用户名: 密码: 验证码:
水泥浆防气窜关键性能及防气窜能力评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气窜是几乎所有天然气井都要面临的棘手难题。固井后的环空气窜不仅破坏层间封隔,而且影响油气田的安全勘探开发。水泥浆防气窜能力是影响早期气窜的一个重要因素。研究表明,早期气窜的实质是气体在时变性塑态多孔介质渗流的物理过程,最终导致环空带压或层间窜流。目前并没有任何经典理论描述这一时期气体在水泥浆基体内的运移规律。因此国内外学者在水泥浆防气窜能力评价研究方面遭遇瓶颈,仍停留在对水泥浆防气窜能力作粗略的定性对比分析,进行事后评估。
     为了形成科学的水泥浆防气窜能力综合评价方法,本文针对早期气窜,从水泥材料特性入手,提出气侵危险时间内水泥浆渗透率、静胶凝强度过渡时间、初凝前体积收缩率这三个水泥浆防气窜关键性能,并通过气窜试验、静胶凝强度试验、体积收缩试验,分析各防窜关键性能发展规律。在此基础上,考虑了气侵危险时间内水泥浆渗透率、孔隙度及顶部边界的时变性,修正了连续方程与运动方程,建立了气体层间窜流数学模型及气体窜至井口数学模型,提出了水泥浆体积收缩评价方法。最终形成了水泥浆防气窜能力综合评价方法,并在DN2-5井和DN2-7井Φ177.8mm尾管固井实践中检验了其准确性。
     通过室内研究与现场固井实践,得到以下结论:
     (1)气侵危险时间内水泥浆渗透率反映了水泥浆抗窜能力强弱,静胶凝强度过渡时间关系着气窜发生可能性及危害程度,水泥浆初凝前体积收缩将造成孔隙压力下降,它们是影响水泥浆防气窜能力的关键性能。
     (2)水灰比和降失水剂类型都将影响水泥浆抗窜能力。随着水灰比增加,水泥浆视渗透率上升,但启动压力变化不大。在静胶凝强度等于48Pa时,成膜类降失水剂表现出优良的抗窜能力,启动压力明显,聚合物胶粒类降失水剂次之,三元共聚物降失水剂和纤维素类降失水剂抗窜能力最差。而在静胶凝强度达到240Pa后,水泥浆抗窜能力相差不大。膨胀水泥浆主要在终凝后发生体积膨胀,对早期气窜影响很小。液硅与胶乳水泥浆体系能降低滤饼渗透性,显著提高水泥浆抗窜能力。
     (3)水灰比和缓凝剂是影响水泥浆静胶凝强度过渡时间的重要因素。水灰比越高,静胶凝强度过渡时间越长。缓凝剂对对静胶凝强度过渡时间也存在一定负面影响,其中以羟基羧酸类强螯合作用高温缓凝剂影响最显著。缓凝剂对静胶凝强度影响的本质原因在于缓凝剂延缓诱导后期及加速水化阶段水泥水化速率,延长水泥浆塑态时间。稠化过渡时间是水泥浆动态性能,静胶凝强度过渡时间是水泥浆静态性能,并且二者反映的不是同一水化时期水泥浆胶凝结构增长速率,没有必然联系。
     (4)在国内外典型水泥石体积收缩膨胀仪基础上,解决了“连续测量水泥浆(石)体积变化”、“检测水泥浆初终凝时间”、“连续测量凝结过程水泥浆孔隙压力变化”三个技术难题,研制了高温高压水泥石体积收缩膨胀仪。仪器精度较高,具备了连续测量体积收缩,检测水化放热,测量孔隙压力下降三个主要功能。
     (5)水灰比和膨胀剂是影响初凝前体积收缩率的重要因素。随着水灰比增大,塑性阶段时间延长,初终凝时间延迟,初凝时体积收缩率增加。晶格型膨胀剂主要通过后期的结晶作用产生结晶压,推动水泥石宏观体积膨胀,而对水泥浆早期塑性体积收缩没有明显改善作用。发气剂KQ-B在水泥浆处于塑性阶段时,通过化学发气能起到补偿水泥浆体积损耗,延缓孔隙压力下降的作用。即使在50MPa高压条件下,当发气剂KQ-B加量达到2%时依然能明显减小初凝前体积收缩,提高水泥浆防气窜能力。
     (6)水泥浆防气窜能力综合评价方法从气窜临界距离角度定量分析气窜危险程度,能直观反映水泥浆防气窜能力强弱。在迪那气田两口典型高压气井DN2-5井和DN2-7井Φ177.8mm尾管固井的应用表明,水泥浆防气窜能力的评价结果与固井质量解释成果、气窜检测结果一致,评价方法具备较高的准确度。
Gas migration is a difficult problem with which all natural gas wells will confront. Gas migration after cementing not only leads to zonal isolation failure, but also affects safe exploration and development of oil and gas field. Gas block ability of slurry is an important factor that affects early gas channeling. Studies show that the essence of early gas migration is the the physical process of gas percolation through time-variable-plastic porous media. There is not any classical theory to describe the law of gas migration through slurry matrix. Domestic and foreign scholars encounter bottlenecks in evaluating gas block ability. The evaluation level still remains using a rough qualitative comparison to analysis gas block ability.
     In order to form a scientific evaluation method, basing early gas migration, studying from material properties of cement, proposed three key gas blocking properties of slurry: slurry permeability in gas kick dangerous time, SGS transition time, volume shrinkage before initial setting. Then the development of the three key gas blocking properties was analyzed by gas migration experiment, SGS experiment, volume shrinkage experiment. Basing on these analyses, gas migration model was established and slurry volume shrinkage evaluation method was proposed. At last, the accuracy of the evaluation method was examined in Φ177.8mm liner cementing in DN2-5well and DN2-7well.
     After laboratory research and cementing practice, following conclusions and understanding were drawn:
     (1) Slurry permeability in gas kick dangerous time reflects the gas blocking ability; SGS transition time affects gas kick probability; volume shrinkage causes the decrease of pore pressure. So they are the key gas blocking properties of slurry.
     (2) Water to cement ration and the type of fluid loss additive affect the gas blocking ability of slurry. With the increasing w/c, slurry permeability increases, but threshold pressure decreases. When the SGS is equal to48Pa, the threshold pressure of film forming fluid loss additive is the highest of all, the polymeric colloid fluid loss additive is the second, terpolymer loss additive and cellulose fluid loss additive are the lowest. But when the SGS is equal to240Pa, the gas blocking ability of6type fluid loss additive has a little difference. The volume expansion of expanding cement happens after final set, which has little relation with early gas migration. The liquid silicone and latex slurry system can reduce the cake permeability and significantly improve the gas blocking ability of slurry.
     (3) Water to cement ratio and retarder are important factors which affcet the SGS transition time. The higher the water-cement ratio is, the longer the SGS transition time will be. Retarder has some negative impact on SGS transition time. The hydroxycarboxylic acid high temperature retarder has more significant negative impact on SGS transition time. The nature reason of the impact of retarder on SGS time is that the retarder slows the cement hydrationrate which extends the plastic state time of slurry. Thickening time is a dynamic property of slurry, while SGS transition time is static property of slurry. The two do not rmeflect the SGS increasing in same hydrating time and have no direct relation.
     (4) Basing on the home and abroad cement shrinkage/expansion device, three problem "continuous measurement of the cement volume change","test of cement initial set and final set","continuous measurement of cement pore pressure change" were solved, the high temperature high pressure cement shrinkage/expansion device was developed. The high accuracy device has functions of continuous measurement of the cement volume change, test of hydrating thermal discharge, test of cement pore pressure change.
     (5) Water to cement ratio and expanding agent are important factors which affect the volume shrinkage before initial set. With the increase of water to cement ratio, the plastic stage time extends, the initial set and final set prolongs, the volume shrinkage before initial set increase. Lattice type expanding agent promotes cement to expand by crystallization pressure through later stage crystallization, which can't improve early cement shrinkage. Gassing agent KQ-B can compensate cement volume decrease by chemical gassing, delay pore pressure decrease, when the slurry is in plastic stage. Even pressure is50MPa, Gassing agent KQ-B can significantly reduce the cement volume shrinkage before initial set and increase the gas blocking ability, when the dosage of KQ-B is more than2%.
     (6) Cement practice in two typical high pressure gas DN2-5well and DN2-7well Φ177.8mm liner cementing showed that the forecast results of slurry gas blocking ability coincided with the log interpretation and gas leakage test. The accuracy of comprehensive gas blocking ability evaluation method is high.
引文
[1]刘崇建,黄柏宗,徐同台,等.油气井注水泥理论与应用[M].北京:石油工业出版社,2001.
    [2]《钻井手册(甲方)》编写组.钻井手册(甲方)[M].北京:石油工业出版社,1990.
    [3]刘大为,田锡君,廖润康译.现代固井技术[M].辽宁:辽宁科学技术出版社,1994.
    [4]P. Rae, D. Wilkins and D.Free. A New Approach to the Prediction of Gas Flow After Cementing[C].SPE18622,1989.
    [5]Scott S. Jennings, Adel A. Al-Ansari and Abdullah S. Al-Yami.Gas Migration After Cementing Greatly Reduced[C].SPE81414,2003.
    [6]P. R. Cheung and Robert M. Beirute.Gas Flow in Cements[J].J. Pet. Tech.,June 1985,1041-1048.
    [7]Baumgarte, C, Thiercelin, M., Klaus, D. Case Study of Expanding Cement to Prevent Microannular Formation[C]. SPE56535,1999.
    [8]K. R. Backe, S. K. Lyomov and O. B. Lile. A Laboratory Study on Oilwell Cement and Electrical Conductivity[C].SPE56539,1999.
    [9]V.Gonzalo,B.Aiskely and C.Alicia. A Methology to Evaluate the Gas Migration in Cement Slurries[C].SPE94901,2005.
    [10]顾军,高德利,石凤歧,等.论固井二界面封固系统及其重要性[J].钻井液与完井液,2005,22(2):7-10.
    [11]Claudio Brufatto and Jamie Cochram et al. From Mud to Cement-Building Gas Wells[J]. Oilfield Review,2003,62-76.
    [12]Andrew K.Wojtanowicz. Gas Flow in Wells after Cementing[C].Report for Louisiana State University,2000.
    [13]J. A. Garcia and C. R. Clark. An Investigation of Annular Gas Flow Following Cementing Operations[C].SPE5701,1976.
    [14]William H. Stone, William W.Christian. The Inability of Unset Cement to Control Formation Pressure[C]. SPE4783,1974.
    [15]Christian, W.W.Chatter and Ostroot. Gas Leakage in Primary Cementing-A Field Study and Laboratory Investigation[J]. J.Pet. Tech,1976:1361-1369.
    [16]Cook, Clyde and Cuningham. Filtrate Control-A key in Successful Cementing Practices[J]. J.Pet. Tech,1977:951-956.
    [17]张兴国.水泥浆网架结构胶凝悬挂失重机理研究[D].四川南充:西南石油学院石油工程学院,2002.
    [18]张兴国,郭昭学,许树谦等.对水泥浆有效浆柱压力降至水柱压力时间的新认识[J].天然气工业,2004,24(7):68-70.
    [19]张兴国,刘崇建,杨远光等.水泥浆体系稳定性对水泥浆失重的重要影响[J].西南石油学院学报,2004,26(3):68-70.
    [20]孙展利.水泥浆在不同井斜的沉降失重和沉降—胶凝失重[J].天然气工业,1998,18(4):55-58.
    [21]孙展利.水泥浆的水化体积收缩胶凝失重研究[J].江汉石油学院学报,1997,19(4):55-58.
    [22]郭小阳,刘崇建,谢应权,等.大斜度及水平井中水泥浆的失重和气侵研究[J].西南石油学院学报,1996,18(2):25-33.
    [23]J. A. Garcia and C. R. Clark. An Investigation of Annular Gas Flow Following Cementing Operations[C].SPE5701,1976.
    [24]W.W.Webster, J.V.Eikerts. Flow after Cementing-a Field and laboratory Study[C]. SPE8259,1979.
    [25]Dennis C.Levine, Eugene W.Thomas, Glen C.Tolle. Annular Gas Flow after Cementing: A Look at Practical Solutions[C]. SPE8255,1979.
    [26]梅国萍.水泥浆滤失规律及其对注水泥作业的影响[D].四川南充:西南石油学院石油工程学院,1994.
    [27]刘崇建,张玉隆,郭小阳.水泥浆桥堵引起的失重和气侵研究[J].天然气工业,1997,17(1):39-44.
    [28]刘崇建,梅国萍,郭小阳.控制水泥浆失水性能的新认识[J].天然气工业,1995,15(5):36-41.
    [29]Larry T.Watters and Fred L.Sabins. Field Evaluation of Method to Control Gas Flowing: Cementing[C]. SPE9287,1980.
    [30]Fred L.Sabins, John M.Tinsley, David L.Sutton. Trasition Time of Cement Slurries Between the Fluid and Set States[J]. SPE9285,1982.
    [31]Fred L.Sabins and David L.Sutton. The Relationship of Thickening Time, Gel Strength, and Comperssive Strength of Oilwell Cements[J]. SPE11205,1986.
    [32]Michael Prohaska, M.J.Economides. Modeling Early-Time Gas Migration through Cement Slurries[C]. SPE27878,1996.
    [33]K.R.Backe, S.K.Lyomov, Pal Skalle,etc. Characterizing Curing-Cement Sluurries by Permeability, Tensile Strength and Shrinkage[C]. SPE57712,1999.
    [34]Fred Sabins, Michael L.Wiggins. Parametric Study of Gas Entry into Cemented Wellbores[C]. SPE28472.1994.
    [35]Michael Prohaska, M.J.Economides. Modeling Early-Time Gas Migration through Cement Slurries[C]. SPE27878,1996.
    [36]Dan T.Mueller. Redefining the Static Gel Strength Requirements for Cements Employed in SWF Migration[C]. SPE 14282,2002.
    [37]Murray J.Rogers, Robert L.Dillenbeck, Ramy N.Eid. Trasition time of Cement Slurries, Definitions and Misconceptions, Related to Annular Fluid Migration[C]. SPE90828,2004.
    [38]Ashok, B.R.Reddy and Mfon Antia. Designing Cement Slurries for Preventing Formation Fluid Influx after Placement[C]. SPE 106006,2007.
    [39]方国伟.固井水泥浆防气窜性能评价方法研究[D].山东青岛:石油大学,2009.
    [40]曹成章.水泥浆胶凝强度模型的建立及防气窜评价研究[D].山东青岛:石油大学,2009.
    [41]马勇.固井环空气体窜流原因分析及防控技术[D].四川成都:西南石油大学石油工程学院,2009.
    [42]刘建.预防环空气窜的膨胀水泥机理研究[D].四川成都:西南石油大学石油工程学院,2009.
    [43]C.E.Bannister, G.E.Shuster, M.J.Jones. Critical Design Parameters to Prevent Gas Invasion During Cementing Operations[C]. SPE11982,1983.
    [44]K.R.Backe, S.K.Lyomov, Pal Skalle,etc. Characterizing Curing-Cement Sluurriesby Permeability, Tensile Strength and Shrinkage[C]. SPE57712,1999.
    [45]谭树人,石国栋.不渗透水泥外加剂在高压易漏油气井中的固井应用及其施工工艺[J].石油钻采工艺,1989,(2):23-28.
    [46]李占国,周芝琴.非渗透水泥外加剂QC600在吐哈油田的应用[J].钻井液与完井液,1994,11(5):52-54.
    [47]张运峰.G69不渗透防气窜水泥的性能与现场试验[J].油田化学,1994,11(2):105-107
    [48]王群.我国油井水泥外加剂的研制和应用.油田化学,1991,8(1):62-73.
    [49]王立平,刘爱玲,罗长吉.大庆固井后水气窜实验研究[J].石油钻采工艺,1992,6(2):25-28.
    [50]滕学清,刘洋,杨成新,等.多功能防气窜水泥浆体系研究与应用[J].西南石油大学学报,2011,33(6):151-154.
    [50]P.A.Parcevaux and P.H.Sault. Cement Shrinkage and Elastcity:A New Approach for a Good Zonal Isolation[C]. SPE13176,1984.
    [51]M.E.Chenevert and B.Shrestha. Shrinkage Properties of Cement[C].SPE16654,1987.
    [52]D.J.Sepos and B.W.Cart. New Quick-Setting Cement Solves Shallow Gas Migration Problems and Reduces WOC Time[C]. SPE14500,1985.
    [53]P.Drecq and P.A.Parcevaux. A Single Technique Solves Gas Migration Problems Across a Wide Range of Conditions[C].SPE17629,1988.
    [54]吴宗国.套管内敞压候凝防气窜的机理[J].钻采工艺,1991,14(3):9-11.
    [55]李泽林,常伟,王秀玲等.高温防气窜水泥浆体系的研究及应用[J].断块油气田,2004,11(4):68-70.
    [56]姚晓.油井水泥膨胀剂研究[J].钻井液与完井液.2004,21(4):52-54.
    [57]赵清军.膨胀剂的研究与应用[D].大庆:大庆石油学院,2008.
    [58]西南石油学院钻井教研室.油井水泥浆凝固过程中的失重和气侵[J].西南石油学院学报,1979,(1):54-66.
    [59]西南石油学院钻井教研室.水泥浆胶凝引起的失重和气侵的研究[J].西南石油学院学报,1981,(3):19-30.
    [60]李福德,胥永杰,傅德荣等.高压气井KQ-A充气水泥固井实践研究[J].天然气工业,1988,8(4):39-44.
    [61]周向苏,王立诚,王佩平.联合使用SEP膨胀剂和KQ防气窜剂提高固井质量[J].钻井液与完井液,1997,14(3):24-26.
    [62]刘崇建,杨远光,郭小阳,等.高温高压固井防气窜水泥浆配方研究[C],1997.
    [63]张厚美,周金初,杨方有.水泥浆中气体运移的模拟试验[J].石油钻采工艺,1997,19(3):31-34.
    [64]西南石油大学固井实验室.新型防气窜水泥体系及其评价方法[C],2004.
    [65]罗宇维,刘云华,霍东弥.水泥浆防气窜能力评价仪的研制与应用[J].中国海上油气,2004,16(4):266-268,271.
    [66]赵英泽,罗宇维.双作用防气窜固井水泥浆体系的研究与应用[J].石油钻采工艺,2007,29(6):95-98.
    [67]罗宇维.双作用防气窜水泥浆的研究[C].全国固井会议,2008.
    [68]Hallibuton.High Pressure High Temperature Cementing[M].1991.
    [69]D.L.Sutton and K.M.Ravi.New Method for Determining Downhole Properties That Affect Gas Migration and Annular Sealing[C].SPE19520,1983.
    [70]徐璧华,曾东.利用解析法直接预测气井注水泥后环空防止气窜的能力[J].天然气工业,1997,17(5):48-51.
    [71]丁士东,张卫东.国内外防气窜固井技术[J].石油钻探技术,2002,30(5):35-38.
    [72]Harris K L, et c. Verificat ion of Slu rry Res pon se Number Evaluation Method for Gas Migr at ion Cont rol [R]. SPE20450,1990.
    [73]周仕明,丁士东,曲中启.利用修正SPN值预测环空气窜[J].石油钻探技术,2001,29(5):31-32.
    [74]方国伟.固井水泥浆防气窜性能评价方法研究[D].山东青岛:中国石油大学,2009:19-21.
    [75]西南石油学院钻井教研室.油井水泥浆凝固过程中的失重和气侵[J].西南石油学院学报,1979,(1):54-66.
    [76]刘崇建,张玉隆,谢应权.应用水泥浆稠度阻力变化预测环空气窜的方法研究[J].天然气工业,1999,19(5):46-50.
    [77]张景富.G级油井水泥的水化硬化及性能[D].浙江:浙江大学,2001.
    [78]王斌斌,王瑞和.固井水泥浆的水化规律[J].中国石油大学学报,2010,34(3):57-60.
    [79]马保国,董荣珍,张莉.硅酸盐水泥水化历程与初始结构形成的研究[J].武汉理工大学学报,2010,34(3):57-60.
    [80]徐永辉.深井水泥水化机理[D].大庆:大庆石油学院,2007.
    [81]安明哲,覃维祖,朱金铨.高强混凝上的自收缩试验研究.山东建材学院学报,1998,12(1):139-143.
    [82]Sutton, D.L. and Ravi, K.M. New method for Determing Down-hole Properties That Affect Gas Migration and Annular Sealing[C].SPE19520,1989.
    [83]Plee, D. Et al. Microstructure, Permeability and Rheology of Bentontie-Cement Slurries[J]. Concr. Res,1990,20(1):45.
    [84]Appleby and Wilson. Permeability and Suction in Setting Cement[J]. Chem. Eng. Sci,1996,51(2):251.
    [85]K.R.Backe, S.K.Lyomov, Pal Skalle,etc. Characterizing Curing-Cement Sluurries by Permeability, Tensile Strength and Shrinkage[C]. SPE57712,1999.
    [86]Y.Bahramian, A.Movahedinia, Tehran, etc. Prediction of Slurry Permeability, k, Using Static Gel Strength(SGS), Fluid Loss Value, and Particle Size Distribution[C]. SPE106983, 2007.
    [87]何更生.油层物理[M].北京:石油工业出版社,1997.
    [88]John M.Tinsley, Erik C.Miller, Fred L.Sabins, etc. Study of Factors Causing Annular Gas Flow Following Primary Cementing[C]. SPE8257,1980.
    [89]黄友丰.水泥工业的环境保护与管理.中国建材,1998,(10):26-29.
    [90]P. Fierens and J.P. Verhaegen. Hydration of tricalcium silicate in paste-kinetics of calcium ions dissolution in the aqueous phase[J].Cement and Concrete Research.1976,6(3): 337-342.
    [91]Paul Wencil Brown,Ellen Francz, and H. F. W. Taylor. Analyses of the aqueous phase during early C3S hydration [J].Cement and Concrete Research.1984,14(l):257-262.
    [92]P. Barnes等著,吴兆琦,汪瑞芬等校译.水泥的结构和性能[M].北京:中国建筑工业出版社.1991.04.
    [93]翟云芳.渗流力学[M].北京:石油工业出版社,1999.
    [94]孙国文,孙伟,张云升,等.硅酸盐水泥水化产物体积分数定量计算[J].东南大学学 报,2001,41(3):606-609.
    [95]Jennings H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cement and Concrete Research,2000,30(1):101-116.
    [96]B.R.Reddy, Ying Xu, Kris Ravi, etc. Cement Shrinkage Measurement in Oil well Cementing-A Comparative Study of Laboratory Methods and Procedures[C]. SPE103610,2007.
    [97]杨振杰,李美格,郭建华,等.有井水泥与套管胶结界面处微观结构研究[J].石油钻采工艺,2002,24(4):4-6.
    [98]步玉环,柳华杰,宋文宇.晶格膨胀剂对水泥-套管界面胶结性能的影响实验[J].石油学报,2002,32(6):1068-1069.
    [99]薛君轩.论水泥石的硫铝酸盐膨胀[J].硅酸盐学报.1979,7(1):58-74.
    [100]施惠生.硬化水泥浆体体积膨胀机制的研究[J].上海建材学院学报.1994,7(2):153-162.
    [101]邱燮和,王良才,郭广平.Microblock液硅的评价及在中国油田的应用[J].钻井液与完井液,2010,27(4):69-70.
    [102]赵林,胡东.胶态分散凝胶表征方法综述[J].江汉石油学院学报,2001,23(2):67-69.
    [103]王彬彬,王瑞和.固井水泥浆的水化规律[J].中国石油大学学报,2010,34(3):58-60.
    [104]郭向磊.变速式高温高压水泥浆稠化时间的测量方法研究[D].西南石油大学,2009.
    [105]Taryor H F W. Cement chemistry[M].2nd ed.London:Thomas Telford,1997.
    [106]孙国文,孙伟,张云升,等.硅酸盐水泥水化产物体积分数定量计算[J].东南大学学报(自然科学版),2011,41(3):606-609.
    [107]秦积舜,李爱芬.油层物理[M].北京:石油工业出版社,2001.
    [108]李士伦.天然气工程[M].北京:石油工业出版社,2000.
    [109]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,2002.
    [110]Rong Xu. Analysis of Diagnostic Testing of Sustained Casing Pressure in Wells[D]. Louisiana State University,2002.
    [111]李国.井下工况及载荷对水泥环的影响研究[D].四川成都:西南石油大学,2006.
    [112]徐秉业,黄炎,刘信生,等.弹塑性力学及其应用[M].北京:机械工业出版社,1984.
    [113]Zhou, D.., and Wojtanowicz, A.K.:Interpretation of Leak-off Test in Shallow Marine Sediments[C]. ETCE/OMAE 2000 Joint Conference, Feb.2000, New Orleans, LA.
    [114]周新桂,陈永峤,孙宝珊.塔里木盆地北部地层岩石力学特征及地质学意义[J].石油勘探与开发,2002,29(5):8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700