V_2O_5/AC催化剂脱硝过程中若干重要问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国最丰富的化石能源,我国以煤炭为主要一次能源的格局在未来相当长时期内不会发生改变。煤炭在我国的主要利用方式是直接燃烧,用量占煤炭总消耗量的80%以上。煤炭的大量燃烧已经导致我国的很多地区呈现严重的煤烟型大气污染,NOx(氮氧化物,简称硝)是主要污染物之一,其对人体健康和生态环境均构成了巨大的威胁。
     烟气脱硝的技术很多,但以NH_3为还原剂的选择性催化还原(SCR)法在世界上应用最多、研究最广、技术最成熟且最有成效。针对目前以V_2O_5/TiO_2催化剂为代表的中温脱硝技术(~400℃)所存在的问题,前人研究开发了以活性焦为载体的V_2O_5/AC催化剂,发现其具有较高的低温(~200℃)脱硝活性和抗SO_2毒化性能,应用前景广阔,研究范畴涉及制备条件、反应行为、SO_2和H_2O的影响、反应机理和动力学等。然而到目前为止,人们在活性焦性质对中毒物硫铵盐稳定性的影响、SO_2影响催化剂脱硝的机理、SCR反应选择性、催化剂的热稳定性及挥发性重金属Hg对催化剂脱硝行为的影响等方面还缺乏认识。本论文针对上述问题进行了深入研究,得到以下主要结论:
     (1)脱硝过程中产生的中毒物NH_4HSO_4首先沉积在AC表面的强吸附位上,随着其量的增加再逐渐沉积在弱吸附位上。在惰性气氛中,NH_4HSO_4在AC表面的程序升温分解过程为两步反应机理:从170℃起生成NH_3和H_2SO_4,后者在较高的温度下被AC还原为SO_2气体。NO的存在和V_2O_5的担载不影响该两步反应机理。
     (2)V_2O_5/AC催化剂的低温抗SO_2毒化能力源于上述AC对H_2SO_4较强的低温还原能力,从而恢复其孔结构。在本文的实验条件范围内,AC的比表面积和孔体积对H_2SO_4的还原行为没有影响;AC中的含N和含O官能团有利于H_2SO_4的还原;AC中的某些矿物质会和H_2SO_4(或NH_4HSO_4)反应生成金属硫酸盐;V_2O_5的存在和气氛中的NO不利于H_2SO_4的还原。
     (3)温度低于175℃时,NH_4HSO_4抑制AC的脱硝活性,且抑制作用随NH_4HSO_4量增加而加剧;高于175℃时,NH_4HSO_4促进AC的脱硝活性,且促进作用随NH_4HSO_4量增加而增大。在本文实验条件范围内,AC的比表面积和孔体积对其脱硝活性几乎没有影响,NH_4HSO_4对AC脱硝活性的影响与其比表面积和孔体积大小无关;NH_4HSO_4对化学性质不同的AC的脱硝活性影响略有不同。
     (4)SO_2对催化剂脱硝的影响具有多重作用:一方面,SO_2与O_2+H_2O+NH_3原位生成的硫铵盐对脱硝具有促进作用,另一方面,硫酸(或硫铵盐)堵孔、SO_2与NH_3竞争V_2O_5表面活性位,两者对脱硝具有抑制作用。在本文的实验条件下,SO_2与NH_3的竞争吸附所表现的抑制作用显著于硫酸(或硫铵盐)对脱硝的作用,因此总体表现为SO_2抑制脱硝。
     (5)在150-250℃之间,V_2O_5/AC脱硝生成的副产物N_2O很少,浓度在10ppm以下。N_2O源于AC和NH_3共同还原NO的反应。V_2O_5的担载量对N_2O的生成没有显著影响,SO_2和H_2O略微促进了N_2O的生成。V_2O_5的担载量对SCR反应的选择性(即对主产物N_2的选择性)有显著促进作用,0.91wt%的V_2O_5就足以使N_2的选择性保持在95%以上。
     (6)V_2O_5担载量和反应温度均促进AC的氧化。SO_2也促进AC的氧化,尤其是在SO_2通入反应器初期。该促进作用源于SO_2和O_2及H_2O在催化剂表面生成的硫酸与AC中的含碳氧官能团发生的反应。AC表面的某些含碳氧官能团不能与氧气发生反应,却能被硫酸氧化。
     (7)无论V_2O_5/AC表面是否吸附有汞,升高反应温度均促进其脱硝活性。汞对催化剂的脱硝有抑制作用,该作用随汞含量和反应温度升高而加剧。H_2O和SO_2加剧了汞对V_2O_5/AC脱硝的毒化作用。汞吸附对NH_3在催化剂表面的吸附和氧化行为没有影响,其对脱硝的毒化作用可能源于抑制了吸附的NH_3和NO之间的反应。
Coal is the richest fossil energy in China. The dominant role of coal inthe structure of primary energy in China will do not change for a long time inthe future. Combustion is the traditional mode of coal utilization in China,which takes up more than80%of the total consumption. Combustion of suchgreat amount of coal has already led to serious coal-burning air pollution inour country. NOx is one of the main pollutants in flue gases, which hasbrought tremendous threat on human health and ecological environment.
     Among various technologies developed, selective catalytic reduction(SCR) of NOXwith NH_3is recognized to be the most widespread and effectivetechnology for NOXabatement from flue gases of stationary sources. Aimingat the problems of V_2O_5/TiO_2based mid-temperature catalysts (usable ataround400oC), activated coke supported V_2O_5(V_2O_5/AC) catalyst wasinvented, which has a high low-temperature (~200oC) SCR catalytic activityand resistance to SO_2poisoning. Thus, this catalyst was studied extensively inthe past decade including preparation techniques, reaction behaviors, effects ofSO_2and H_2O, reaction mechanism and kinetics etc. So far, however, effect ofAC’s properties on stability of ammonium sulfates, mechanism of SO_2 influence on SCR behavior, SCR selectivity to N_2, thermal stability of catalyst,and effect of Hg on SCR activity are not well understood, which are studiedsystematacially in this paper.
     The major conclusions obtained are as follows:
     (1) NH_4HSO_4tends to anchor at strong adsorption sites of AC initially atlower loadings and then progressively at weak adsorption sites with theincrease of NH_4HSO_4. Decomposition of NH_4HSO_4on AC follows two-stepreaction mechanism: formation of NH_3and H_2SO_4(leading to release of NH_3)starting at about170oC, and reduction of H_2SO_4(or SO_2-4) by AC to form SO_2at higher temperatures. The presence of NO and V_2O_5do not affect thistwo-step reaction mechanism.
     (2) The reduction of H_2SO_4to SO_2by AC support is responsible for theV_2O_5/AC catalyst’s low-temperature resistance to SO_2poisoning since it freesthe pores of AC. In the experimental conditions, the BET surface area andpore volume of AC do not affect the reduction behavior of H_2SO_4, regardlessof the presence of NO. The oxygen and nitrogen containing functional groupsin AC benefit the reduction of H_2SO_4, while the minerals in AC areunfavorable to the reduction of H_2SO_4. V_2O_5loaded on AC and NO in the gasboth inhibit reduction of H_2SO_4to SO_2.
     (3) NH_4HSO_4inhibits the SCR activity of AC below175oC, and theinhibiting effect aggravates with the increase of NH_4HSO_4; NH_4HSO_4promotes the SCR activity above175oC, and the promoting effect increases with the increase of NH_4HSO_4. In the experimental conditions, the BETsurface area and pore volume of AC do not affect its SCR activity, and alsohave no relationship with the effect of NH_4HSO_4on SCR activity.
     (4) The effect of on-line gaseous SO_2on SCR activity of V_2O_5/ACcatalyst is different from that of pre-loaded NH_4HSO_4. SO_2has multi-role onSCR activity of V_2O_5/AC: on one hand, the sulfate species formed by SO_2andO_2+H_2O+NH_3can promote the catalytic activity; on the other hand, blockingthe pores of catalyst by sulfate species and competitive adsorption of SO_2withNH_3on V_2O_5surface both inhibit the catalytic activity. In the experimentalconditions, the inhibiting effect by competitive adsorption of SO_2with NH_3isobviously larger than the effect by sulfate species, thus SO_2inhibits SCRactivity of V_2O_5/AC.
     (5) The N_2O formation over V_2O_5/AC catalyst during SCR of NO by NH_3is generally low, less than10ppm in the temperature range of150-250oC.N_2O is formed from reduction of NO by both AC and NH_3. V_2O_5contributeslittle to the N_2O formation while SO_2+H_2O slightly accelerate N_2O formation.SCR selectivity to N_2is obviously promoted by V_2O_5and0.91wt%V_2O_5issufficient to yield a N_2selectivity of higher than95%.
     (6) Oxidation of the AC support to CO_2occurs in the SCR process and itsrate increases with an increase in V_2O_5loading and reaction temperature. SO_2in the gas promotes AC oxidation to CO_2due to formation of sulfuric acid onthe surface, which reacts with the carbon-and-oxygen containing functional groups on the AC. Some of the carbon-and-oxygen containing functionalgroups do not react with O_2under the conditions used, but can be oxidized bysulfuric acid.
     (7) SCR activity of V_2O_5/AC catalyst increases with the increasingtemperature, regardless of the adsorption of Hg on its surface. Hg adsorptioninhibits the catalytic activity, and the inhibiting effect aggravates with theincreasing Hg adsorption quantity and reaction temperature. The presence ofH_2O+SO_2strengthens the inhibiting effect of Hg on V_2O_5/AC. The adsorptionand oxidation behaviors of NH_3over V_2O_5/AC are not influenced by Hgadsorption.
引文
[1]胡省三,成玉琪.走新型工业化道路,实现高效、安全、洁净、结构优化的煤炭工业[J].煤矿机电,2003,5:1-3
    [2]范维唐.煤炭在能源中处于什么地位[J].中国煤炭,2001,27(8):5-8
    [3] Janssen F, Meijer R. Quality control of DeNOx catalysts: Performance testing, surface analysisand characterization of DeNOx catalysts[J]. Catalysis Today,1993,16(2):157-185
    [4]郭树才.煤化工工艺学[M].第二版.北京:化学工业出版社,2006.332
    [5]李东雄,陈昌和.煤燃烧与污染控制技术的进展[J].电力学报,2001,16(1):27-31
    [6] Bosch H, Janssen F. Formation and control of nitrogen oxides[J]. Catalysis Today,1988,2(4):369-531
    [7] Fenimore C P. Formation of nitric oxide from fuel nitrogen in ethylene flames[J]. Combustionand Flame,1972,19(2):289-296
    [8] Hayhurst A N, Mclean H-A G. Mechanism for producing NO from nitrogen in flames [J]. Nature,1974,251(5473):33-35
    [9]吴占松,马润田,赵满成.煤炭清洁有效利用技术[M].第一版.北京:化学工业出版社,2007.300-302
    [10]姚强,陈超.洁净煤技术[M].第一版.北京:化学工业出版社,2005.49
    [11]袁万钟,迟玉兰,辛剑,牟文生,孟长功,于永鲜.无机化学[M].第四版.北京:高等教育出版社,2001.433-435
    [12]马建蓉.活性焦担载V2O5同时脱硫脱硝的研究[D].太原:中国科学院山西煤炭化学研究所,2005
    [13] Simpson D, Eliassen A. Tackling multi-pollutant multi-effect problems--an iterative approach[J].The Science of The Total Environment,1999,234(1-3):43-58
    [14]黄诗坚. NOx的危害及其排放控制[J].电力环境保护,2004,20(1):24-25
    [15] Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalyticreduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B:Environmental,1998,18(1-2):1-36
    [16] Mauzerall D L, Sultan B, Kim N, Bradford D F. NOx emissions from large point sources:variability in ozone production, resulting health damages and economic costs[J]. AtmosphericEnvironment,2005,39(16):2851-2866
    [17]黄张根. H2O和SO2对炭基催化剂低温脱硝活性的影响[D].太原:中国科学院山西煤炭化学研究所,2004
    [18] Ellison W. Limiting of SO2and NOx emission in worldwide coal-power production[J]. RadiationPhysics and Chemistry,1995,45(6):1003-1011
    [19] GB13223-1996.火电厂大气污染物排放标准[S].1996
    [20]涂建华,应春华,戴豪波.火电厂脱硝技术与工程应用概述[J].浙江节能,2003,4:45-47
    [21] GB13223-2003.火电厂大气污染物排放标准[S].2003
    [22] GB13223-2011.火电厂大气污染物排放标准[S].2011
    [23]李勇.后石电厂600MW机组烟气脱硝系统及工艺特点介绍[J].山东电力技术,2001,(4):41-44
    [24]王斌,唐茂平,马爱萍.后石电厂超临界压力机组脱NOx工艺特点[J].中国电力,2004,37(3):92-94
    [25]刘学军. SCR脱硝技术在广州恒运热电厂300MW机组上的应用[J].中国电力,2006,39(3):86-89
    [26]孙克勤,华玉龙. OI~2-SCR烟气脱硝核心技术的研究开发及其在2x600MW机组上的应用[J].中国电力,2005,38(11):75-78
    [27] Radojevic M. Reduction of nitrogen oxides in flue gases[J]. Environmental Pollution,1998,102(1, Supplement1):685-689
    [28]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].第一版.北京:化学工业出版社,2005.70-104
    [29] Spliethoff H, Greul U, Rudiger H, Hein K R G. Basic effects on NOx emissions in air staging andreburning at a bench-scale test facility[J]. Fuel,1996,75(5):560-564
    [30] Smoot L D, Hill S C, Xu H. NOx control through reburning[J]. Progress in Energy andCombustion Science,1998,24(5):385-408
    [31] Suzuki N, Nishimura K, Tokunaga O. Radiation treatment of exhaust gases,(XII) NO removal inmoist NO-SO2-O2-N2mixtures containing NH3[J]. Journal of Nuclear Science and Technology,1980,17(11):822-830
    [32] Chien T-W, Chu H. Removal of SO2and NO from flue gas by wet scrubbing using an aqueousNaClO2solution[J]. Journal of Hazardous Materials,2000,80(1-3):43-57
    [33]李晓东,杨卓如.国外氮氧化物气体治理的研究进展[J].环境工程,1996,14(2):34-39
    [34] Pradhan M P, Joshi J B. Absorption of NOx gases in aqueous NaOH solutions: Selectivity andoptimization[J]. AIChE Journal,1999,45(1):38-50
    [35]赵震,杨向光,吴越. La2-xSrxCuO4系列催化剂的合成、表征及NO分解催化性能的研究[J].环境化学,1995,14(5):402-406
    [36] Fritz A, Pitchon V. The current state of research on automotive lean NOx catalysis[J]. AppliedCatalysis B: Environmental,1997,13(1):1-25
    [37] Iwamoto M, Tomoyuki lnui S N, Takashi T. Copper ion-exchanged zeolites as active catalysts fordirect decomposition of nitrogen monoxide[J]. Studies in Surface Science and Catalysis,1991,60:327-334
    [38] Wu R J, Chou T Y, Yeh C T. Enhancement effect of gold and silver on nitric oxide decompositionover Pd/Al2O3catalysts[J]. Applied Catalysis B: Environmental,1995,6(2):105-116
    [39] Iwamoto M, Yahiro H, Mizuno N, Zhang W X, Mine Y, Furukawa H, et al. Removal of nitrogenmonoxide through a novel catalytic process.2. Infrared study on surface reaction of nitrogenmonoxide adsorbed on copper ion-exchanged ZSM-5zeolites[J]. The Journal of PhysicalChemistry,1992,96(23):9360-9366
    [40] Zhang X K, Walters A B, Vannice M A. NO adsorption, decomposition, and reduction bymethane over rare earth oxides[J]. Journal of Catalysis,1995,155(2):290-302
    [41] Mochida I, Kawabuchi Y, Kawano S, Matsumura Y, Yoshikawa M. High catalytic activity ofpitch-based activated carbon fibres of moderate surface area for oxidation of NO to NO2at roomtemperature[J]. Fuel,1997,76(6):543-548
    [42]王军民,骆广生,朱慎林. NOx对大气的污染与燃油的脱氮技术[J].环境保护,1997,2:12-14
    [43] Nagase H, Yoshihara K-I, Eguchi K, Yokota Y, Matsui R, Hirata K, et al. Characteristics ofbiological NOx removal from flue gas in a Dunaliella tertiolecta culture system[J]. Journal ofFermentation and Bioengineering,1997,83(5):461-465
    [44]郑平,胡宝来.生物脱氮技术的研究进展[J].环境污染和防治,1997,19(4):25-28
    [45]羌宁.气态污染物的生物净化技术及应用[J].环境科学,1996,17(3):87-90
    [46] Mateju V, Cizinska S, Krejci J, Janoch T. Biological water denitrification--A review[J]. Enzymeand Microbial Technology,1992,14(3):170-183
    [47]魏恩宗,林赫,高翔,骆仲泱,倪明江,岑可法.燃煤锅炉烟气NOx污染等离子体治理技术[J].环境污染治理技术与设备,2003,4(1):58-62
    [48] Mok Y S, Nam I-S. Modeling of pulsed corona discharge process for the removal of nitric oxideand sulfur dioxide[J]. Chemical Engineering Journal,2002,85(1):87-97
    [49] Krawczyk K, Mlotek M. Combined plasma-catalytic processing of nitrous oxide[J]. AppliedCatalysis B: Environmental,2001,30(3-4):233-245
    [50] Lyon R K. The NH3-NO-O2reaction[J]. International Journal of Chemical Kinetics,1976,8(2):315-318
    [51] Lyon R K, Tenner A R. Reducing nitrogen oxides emissions by ammonia injection[A].Proceedings of the71st Annual Meeting of the Air Pollution Control Association[C]. Houston,Texas.1978,71:78-85.
    [52] Nojiri N, Sakai Y, Watanabe Y. Two catalytic technologies of much influence on progess inchemical process development in Japan[J]. Catalysis Reviews-Science and Engineering,1994,36(2):146-179
    [53] Kobylinski T P, Taylor B W. The catalytic chemistry of nitric oxide: II. Reduction of nitric oxideover noble metal catalysts[J]. Journal of Catalysis,1974,33(3):376-384
    [54] Shimizu K-i, Satsuma A, Hattori T. Selective catalytic reduction of NO by hydrocarbons onGa2O3/Al2O3catalysts[J]. Applied Catalysis B: Environmental,1998,16(4):319-326
    [55] Krishnan A T, Boehman A L. Selective catalytic reduction of nitric oxide with ammonia at lowtemperatures[J]. Applied Catalysis B: Environmental,1998,18(3-4):189-198
    [56] Shelef M, Gandhi H S. Ammonia formation in catalytic reduction of nitric oxide by molecularhydrogen. I. Base metal oxide catalysts[J]. Industrial&Engineering Chemistry Product Researchand Development,1972,11(1):2-11
    [57]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].第二版.北京:化学工业出版社,2007.317-341
    [58] Teng H, Hsu L Y, Lai Y C. Catalytic reduction of NO with NH3over carbons impregnated withCu and Fe[J]. Environmental Science&Technology,2001,35(11):2369-2374
    [59] Valdes-Solis T, Marban G, Fuertes A B. Low-temperature SCR of NOx with NH3overcarbon-ceramic cellular monolith-supported manganese oxides[J]. Catalysis Today,2001,69(1-4):259-264
    [60] Zhu Z, Liu Z, Liu S, Niu H, Hu T, Liu T, et al. NO reduction with NH3over an activatedcarbon-supported copper oxide catalysts at low temperatures[J]. Applied Catalysis B:Environmental,2000,26(1):25-35
    [61] Tang X, Hao J, Yi H, Li J. Low-temperature SCR of NO with NH3over AC/C supportedmanganese-based monolithic catalysts[J]. Catalysis Today,2007,126(3-4):406-411
    [62] Muzio L J, Quartucy G C, Cichanowiczy J E. Overview and status of post-combustion NOxcontrol: SNCR, SCR and hybrid technologies[J]. International Journal of Environment andPollution,2002,17(1/2):4-30
    [63] Misono M, Kondo K. Catalytic removal of nitrogen monoxide over rare earth ion-exchangedzeolites in the presence of propene and oxygen[J]. Chemistry Letters,1991,20(6):1001-1002
    [64] Ogura M, Kikuchi E. Intrapore catalysis in NO reduction with methane on Ir/In/H-ZSM-5catalyst[J]. Chemistry Letters,1996,25(12):1017-1018
    [65] Ren L, Zhang T, Liang D, Xu C, Tang J, Lin L. Effect of addition of Zn on the catalytic activityof a Co/HZSM-5catalyst for the SCR of NOx with CH4[J]. Applied Catalysis B: Environmental,2002,35(4):317-321
    [66] Sato K, Fujimoto T, Kanai S, Kintaichi Y, Inaba M, Haneda M, et al. Catalytic performance ofsilver ion-exchanged saponite for the selective reduction of nitrogen monoxide in the presence ofexcess oxygen[J]. Applied Catalysis B: Environmental,1997,13(1):27-33
    [67] Regalbuto J R, Zheng T, Miller J T. The bifunctional reaction pathway and dual kinetic regimesin NOx SCR by methane over cobalt mordenite catalysts[J]. Catalysis Today,1999,54(4):495-505
    [68] Meunier F C, Zuzaniuk V, Breen J P, Olsson M, Ross J R H. Mechanistic differences in theselective reduction of NO by propene over cobalt-and silver-promoted alumina catalysts: kineticand in situ DRIFTS study[J]. Catalysis Today,2000,59(3-4):287-304
    [69] Paukshtis E A. Infrared spectroscopy to study the mechanism of catalytic reaction on molecularscale from diffusion to limiting stage kinetics[J]. Journal of Molecular Catalysis A: Chemical,2000,158(1):37-44
    [70] Janssen F J J G, Van den Kerkhof F M G, Bosch H, Ross J R H. Mechanism of the reaction ofnitric oxide, ammonia, and oxygen over vanadia catalysts.2. Isotopic transient studies withoxygen-18and nitrogen-15[J]. The Journal of Physical Chemistry,1987,91(27):6633-6638
    [71] Nova I, Lietti L, Casagrande L, Dall'Acqua L, Giamello E, Forzatti P. Characterization andreactivity of TiO2-supported MoO3De-Nox SCR catalysts[J]. Applied Catalysis B:Environmental,1998,17(3):245-258
    [72] Yang R T, Chen J P, Kikkinides E S, Cheng L S, Cichanowicz J E. Pillared clays as superiorcatalysts for selective catalytic reduction of nitric oxide with ammonia[J]. Industrial&Engineering Chemistry Research,1992,31(6):1440-1445
    [73] Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reductionof NOx and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catalysis Today,1996,28(4):373-380
    [74] Lietti L, Alemany J L, Forzatti P, Busca G, Ramis G, Giamello E, et al. Reactivity ofV2O5-WO3/TiO2catalysts in the selective catalytic reduction of nitric oxide by ammonia[J].Catalysis Today,1996,29(1-4):143-148
    [75] Chen J P, Yang R T. Role of WO3in mixed V2O5-WO3/TiO2catalysts for selective catalyticreduction of nitric oxide with ammonia[J]. Applied Catalysis A: General,1992,80(1):135-148
    [76] Cybulski A, Moulijn J. Monoliths in heterogeneous catalysis[J]. Catalysis Reviews-Science andEngineering,1994,36(2):179-270
    [77] Richter E. Carbon catalysts for pollution control[J]. Catalysis Today,1990,7(2):93-112
    [78] Zhu Z, Liu Z, Liu S, Niu H. Adsorption and reduction of NO over activated coke at lowtemperature[J]. Fuel,2000,79(6):651-658
    [79] Mochida I, Kishino M, Kawano S, Iwaizono H, Yasutake A, Yoshikawa M-a. Initial period ofNO-NH3reaction over a heat-treated pitch-based active carbon fiber[J]. Energy&Fuels,1997,11(2):307-310
    [80] Ouzzine M, Cifredo G A, Gatica J M, Harti S, Chafik T, Vidal H. Original carbon-basedhoneycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: Effectsof preparation variables[J]. Applied Catalysis A: General,2008,342(1-2):150-158
    [81] Hsu L-Y, Teng H. Catalytic NO reduction with NH3over carbons modified by acid oxidation andby metal impregnation and its kinetic studies[J]. Applied Catalysis B: Environmental,2001,35(1):21-30
    [82] Pasel J, Kabner P, Montanari B, Gazzano M, Vaccari A, Makowski W, et al. Transition metaloxides supported on active carbons as low temperature catalysts for the selective catalyticreduction (SCR) of NO with NH3[J]. Applied Catalysis B: Environmental,1998,18(3-4):199-213
    [83] Zhu Z, Liu Z, Liu S, Niu H. A novel carbon-supported vanadium oxide catalyst for NO reductionwith NH3at low temperatures[J]. Applied Catalysis B: Environmental,1999,23(4):L229-L233
    [84] Boyano A, Lazaro M J, Cristiani C, Maldonado-Hodar F J, Forzatti P, Moliner R. A comparativestudy of V2O5/AC and V2O5/Al2O3catalysts for the selective catalytic reduction of NO by NH3[J].Chemical Engineering Journal,2009,149(1-3):173-182
    [85] Zhu Z, Liu Z, Liu S, Niu H. Catalytic NO reduction with ammonia at low temperatures onV2O5/AC catalysts: effect of metal oxides addition and SO2[J]. Applied Catalysis B:Environmental,2001,30(3-4):267-276
    [86] Zhu Z, Liu Z, Niu H, Liu S. Promoting effect of SO2on activated carbon-supported vanadiacatalyst for NO reduction by NH3at low temperatures[J]. Journal of Catalysis,1999,187(1):245-248
    [87] Zhu Z, Niu H, Liu Z, Liu S. Decomposition and reactivity of NH4HSO4on V2O5/AC catalystsused for NO reduction with ammonia[J]. Journal of Catalysis,2000,195(2):268-278
    [88] Zhu Z, Liu Z, Niu H, Liu S, Hu T, Liu T, et al. Mechanism of SO2promotion for NO reductionwith NH3over activated carbon-supported vanadium oxide catalyst[J]. Journal of Catalysis,2001,197(1):6-16
    [89] Huang Z, Zhu Z, Liu Z, Liu Q. Formation and reaction of ammonium sulfate salts on V2O5/ACcatalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures[J].Journal of Catalysis,2003,214(2):213-219
    [90] Sun D, Liu Q, Liu Z, Gui G, Huang Z. Adsorption and oxidation of NH3over V2O5/AC surface[J].Applied Catalysis B: Environmental,2009,92(3-4):462-467
    [91] Sun D, Liu Q, Liu Z, Gui G, Huang Z. An in situ DRIFTS study on SCR of NO with NH3overV2O5/AC surface[J]. Catal Lett,2009,132(1-2):122-126
    [92] Huang Z, Liu Z, Zhang X, Liu Q. Inhibition effect of H2O on V2O5/AC catalyst for catalyticreduction of NO with NH3at low temperature[J]. Applied Catalysis B: Environmental,2006,63(3-4):260-265
    [93]黄张根,朱珍平,刘振宇.水对V2O5/AC催化剂低温还原NO的影响[J].催化学报,2001,22(6):532-536
    [94] Huang Z, Zhu Z, Liu Z. Combined effect of H2O and SO2on V2O5/AC catalysts for NOreduction with ammonia at lower temperatures[J]. Applied Catalysis B: Environmental,2002,39(4):361-368
    [95] Garcia-Bordeje E, Pinilla J L, Lazaro M J, Moliner R. NH3-SCR of NO at low temperatures oversulphated vanadia on carbon-coated monoliths: Effect of H2O and SO2traces in the gas feed[J].Applied Catalysis B: Environmental,2006,66(3-4):281-287
    [96] Garcia-Bordeje E, Monzon A, Lazaro M J, Moliner R. Promotion by a second metal or SO2overvanadium supported on mesoporous carbon-coated monoliths for the SCR of NO at lowtemperature[J]. Catalysis Today,2005,102-103:177-182
    [97] Nicosia D, Elsener M, Kr cher O, Jansohn P. Basic investigation of the chemical deactivation ofV2O5/WO3-TiO2SCR catalysts by potassium, calcium, and phosphate[J]. Topics in Catalysis,2007,42-43(1):333-336
    [98] Kamata H, Takahashi K, Odenbrand C U I. The role of K2O in the selective reduction of NO withNH3over a V2O5(WO3)/TiO2commercial selective catalytic reduction catalyst[J]. Journal ofMolecular Catalysis A: Chemical,1999,139(2-3):189-198
    [99] Tang F, Xu B, Shi H, Qiu J, Fan Y. The poisoning effect of Na+and Ca2+ions doped on theV2O5/TiO2catalysts for selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental,2010,94(1-2):71-76
    [100] Lisi L, Lasorella G, Malloggi S, Russo G. Single and combined deactivating effect of alkalimetals and HCl on commercial SCR catalysts[J]. Applied Catalysis B: Environmental,2004,50(4):251-258
    [101] Choo S T, Yim S D, Nam I-S, Ham S-W, Lee J-B. Effect of promoters including WO3and BaOon the activity and durability of V2O5/sulfated TiO2catalyst for NO reduction by NH3[J]. AppliedCatalysis B: Environmental,2003,44(3):237-252
    [102] van Hengstum A J, Pranger J, van Ommen J G, Gellings P J. Influence of phosphorus andpotassium impurities on the properties of vanadium oxide supported on TiO2[J]. AppliedCatalysis,1984,11(2):317-330
    [103] Chen J P, Yang R T. Mechanism of poisoning of the V2O5/TiO2catalyst for the reduction of NOby NH3[J]. Journal of Catalysis,1990,125(2):411-420
    [104] Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P. High-throughput study of the effects ofinorganic additives and poisons on NH3-SCR catalysts--Part I: V2O5-WO3/TiO2catalysts[J].Applied Catalysis B: Environmental,2010,95(1-2):39-47
    [105] Krocher O, Elsener M. Chemical deactivation of V2O5/WO3-TiO2SCR catalysts by additives andimpurities from fuels, lubrication oils, and urea solution: I. Catalytic studies[J]. Applied CatalysisB: Environmental,2008,77(3-4):215-227
    [106] Hums E. Mechanistic effects of arsenic oxide on the catalytic components of DeNOx catalysts[J].Industrial&Engineering Chemistry Research,1992,31(4):1030-1035
    [107] Hums E, Goebel H E. Effects of arsenic oxide (As2O3) on the phase composition of vanadiumpentoxide-molybdenum trioxide-titanium dioxide (anatase) DeNOx catalysts[J]. Industrial&Engineering Chemistry Research,1991,30(8):1814-1818
    [108] Chen J P, Buzanowski M A, Yang R T, Cichanowicz J E. Deactivation of the vanadia catalyst inthe selective catalytic reduction process[J]. Journal of the Air and Waste ManagementAssociation,1990,40(10):1403-1409
    [109] Zhang X, Huang Z, Liu Z. Effect of KCl on selective catalytic reduction of NO with NH3over aV2O5/AC catalyst[J]. Catalysis Communications,2008,9(5):842-846
    [110]张先龙,吴雪平,黄张根,刘振宇.燃煤烟气中碱金属化合物对V2O5/AC催化剂低温脱硝的影响:NH3的吸附与氧化[J].燃料化学学报,2009,37(4):496-500
    [111] Valdes-Solis T, Marban G, Fuertes A B. Low-temperature SCR of NOx with NH3overcarbon-ceramic supported catalysts[J]. Applied Catalysis B: Environmental,2003,46(2):261-271
    [112] Wang J, Yang J, Liu Z. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. FuelProcessing Technology,2010,91(6):676-680
    [113]刘清雅,刘振宇,李成岳. NH3在选择性催化还原NO过程中的吸附与活化[J].催化学报,2006,27(7):636-646
    [114] Inomata M, Miyamoto A, Murakami Y. Mechanism of the reaction of NO and NH3on vanadiumoxide catalyst in the presence of oxygen under the dilute gas condition[J]. Journal of Catalysis,1980,62(1):140-148
    [115] Ozkan U S, Cai Y P, Kumthekar M W. Investigation of the reaction pathways in selectivecatalytic reduction of NO with NH3over V2O5catalysts: Isotopic labeling studies using18O2,15NH3,15NO, and15N18O[J]. Journal of Catalysis,1994,149(2):390-403
    [116] Ozkan U S, Cai Y, Kumthekar M W. Effect of crystal morphology in selective catalytic reductionof nitric oxide over V2O5catalysts[J]. Applied Catalysis A: General,1993,96(2):365-381
    [117] Baltensperger U, Ammann M, Bochert U K, Eichler B, Gaeggeler H W, Jost D T, et al. Use ofpositron-emitting nitrogen-13for studies of the selective reduction of nitric oxide by ammoniaover vanadia/titania catalyst at very low reactant concentrations[J]. The Journal of PhysicalChemistry,1993,97(47):12325-12330
    [118] Topsoe N-Y. Characterization of the nature of surface sites on vanadia-titania catalysts byFTIR[J]. Journal of Catalysis,1991,128(2):499-511
    [119] Topsoe N-Y, Dumesic J A, Topsoe H. Vanadia-Titania catalysts for selective catalytic reductionof nitric-oxide by ammonia: I.I. Studies of active sites and formulation of catalytic cycles[J].Journal of Catalysis,1995,151(1):241-252
    [120] Topsoe N-Y, Topsoe H, Dumesic J A. Vanadia/Titania catalysts for selective catalytic reduction(SCR) of nitric-oxide by ammonia: I. Combined temperature-programmed in-situ FTIR andon-line mass-spectroscopy studies[J]. Journal of Catalysis,1995,151(1):226-240
    [121] Parvulescu V I, Boghosian S, Parvulescu V, Jung S M, Grange P. Selective catalytic reduction ofNO with NH3over mesoporous V2O5-TiO2-SiO2catalysts[J]. Journal of Catalysis,2003,217(1):172-185
    [122] Lietti L, Svachula J, Forzatti P, Busca G, Ramis G, Bregani P. Surface and catalytic properties ofvanadia-titania and tungsta-titania systems in the selective catalytic reduction of nitrogenoxides[J]. Catalysis Today,1993,17(1-2):131-139
    [123] Lietti L, Forzatti P, Ramis G, Busca G, Bregani F. Potassium doping of vanadia/titania de-NOxingcatalysts: Surface characterisation and reactivity study[J]. Applied Catalysis B: Environmental,1993,3(1):13-35
    [124] Ramis G, Busca G, Bregani F, Forzatti P. Fourier transform-infrared study of the adsorption andcoadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism ofselective catalytic reduction[J]. Applied Catalysis,1990,64:259-278
    [125] Lietti L, Ramis G, Berti F, Toledo G, Robba D, Busca G, et al. Chemical, structural andmechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catalysis Today,1998,42(1-2):101-116
    [126]朱珍平.活性焦担载金属氧化物催化剂上NO低温还原[D].太原:中国科学院山西煤炭化学研究所,2000
    [127] Galvez M E, Boyano A, Lazaro M J, Moliner R. A study of the mechanisms of NO reductionover vanadium loaded activated carbon catalysts[J]. Chemical Engineering Journal,2008,144(1):10-20
    [128] Garcia-Bordeje E, Pinilla J L, Lazaro M J, Moliner R, Fierro J L G. Role of sulphates on themechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported oncarbon-coated monoliths[J]. Journal of Catalysis,2005,233(1):166-175
    [129] Huang B, Huang R, Jin D, Ye D. Low temperature SCR of NO with NH3over carbon nanotubessupported vanadium oxides[J]. Catalysis Today,2007,126(3-4):279-283
    [130]孙德魁. V2O5/AC催化剂表面SCR脱硝反应机理研究[D].太原:中国科学院山西煤炭化学研究所,2009
    [131] Morikawa S, Yoshida H, Takahashi K, Kurita S. Improvement of V2O5-TiO2catalyst for NOxreduction with NH3in flue gas[J]. Chemistry Letters,1981,10:251-254
    [132] Forzatti P. Environmental catalysis for stationary applications[J]. Catalysis Today,2000,62(1):51-65
    [133] Lazaro M J, Boyano A, Galvez M E, Izquierdo M T, Garcia-Bordeje E, Ruiz C, et al. Novelcarbon based catalysts for the reduction of NO: Influence of support precursors and active phaseloading[J]. Catalysis Today,2008,137(2-4):215-221
    [134] Yu J, Guo F, Wang Y, Zhu J, Liu Y, Su F, et al. Sulfur poisoning resistant mesoporous Mn-basecatalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental,2010,95(1-2):160-168
    [135] Xiao Y, Liu Q, Liu Z, Huang Z, Guo Y, Yang J. Roles of lattice oxygen in V2O5and activatedcoke in SO2removal over coke-supported V2O5catalysts[J]. Applied Catalysis B: Environmental,2008,82(1-2):114-119
    [136] Ma J, Liu Z, Liu Q, Guo S, Huang Z, Xiao Y. SO2and NO removal from flue gas over V2O5/ACat lower temperatures-role of V2O5on SO2removal[J]. Fuel Processing Technology,2008,89(3):242-248
    [137]肖勇,刘振宇,刘清雅,王建成,邢新艳,黄张根. SO2影响V2O5/AC催化剂脱硝活性的机理[J].催化学报,2008,29(1):81-85
    [138] Hou Y, Huang Z, Guo S. Effect of SO2on V2O5/ACF catalysts for NO reduction with NH3at lowtemperature[J]. Catalysis Communications,2009,10(11):1538-1541
    [139] Li X, Li K, Li H, Wei J, Wang C. Microstructures and mechanical properties of carbon/carboncomposites reinforced with carbon nanofibers/nanotubes produced in situ[J]. Carbon,2007,45(8):1662-1668
    [140] Feng B, Bhatia S K, Barry J C. Variation of the crystalline structure of coal char duringgasification[J]. Energy&Fuels,2003,17(3):744-754
    [141] Shi H, Reimers J N, Dahn J R. Structure-refinement program for disordered carbons[J]. Journalof Applied Crystallography,1993,26(6):827-836
    [142]常海洲,蔡雪梅,李改仙,白官,吕秀清.不同还原程度煤显微组分堆垛结构表征[J].山西大学学报(自然科学版),2008,31(2):223-227
    [143] Lu L, Sahajwalla V, Kong C, Harris D. Quantitative X-ray diffraction analysis and its applicationto various coals[J]. Carbon,2001,39(12):1821-1833
    [144]吴诗勇.不同煤焦的理化性质及高温气化反应特性研究[D].上海:华东理工大学,2007
    [145] Bosch H, Janssen F. Formation and control of nitrogen oxides[J]. Catalysis Today,1988,2(4):369-379
    [146] Suarez S, Martin J A, Yates M, Avila P, Blanco J. N2O formation in the selective catalyticreduction of NOx with NH3at low temperature on CuO-supported monolithic catalysts[J].Journal of Catalysis,2005,229(1):227-236
    [147] Li Y, Zhong Q. The characterization and activity of F-doped vanadia/titania for the selectivecatalytic reduction of NO with NH3at low temperatures[J]. Journal of Hazardous Materials,2009,172(2-3):635-640
    [148] Odenbrand C U I, Gabrielsson P L T, Brandin J G M, Andersson L A H. Effect of water vapor onthe selectivity in the reduction of nitric oxide with ammonia over vanadia supported onsilica-titania[J]. Applied Catalysis,1991,78(1):109-122
    [149] Kramlich J C, Linak W P. Nitrous oxide behavior in the atmosphere, and in combustion andindustrial systems[J]. Progress in Energy and Combustion Science,1994,20(2):149-202
    [150] Ruiz-Martinez E, Sanchez-Hervas J M, Otero-Ruiz J. Catalytic reduction of nitrous oxide byhydrocarbons over a Fe-zeolite monolith under fluidised bed combustion conditions[J]. AppliedCatalysis B: Environmental,2004,50(3):195-206
    [151] Boyano A, Galvez M E, Moliner R, Lazaro M J. Carbon based catalytic briquettes for thereduction of NO: Catalyst scale-up[J]. Catalysis Today,2008,137(2-4):209-214
    [152] Lazaro M J, Galvez M E, Ruiz C, Juan R, Moliner R. Vanadium loaded carbon-based catalystsfor the reduction of nitric oxide[J]. Applied Catalysis B: Environmental,2006,68(3-4):130-138
    [153] Boyano A, Lombardo N, Galvez M E, Lazaro M J, Moliner R. Vanadium-loaded carbon-basedmonoliths for the on-board NO reduction: Experimental study of operating conditions[J].Chemical Engineering Journal,2008,144(3):343-351
    [154] Guo Y, Liu Z, Liu Q, Sun D. Mechanism of carbon burn-off on V2O5/AC for simultaneous SO2and NO removal during regeneration in NH3atmosphere[J]. Chinese Journal of Catalysis,2007,28(6):514-520
    [155] Guo Y, Liu Z, Liu Q, Huang Z. Regeneration of a vanadium pentoxide supported activated cokecatalyst-sorbent used in simultaneous sulfur dioxide and nitric oxide removal from flue gas:Effect of ammonia[J]. Catalysis Today,2008,131(1-4):322-329
    [156] Martin J A, Yates M, Avila P, Suarez S, Blanco J. Nitrous oxide formation in low temperatureselective catalytic reduction of nitrogen oxides with V2O5/TiO2catalysts[J]. Applied Catalysis B:Environmental,2007,70(1-4):330-334
    [157] Nova I, dall'Acqua L, Lietti L, Giamello E, Forzatti P. Study of thermal deactivation of a de-NOxcommercial catalyst[J]. Applied Catalysis B: Environmental,2001,35(1):31-42
    [158] Ma J, Liu Z, Huang Z, Liu Q. Adsorption and oxidation of NH3over V2O5/AC catalyst[J].Chinese Journal of Catalysis,2006,27(1):91-96
    [159] Aarna I, Suuberg E M. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel,1997,76(6):475-491
    [160] Suzuki T, Kyotani T, Tomita A. Study on the carbon-nitric oxide reaction in the presence ofoxygen[J]. Industrial&Engineering Chemistry Research,1994,33(11):2840-2845
    [161] Lietti L, Nova I, Ramis G, Dall'Acqua L, Busca G, Giamello E, et al. Characterization andreactivity of V2O5-MoO3/TiO2de-NOx SCR catalysts[J]. Journal of Catalysis,1999,187(2):419-435
    [162] Otto K, Shelef M, Kummer J T. Studies of surface reactions of nitric oxide by nitrogen-15isotope labeling. I. Reaction between nitric oxide and ammonia over supported platinum at200-250.deg[J]. The Journal of Physical Chemistry,1970,74(13):2690-2698
    [163] Hu S, Apple T M.15N NMR study of the adsorption of NO and NH3on titania-supportedvanadia catalysts[J]. Journal of Catalysis,1996,158(1):199-204
    [164] Yates M, Martin J A, Martin-Luengo M A, Suarez S, Blanco J. N2O formation in the ammoniaoxidation and in the SCR process with V2O5-WO3catalysts[J]. Catalysis Today,2005,107-108:120-125
    [165]王钧伟,杨建丽,刘振宇. V2O5/AC在含SO2气氛中对气态Hg0的吸附脱除研究[J].环境科学,2009,30(12):3455-3460
    [166] Serre S D, Silcox G D. Adsorption of elemental mercury on the residual carbon in coal fly ash[J].Industrial&Engineering Chemistry Research,2000,39(6):1723-1730
    [167] Galbreath K C, Zygarlicke C J. Mercury transformations in coal combustion flue gas[J]. FuelProcessing Technology,2000,65-66:289-310
    [168] Senior C L, Sarofim A F, Zeng T, Helble J J, Mamani-Paco R. Gas-phase transformations ofmercury in coal-fired power plants[J]. Fuel Processing Technology,2000,63(2-3):197-213
    [169] Ji L, Sreekanth P M, Smirniotis P G, Thiel S W, Pinto N G. Manganese oxide/titania materials forremoval of NOx and elemental mercury from flue gas[J]. Energy&Fuels,2008,22(4):2299-2306
    [170] Qi G, Yang R T, Chang R, Cardoso S, Smith R A. Deactivation of La-Fe-ZSM-5catalyst forselective catalytic reduction of NO with NH3: field study results[J]. Applied Catalysis A: General,2004,275(1-2):207-212
    [171]符斌主编.常用化学手册[M].第一版.北京:地质出版社,1997.274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700