugate with Vinyl Linker. J Am Chem Soc, 2000, 122:1602-1608
    42. Chang A.Y, Dervan RB. Strand Selective Cleavage of DNA by Diastereomers of Hairpin Polyamide-seco-CBI Conjugates. J Am Chem Soc, 2000, 122:4856-4864
    43. Wurtz N.R, Dervan RB. Sequence specific alkylation of DNA by hairpin pyrrole-imidazole polyarnide conjugates. Chem Biol, 2000, 7:153-161
    44. Aseem Z.A, Anna K.M, Dervan RB, et al. Towards a minimal motif for artificial transcriptional activators. Chem. Biol, 2001, 8:583-592
    45. Aseem Z.A, Anna K.M. Modular design of artificial transcription factors. Curr. Opin.Chem.Biol, 2002, 6:765-772
    46. Myers A.G, Cohen, S.B, Kwon B.M. A Study of the Reaction of Calicheamicin.garnma.1 with Glutathione in the Presence of Double-Stranded DNA. J Am Chem Soc, 1994, 116:1255-1271
    47. He G.X, Browne K.A, Groppe J.C, et al. Chemistry of phosphodiesters, DNA and models. 3. Microgonotropens and their interactions with DNA. 1. Synthesis of the tripyrrole peptides dien-microgonotropen-a, -b, and -c and characterization of their interactions with dsDNA. J Am Chem Soc, 1993, 115: 7061-7071
    48. Liu F, Meadow K.A, Mcmillin D.R. DNA-binding studies of Cu(bcp)~(2+) and Cu(dmp)~(2+): DNA elongation without intercalation of Cu(bcp)~(2+). J Am Chem Soc,
    
    1993,115:6699-6704
    49.杨铭.小分子药物与DNA相互作用中的分子识别.北京医科大学学报.1996,28.303-305
    50.王雪梅,龚声瑾,李尧.罗丹明B对DNA分子识别作用的研究.仪器技术与应用.2001,2:46-48
    51.江崇球,贺吉香,王金山.EB荧光探针法研究多粘霉素B与DNA的作用方式.光谱学与光谱分析.2002,22:103-106
    52.程洪艳,李素文,李艳平等.抗癌药物阿霉素的荧光发射光谱分析.北京师范大学学报.1999,35:261-264
    53.杨丹凤,袭著革,等.用紫外光谱法检测三神醛类化合物与DNA的结合.环境与健康杂志.1999,16:189-190
    54.曹瑛,何锡文.吩嗪染料与DNA分子相互作用的紫外-可见光谱研究.高等学校化学学报.1998,5:714-716
    55.刘小康,包定元.新蒽环类抗肿瘤化合物AD-89对DNA的作用机理研究.华西医大学报.1996,27:383-387
    56.赵晓杰,江山,等.抗癌药物ADM与DNA相互作用的紫外共振拉曼光谱的研究.生物化学杂志.1994,10:325-329
    57.牟其明,赵志明,陈淑华.芳杂环类多重氢键分子钳人工受体对中性分子的识别性能研究.化学学报.2002,60:1841-1845
    58.卢继新,张贵珠,王月梅.金属离子存在下5-氟尿嘧啶与脱氧核糖核酸、血清白蛋白的相互作用.分析化学.2001,29:192-194
    59.王自春,黄登宇,等.平阳霉素和DNA的相互作用.中国抗生素杂志.1994,19:464-667
    60. Bargur P.G, Vaijayanti A.K, Krisbna N.G. Chiral analogues of peptide nucleic acids: synthesis of 4-aminoprolyl nucleic acids and DNA complementation studies using UV/CD spectroscopy. Tetrahedron. 1999, 55:177-192
    61. Peter W.T, Thorsten T, et al. Interaction between ellagic acid and calf thymus DNA studied with flow linear dichroism UV-VIS spectroscopy. Biochem. Biophy. Res. Comm. 1999, 265:416-421
    
    
    62.曹炜,来鲁华,等.DNA结合蛋白的分子识别研究:单体酵母转录激活因子GCN4能特异识别其二聚体的DNA结合位点.中国科学(B辑).2000,30:202-209
    63.杜为红,王保怀,李芝芬.骆驼蓬碱与寡聚核苷酸相互作用.第二届全国化学生物学学术会议(北京).2002:83
    64.朱兵,王志强,等.锗-132的稀土配合物对5’-腺嘌呤及5’-脱氧腺嘌呤核苷酸的水解断裂作用.科学通报.1997,42:275-278
    65. David C.G, David R.G, Karen J.L, Richard D.S. Observation of duplex DNA-noncovalent complexes by Electrospray ionization mass spectrometry. J Am Chem Soc. 1994, 116:6027-6028
    66. Li C, Wang B H, et al. The interaction between stereoisomer of cantharidato 1,2-cyclohexane diamine platinum and calf thymus DNA Acta. Phys.-Chim. 1999, 15:413-419
    67. Gottesfeld J.M, Neely L.et al. Regulation of gene expression by small molecules. Nature. 1997, 387:202-205
    68. Baird E.E, Dervan RB. Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids. J. Am Chem Soc. 1996, 118:6141-6146
    69. Belitsky J.M, Nguyen D.H, Dervan P.B, et al. Solid phase synthesis of DNA binding polyamides on oxime resin. Bioor. Med. Chem. 2002, 10:2767-2774
    70. Xiao J H, Yuan G, Huang W.Q. A convenient method for the synthesis of DNA-recognizing polyamides in solution. J. Org. Chem. 2000, 65:5506-5513
    71.岳贵花,许崇峰,卞利萍.等.电喷雾质谱在非共价蛋白复合物研究中的应用.分析科学学报,2002,16:495-502
    72.徐永珍,马骥,王文捷,吴厚铭.电喷雾电离质谱在糖甙化合物中的应用.质谱学报.1999,12:20-26
    73.钟大放,田蕾,李雪庆,许佑君.罗红霉素及其代谢物的电喷雾离子阱质谱研究.高等学校化学学报.2000,21:31-35
    74. Qin X Z. Tandem mass spectrum of a farnesyl transferase inhibitor—gas-phase rearrangements involving imidazole. J. Mass Spectrom. 2001, 36:911-917
    75. Yang X L, Zhu C J. et al. Amino-catalyzed hydrolysis of amides and esters in the
    
    fragmentation by electrospray ionization tandem mass spectrometry using an ion trap. Rapid Commun. Mass Spectrom. 2003, 17:1927-1930
    76. Zhu C J, Jiang Y F, Yang X L, Zhao Y F. Electrospray ionization mass spectra of monoimidazole/polyamine conjugates. Rapid Commun. Mass Spectrom. 2002, 16: 2273-2277
    77. Tang F L, Wang J, et al. Electrospray onization mass spectrometric characteristics and fragmentation mechanisms of distamycin analogues. Rapid Commun. Mass Spectrom. 2002, 16:1035-1039
    78. Zhu C J, Yang X L, Cao S X, Zhao Y F. et al Monitoring the synthetic reaction of a polyamide/peptide conjugate using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17:825-831
    79. He X R, He M Y, Lu Y M, Hua W T. Investigation on the mechanism of mass spectrometric fragmentation of ketorolac and its esters and amidst. J. Chin. Mass Spectro.Soc. 1997, 18:47-50
    80. Long E.C, Barton J.K, On demonstrating DNA intercalation .Acc. Chem. Res. 1990, 23:271-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700