Ag/TS-1催化剂上丙烯直接气相环氧化制环氧丙烷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环境保护的压力,越来越多的研究者正致力于环氧丙烷绿色合成工艺的开发。氧气为原料直接一步生产环氧丙烷是目前最具有挑战性的工艺之一。采用Ag催化剂直接催化乙烯气相环氧化生产环氧乙烷的工艺已经实现工业化,但是氧气直接氧化丙烯制环氧丙烷仍处于探索阶段。乙烯环氧化的Ag催化剂用于丙烯气相环氧化时选择性低,近年来开发的Au-Ti共同体系可以有效地解决催化剂选择性低的问题。但是,催化剂仍存在转化率不高,H2利用率低和容易失活的问题。因此,对于丙烯直接气相环氧化催化剂的开发和反应过程的研究十分必要。
     本论文重点探讨了Ag/TS-1催化剂沉淀剂的作用、TS.1载体的影响、催化剂新制备方法等对丙烯气相环氧化反应性能的影响。主要内容和成果包括:
     (1)以沉积沉淀法制备Ag/TS-1催化剂,考察了KOH, NaOH, K2CO3和Na2CO3等沉淀剂对催化剂丙烯气相环氧化性能的影响,发现KOH具有良好的控制活性金属Ag分布和粒径的性能。K+的存在可以改善催化剂的稳定性,催化剂在600 min内转化率不低于1%,选择性不低于90%。
     (2)以不同的钛源和碱源合成了一系列微米TS-1载体,负载Ag后进行环氧化反应,研究了TS-1中不同Ti物种对丙烯环氧化活性及环氧丙烷选择性的影响,发现四配位的骨架钛具有环氧化的性能,无定形的TiOx物种导致副反应发生并使催化剂失活;TS-1中的锐钛矿TiO2物种也具有气相环氧化活性。
     (3)采用等离子体溅射法成功制备不同Ag含量和粒径的Ag/TS-1催化剂,应用于丙烯环氧化反应。等离子体溅射可以保证Ag颗粒与TS-1充分接触。与沉积沉淀法相比,反应产物比较复杂。催化剂转化率为0.5-1.6%,选择性为76-95%。
     (4)针对反应热效应和Ag颗粒的尺寸效应进行研究,发现Ag的尺寸不是决定环氧丙烷选择性的关键,8-40 nn范围内的Ag都有环氧化活性,且环氧丙烷选择性都高于90%。活性Ti物种含量以及有效的Ag-Ti接触面积对反应活性影响较大。反应中的热量传递直接影响催化剂的环氧丙烷收率和催化剂寿命。
Since environmental problems have been severe nowadays, a lot of efforts have been made to develop an alternative direct epoxidation processes for the production of propene oxide (PO). PO production using oxygen is now the most promising process, and also one of the top tough projects, which is suffering from low conversion or low PO selectivity. It's important to figure out the factors which are affecting the PO production on gas-phase propene epoxidation.
     Therefore, this work is focus on support and promoter effort on Ag/TS-1 for gas-phase epoxidation, also a new preparing Ag/TS-1 catalyst approach is investigated. The major parts include:
     (1) Alkali precipitator KOH, NaOH, K2CO3 and Na2CO3 are used to prepare Ag/TS-1 catalyst by deposition-precipitation (DP) method. KOH shows good ability on controlling Ag dispersity and size distribution. It was found that K+ is good promoter for Ag/TS-1 catalyst. The catalyst maintains activity above 1%, and selectivity above 90% in at least 600 min.
     (2) In order to observe Ti species on propene epoxidation, different Ti and alkali sources are used to prepare a serial of micro TS-1. The results show that tetrahedral Ti sites are active for PO formation, non-framework TiOx results in by-reaction of propene, leading to deactivation of catalyst. Anatase also could be beneficial for propene epoxidation.
     (3) Plasma sputtering process is found to be useful approach for preparing Ag/TS-1, which can produce different size Ag embedding onto TS-1. Compared with DP method, the plasma sputtering made Ag/TS-1 catalyst has more by-products. The propene conversion is 0.5-1.6%, and propene oxide selectivity is 76-95%.
     (4) Ag size and thermal effect are also discussed in this paper. The results indicate that PO selectivity was not sensetive to Ag particle size. In an Ag size range of 8-40 nm, All Ag/TS-1 catalysts show propene oxide selectivity above 90%. Ag-Ti balance is important on catalyst activity for PO production. Thermal effect severely affects PO selectivity and the life of catalyst.
引文
[1]Eissen M, Metzger J O, Schmidt E, et al.10 years after Rio - Concepts on the contribution of chemistry to a sustainable development. Angew. Chem.Int. Edit.,2002,41(3):414-436.
    [2]陈晓晖,王保国,陈宪等.环氧丙烷生产工艺现状及清洁生产研究进展.化工环保,2000,(4):20-25.
    [3]张健,谢妤,牛志蒙.环氧丙烷生产技术及市场综述.化工科技,2010,(03):75-79.
    [4]林衍华,白尔铮.环氧丙烷生产技术和市场分析.石油化工技术经济,2006,(2):29-33.
    [5]刘曙阳,刘红军,王浩等.国内环氧丙烷的现状及发展.聚氨酯工业,2007,(1):1-5.
    [6]Nijhuis T A, Makkee M, Moulijn J A, et al. The production of propene oxide:Catalytic processes and recent developments. Ind. Eng. Chem. Res.,2006,45(10):3447-3459.
    [7]Centi G, Corberan V C, Perathoner S, et al. Outlooks for selective oxidation - Preface. Catal. Today, 2000,61(1-4):1-1.
    [8]张志丰,甄宏野,吴广铎等.环氧丙烷技术经济比较及市场分析.石油化工技术与经济.2009,25(5):30-34.
    [9]谷玉山.环氧丙烷生产技术的进展.中国氯碱,2004,(4):5-7.
    [10]罗承先.节能环保的环氧丙烷生产新工艺.中外能源,2010,15(5):71-76.
    [11]Jorge E M, Mich M. Chlorohydrin process. U.S. Patent,6043400.2000.
    [12]蔡杰,吴莉娜.国内外环氧丙烷生产技术及市场分析.中国氯碱,2009,(5):1-6.
    [13]陈洪波.环氧丙烷市场现状与预测.中国氯碱,2003,(10):28-32.
    [14]周寿祖,朱凤梅.环氧丙烷生产技术进展.四川化工与腐蚀控制,2002,(02):30-32.
    [15]王新宏,刘晓晖,卢冠忠.环氧丙烷的合成及催化剂研究新进展.工业催化,2002,(04):32-39.
    [16]杨林,蔡挺,张春玲等.环氧丙烷工业合成技术进展.广州化工,2010,(6):28-29.
    [17]张志丰,吴广铎,赵春梅.环氧丙烷生产技术分析.化学工业,2009,27(12):44-47.
    [18]Pell M, Korchak E I. Epoxidation using ethylbenzene hydroperoxide with alkali or adsorbent treatment recycle ethylbenzene. U.S.Patent,3439001.1969.
    [19]Dubner W S, Cochran R N. Propylene oxide-styrene monomer process. U.S. Patent,5210354.1993.
    [20]Van Der Sluis J J. Process for the preparation of styrene and propylene oxide. U.S.Patent,6504038. 2003.
    [21]Kollar J. Epoxidation process. U.S.Patent,3351635.1967.
    [22]Marquis E T, Keating K P, Knifton J F, et al. Olefin epoxidation of olefins in a polar medium. U.S.Patent,4891437.1990.
    [23]王启宝,熊亮,读刚等.环氧丙烷合成技术现状与绿色合成研究进展.安庆师范学院学报(自然科学版),2005,(4):4-8.
    [24]卢冠忠,金国杰.环氧丙烷合成技术的研究进展及展望.化工进展,2004,(11):1153-1160.
    [25]孙可华,孟秀云,张美麟.我国环氧丙烷的生产与市场分析.现代化工,2003,(2):50-53.
    [26]Clerici M G, Ingallina P. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J.Catal.1993,140(1):71-83.
    [27]薛祖源.环氧丙烷生产工艺述评及发展设想.化工设计,2009,19(5):3-10.
    [28]秦中秋.环氧丙烷的生产技术及市场分析.云南化工,2005,(04):59-61.
    [29]钱伯章.世界环氧丙烷市场分析.精细化工原料及中间体,2010,(12):47-48.
    [30]高焕新,曹静,陆巍然等.丙烯氧化制环氧丙烷催化剂的合成.石油学报(石油加工),2000,(3):79-84.
    [31]姚健奇.2008年中国环氧丙烷市场供应格局分析.聚氨酯工业,2009,(3):16-17.
    [32]Pennington B T, Fullington M C. Molten salt catalyzed oxidation of alkanes or olefins using lower temperture nitrate salts. U.S. Patent,4943643.1990.
    [33]Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal.,1998,178(2):566-575.
    [34]Monnier J R. The selective epoxidation of non-allylic olefins over supported silver catalysts.3rd World Congress on Oxidation Catalysis,1997,110:135-149.
    [35]Vansanten R A, Degroot C P M. The mechnism of ethylene eposidation.J. Catal.,1986,98(2):530-539.
    [36]Vansanten R A, Kuipers H. The mechnism of ethylene eposidation. Adv. Catal.,1987,35:265-321.
    [37]Geenen P V, Boss H J, Pott G T. A study of the vapor-phase epoxidation of propylene and ethylene on silver and silver golden alloy catalysts. J.Catal.,1982,77(2):499-510.
    [38]Carter E A, Goddard W A. The surface atomic oxyradical mechanism for Ag-catalyzed olefin epoxidation. J.Catal.,1988,112(1):80-92.
    [39]Zemichael F W, Palermo A, Tikhov M S, et al. Propene epoxidation over K-promoted Ag/CaCO3 catalysts:the effect of metal particle size. Catal.Lett.,2002,80(3-4):93-98.
    [40]Jin G J, Lu G Z, Guo Y L, et al. Effect of preparation condition on performance of Ag-MoO3/ZrO2 catalyst for direct epoxidation of propylene by molecular oxygen. J.Mol.Catal.A:Chem.2005, 232(1-2):165-172.
    [41]Jin G J, Lu G Z, Guo Y L, et al. Epoxidation of propylene by molecular oxygen over modified Ag-MoO3 catalyst. Catal. Lett.,2003,87(3-4):249-252.
    [42]Jin G J, Lu G Z, Guo Y L, et al. Direct epoxidation of propylene with molecular oxygen over Ag-MoO3/ZrO2 catalyst. Catal. Today,2004,93-95:173-182.
    [43]Jin G J, Lu G Z, Wang X H. Study on Ag-Mo catalyst for direct vapor-phase epoxidation of propylene by molecular oxygen. Chin. J.Catal.,2002,23(5):405-407.
    [44]Wang R P, Guo X W, Wang X S, et al. Propylene epoxidation over silver supported on titanium silicalite zeolite. Catal.Lett.,2003,90(1-2):57-63.
    [45]Panov G I, Sheveleva G A, Kharitonov A S, et al. Oxidation of benzene to phenol by nitrous-oxide over Fe-ZSM-5 zeolites. Appl. Catal. A:Gen.,1992,82(1):31-36.
    [46]Ananieva E, Reitzmann A. Direct gas-phase epoxidation of propene with nitrous oxide over modified silica supported FeOx catalysts.Chem. Eng. Sci.,2004,59(22-23):5509-5517.
    [47]Llorca J, Dominguez M, Ledesma C, et al. Propene epoxidation over TiO2-supported Au-Cu alloy catalysts prepared from thiol-capped nanoparticles.J.Catal.,2008,258(1):187-198.
    [48]Wang X X, Zhang Q H, Guo Q, et al. Iron-catalysed propylene epoxidation by nitrous oxide:dramatic shift of allylic oxidation to epoxidation by the modification with alkali metal salts. Chem. Commun., 2004,(12):1396-1397.
    [49]郭倩,汪晓星,张庆红等K+-FeOx/SBA-15催化剂中共存阴离子对其丙烯环氧化性能的影响.厦门大学学报(自然科学版),2005,(5):593-595.
    [50]Nijhuis T A, Musch S, Makkee M, et al. The direct epoxidation of propene by molten salts. Appl.Catal A:Gen.,2000,196(2):217-224.
    [51]Wilk R D, Cernansky N P, Pitz W J, et al. Propene oxidation at low and intermediate teperatures-a detailed chemical kinetic study.Combust.Flame.,1989,77(2):145-170.
    [52]Li G, Guo X W, Wang X S, et al. Synthesis of titanium silicalites in different template systems and their catalytic performance. Appl.Catal.A:Gen.,1999,185(1):11-18.
    [53]Haber J, Mlodnicka T, Poltowicz J. Metal- dependent reactivity of some metalloporphyrins in oxidation with dioxygen. J. Mol. Catal.,1989,54(3):451-461.
    [54]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecioitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J.Catal.,1989,115(2):301-309.
    [55]Landon P, Collier P J, Papworth A J, et al. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst.Chem.Commun.,2002,(18):2058-2059.
    [56]Stangland E E, Stavens K B, Res R P, et al. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide.J.Catal.,2000,191(2):332-347.
    [57]Nijhuis T A, Huizinga B J, Makkee M, et al. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind.Eng.g Chem. Res.,1999,38(3):884-891.
    [58]Mul G, Zwijnenburg A, van der Linden B, et al. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation:An in situ FT-IR study. J.Catal.,2001,201(1):128-137.
    [59]Uphade B S, Yamada Y, Akita T, et al. Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H-2 and O-2 over Au/Ti-MCM-41. Appl. Catal. A:Gen.,2001, 215(1-2):137-148.
    [60]Oyama S T, Zhang X M, Lu J Q, et al. Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor. Journal of Catalysis,2008,257(1):1-4.
    [61]Qi C X, Akita T, Okumura M, et al. Epoxidation of propylene over gold catalysts supported on non-porous silica. Appl.Catal.A:Gen.,2001,218(1-2):81-89.
    [62]Yap N, Andres R P, Delgass W N. Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H-2 and O-2. J.Catal.,2004,226(1):156-170.
    [63]Wells D H, Delgass W N, Thomson K T. Formation of hydrogen peroxide from H-2 and O-2 over a neutral gold trimer:a DFT study.J.Catal.,2004,225(1):69-77.
    [64]Chowdhitry B, Bravo-Suarez J J, Date M, et al. Trimethylamine as a gas-phase promoter:Highly efficient epoxidation of propylene over supported gold catalysts. Angew.Chem. Int. Edit.,2006, 45(3):412-415.
    [65]Davis K A, Goodman D W. Propene adsorption on clean and oxygen-covered Au(111) and Au(100) surfaces. J.Phys.Chem.B,2000,104(35):8557-8562.
    [66]Stangland E E, Taylor B, Andres R P, et al.Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2:Effects of support, neutralizing agent, and pretreatment. J.Phys.Chem.B,2005,109(6):2321-2330.
    [67]Cumaranatunge L, Delgass W N. Enhancement of Au capture efficiency and activity of Au/TS-1 catalysts for propylene epoxidation. J.Catal.,2005,232(1):38-42.
    [68]Maayan G, Neumann R. Direct aerobic epoxidation of alkenes catalyzed by metal nanoparticles stabilized by the H5PV2Mo10O40 polyoxometalate. Chem.Commun.,2005, (36):4595-4597.
    [69]Zwijnenburg A, Saleh M, Makkee M, et al. Direct gas-phase epoxidation of propene over bimetallic Au catalysts.Catal.Today,2002,72(1-2):59-62.
    [70]Sacaliuc E, Beale A M, Weckhuysen B M, et al. Propene epoxidation over Au/Ti-SBA-15 catalysts. J.Catal.,2007,248(2):235-248.
    [71]Robbins M D, Henderson M A. The partial oxidation of isobutene and propene on TiO2(110).J.Catal., 2006,238(1):111-121.
    [72]Sun F F, Zhong S H. Preparation, characterization and catalytic behavior of Au/TiO2 catalyst for propylene epoxidation reaction. Chin. J.Catal.,2003,24(8):600-604.
    [73]Dias H V R, Wang Z Y. Ethylene Oxide and Propylene Sulfide Complexes of Silver(I):Synthesis and Characterization of [HB(3,5-(CF3)2Pz)3]Ag(OC2H4) and [HB(3,5-(CF3)2Pz)3]Ag(SC3H6). Inorg. Chem.,2000,39(16):3724-3727.
    [74]Wang R P, Guo X W, Wang X S, et al. Gas-phase epoxidation of propylene over Ag/Ti-containing catalysts. Catal. Today,2004,93-95:217-222.
    [75]Wang R P, Guo X W, Wang X S, et al. Effects of preparation conditions and reaction conditions on the epoxidation of propylene with molecular oxygen over Ag/TS-1 in the presence of hydrogen. Appl.Catal.A:Gen.,2004,261(1):7-13.
    [76]Guo X W, Wang R P, Wang X S, et al. Effects of preparation method and precipitator on the propylene epoxidation over Ag/TS-1 in the gas phase. Catal.Today,2004,93-95:211-216.
    [77]Nijhuis T A, Visser T, Weckhuysen B M. Mechanistic study into the direct epoxidation of propene over gold/titania catalysts. J.Phys.Chem. B,2005,109(41):19309-19319.
    [78]Qi C, Okumura M, Akita T, et al. Vapor-phase epoxidation of propylene using H-2/O-2 mixture over gold catalysts supported on non-porous and mesoporous titania-silica:effect of preparation conditions and pretreatments prior to reaction.Appl.Catal.A:Gen.,2004,263(1):19-26.
    [79]Zwijnenburg A, Makkee M, Moulijn J A. Increasing the low propene epoxidation product yield of gold/titania-based catalysts. Appl. Catal. A:Gen.,2004,270(1-2):49-56.
    [80]Haruta M, Date M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A:Gen.,2001, 222(1-2):427-437.
    [81]Chen M S, Goodman D W. The structure of catalytically active gold on titania. Science,2004, 306(5694):252-255.
    [82]Nijhuis T A, Gardner T Q, Weckhuysen B M. Modeling of kinetics and deactivation in the direct epoxidation of propene over gold-titania catalysts. J.Catal.,2005,236(1):153-163.
    [83]Nijhuis T A, Weckhuysen B M. The role of water in the epoxidation over gold-titania catalysts. Chem. Commun.,2005,(48):6002-6004.
    [84]Sinha A K, Seelan S, Akita T, et al. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes. Appl.Catal. A:Gen.,2003,240(1-2):243-252.
    [85]Sinha A K, Seelan S, Tsubota S, et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles:Vapor-phase epoxidation of propene with high conversion.Angew. Chem.Int.Edit., 2004,43(12):1546-1548.
    [86]Sinha A K, Seelan S, Tsubota S, et al. Preparation of gold-titanosilicate catalysts for vapor-phase propylene epoxidation using H2 and O2. Scientific Bases for the Preparation of Heterogeneous Catalysts,2002,143:167-175.
    [87]Uphade B S, Okumura M, Tsubota S, et al. Effect of physical mixing of CsCl with Au/Ti-MCM-41 on the gas-phase epoxidation of propene using H-2 and O-2:Drastic depression of H-2 consumption. Appl.Catal.A:Gen.,2000,190(1-2):43-50.
    [88]Hughes M D, Xu Y J, Jenkins P, et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature,2005,437(7062):1132-1135.
    [89]Xin J, Cui J R, Chen J B, et al. Continuous biosynthesis of epoxypropane using whole cells of Methylomonas sp GYJ3. Chin. J.Catal.,2001,22(5):457-460.
    [90]Xin J Y, Cui J R, Chen J B, et al.Continuous biocatalytic synthesis of epoxypropane using a biofilm reactor.Process Biochemistry,2003,38(12):1739-1746.
    [91]Yoshida H, Murata C, Hattori T. Screening study of silica-supported catalysts for photoepoxidation of propene by molecular oxygen.J.Catal.,2000,194(2):364-372.
    [92]Yoshida H, Shimizu T, Murata C, et al. Highly dispersed zinc oxide species on silica as active sites for photoepoxidation of propene by molecular oxygen. J.Catal.,2003,220(1):226-232.
    [93]Yoshida H, Murata C, Hattori T. Photocatalytic epoxidation of propene by molecular oxygen over highly dispersed titanium oxide species on silica.Chem. Commun.,1999,(16):1551-1552.
    [94]Pichat P, Herrmann J M, Disdier J, et al. Photocatalytic oxidation of propene over various oxides at 320 K. Selectivity. J.Phys.Chem.,1979,83(24):3122-3126.
    [95]Lu J Q, Luo M F, Lei H, et al. Epoxidation of propylene on NaCl-modified silver catalysts with air as the oxidant.Appl.Catal.A:Gen.,2002,237(1-2):11-19.
    [96]郭杨龙,姚炜,刘晓晖等.丙烯环氧化合成环氧丙烷技术的研究进展.石油化工,2008,(2):111-118.
    [97]Sun Y P, Qiu O, Xu W L, et al. A study of the performance of a sparged packed bed electrode reactor for the direct electrochemical oxidation of propylene. J.Electroanal.Chem.,2001,503(1-2):36-44.
    [98]张义华.钛基催化材料的合成、表征和选择氧化性能研究:(博士学位论文).大连:大连理工大学,2001
    [99]王丽琴.钛硅分子筛合成过程及其催化氧化性能研究:(博士学位论文).大连:大连理工大学,2003
    [100]高鹏.等离子体增强沉积CNSi超薄保护膜:(博士学位论文).大连:大连理工大学,2007
    [101]王瑞璞Ag/TS-1催化剂的制备表征及其丙烯气相环氧化性能的研究:(博士学位论文).大连:大连理工大学,2004.
    [102]Bethke K A, Kung H H. Supported Ag catalysts for the lean reduction of NO with C3H6. J.Catal., 1997,172(1):93-102.
    [103]Kellerman R, Texter J. Optical-absorption of silver atoms and silver clusters in zeolite-Y. J.Chem.Phys.,1979,70(3):1562-1563.
    [104]Vayssilov G N. Structural and physicochemical features of titanium silicalites. Catal.Rev.Sci.Eng., 1997,39(3):209-251.
    [105]杨全红,李峰,侯鹏翔等.吸附法表征纳米碳管中空管内径分布.科学通报,2001,(07):600-603.
    [106]Haruta M, Uphade B S, Tsubota S, et al. Selective oxidation of propylene over gold deposited on titanium-based oxides. International Catalysis Symposium on Frontiers and Tasks of Catalysis Towards the Next Century in Honor of Tomoyuki Inui,1998,329-336.
    [107]De Oliveira A L, Wolf A, Schuth F. Highly selective propene epoxidation with hydrogen/oxygen mixtures over titania-supported silver catalysts.Catal.Lett.,2001,73(2-4):157-160.
    [108]Chimentao R J, Kirm I, Medina F, et al. Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles.5th International Symposium on Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids (ISSHAC-V),2004,793-800.
    [109]Uphade B S, Tsubota S, Hayashi T, et al. Selective oxidation of propylene to propylene oxide or propionaldehyde over Au supported on titanosilicates in the presence of H2 and O2.Chem.Lett., 1998,(12):1277-1278.
    [110]Lu J Q, Bravo-Suarez J J, Haruta M, et al. Direct propylene epoxidation over modified Ag/CaCO3 catalysts.Appl.Catal.A:Gen.,2006,302(2):283-295.
    [111]Duma V, Honicke D. Gas phase epoxidation of propene by nitrous oxide over silica-supported iron oxide catalysts J.Catal.,2000,191(1):93-104.
    [112]Chu H, Yang L, Zhang Q H, et al. Copper-catalyzed propylene epoxidation by molecular oxygen: Superior catalytic performances of halogen-free K+-modified CuOx/SBA-15. J.Catal.,2006,241(1): 225-228.
    [113]Palermo A, Husain A, Tikhov M S, et al. Ag-catalysed epoxidation of propene and ethene:an investigation using electrochemical promotion of the effects of alkali, NOx, and chlorine. J.Catal., 2002,207(2):331-340.
    [114]Wang R P, Guo R W, Wang X S, et al. Synthesis of propylene oxide by gas-phase propylene epoxidation over Ag/TS-1 prepared with different precipitators. Chin. J.Catal.,2004,25(1):55-59.
    [115]Lambert R M, Williams F J, Cropley R L, et al. Heterogeneous alkene epoxidation:past, present and future.J. Mol.Catal.A:Chem.,2005,228(1-2):27-33.
    [116]Moens B, De Winne H, Corthals S, et al. Epoxidation of propylene with nitrous oxide on Rb2SO4 modified iron oxide on silica catalysts.J.Catal.,2007,247(1):86-100.
    [117]Taramasso M. Prepararion of porous crystalline synthetic material comprised od silicon and titanium oxides.U.S.Patent,4410501.1983.
    [118]李钢.钛硅分子筛的合成一表征及催化丙烯环氧化性能的研究:(博士学位论文).大连:大连理工大学,2000.
    [119]刘娜.廉价体系合成的钛硅沸石分子筛结构稳定性及催化性能的研究:(博士学位论文).大连:大连理工大学,2005
    [120]Muller U, Steck W. Ammonium-based alkaline-free sythesis of MFI-type boron and titanium zeolites. Zeolites and Related Microporous Materials:State of the Art 1994,1994,84:203-210.
    [121]Song W, Justice R E, Jones C A, et al. Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir,2004,20(19):8301-8306.
    [122]Klaas J, Kulawik K, Schulzekloff G, et al. Comparative spectroscopic study of TS-1 and zeolite-hosted extraframework titanium-oxode dispersions. Zeolites and Related Microporous Materials:State of the Art,1994,1994,84:2261-2268.
    [123]庄建勤.TS-1分子筛的酸性及其催化苯乙烯氧化反应的固体核磁研究:(博士学位论文).大连:中国科学院大连物理研究所,2003
    [124]赵智.钛硅分子筛丙烯环氧化反应活性位的原位紫外拉曼光谱研究:(硕士学位论文).大连:大连理工大学,2010
    [125]Zwijnenburg A, Goossens A, Sloof W G, et al. XPS and Mossbauer characterization of Au/TiO2 propene epoxidation catalysts. J. Phys.Chem. B,2002,106(38):9853-9862.
    [126]Janchen J, Vorbeck G, Stach H, et al. Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites. Catal. Micro. Mater.,1995,94:108-115.
    [127]Deo G, Turek A M, Wachs I E, et al. Characterization of titanium silicalites. Zeolites,1993, 13(5):365-373.
    [128]Linsebigler A. L, Lu G. Q and Yates J. T.1995, Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results, Chem. Rev.,95 (3):735-758.
    [129]Oregan B, Gratzel M.A. low-cost,high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films.Nature,1991,353(6346):737-740.
    [130]Hebenstreit W, Ruzycki N,Herman G S, et al.Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface.Phys.Rev.B,2000,62(24):6334-6336.
    [131]Hengerer R, Bolliger B, Erbudak M, et al. Structure and stability of the anatase TiO2 (101) and (001) surfaces. Surf. Sci.,2000,460(1-3):162-169.
    [132]马新国,唐超群,黄金球等.锐钛矿型TiO_2(101)面原子几何及弛豫结构的第一性原理计算.物理学报,2006,(08):4208-4213.
    [133]王传付,郭新闻,王轶农,王祥生,王金雪.单微乳液中制备Ag-TS-1及丙烯气相环氧化.石油学报(石油加工),2006,22(3):24-28.
    [134]Wang C F, Guo X W, Wang X S, et al. Gas-phase propylene epoxidation over Ag/TS-1 prepared in W/O microemulsion:effects of the molar ratio of water to surfactant and the reaction temperature. Catal. Lett.,2004,96(1-2):79-85.
    [135]Taylor B, Lauterbach J, Delgass W N. Gas-phase epoxidation of propylene over small gold ensembles on TS-1. Appl.Catal. A:Gen.,2005,291(1-2):188-198.
    [136]Murata K, Kiyozumi Y. Oxidation of propene by molecular oxygen over Ti-modified silicalite catalysts. Chem. Commun.,2001,(15):1356-1357.
    [137]Vaughan O P H, Kyriakou G, Macleod N, et al.Copper as a selective catalyst for the epoxidation of propene.J.Catal.,2005,236(2):401-404.
    [138]戴茂华,汤丁亮,袁友珠Ti-Si复氧化物载体对金催化剂上丙烯环氧化的影响.催化学报,2006,(12):1063-1068.
    [139]Lee S, Molina L M, Lopez M J, et al. Selective Propene Epoxidation on Immobilized Au6-10 Clusters:The Effect of Hydrogen and Water on Activity and Selectivity. Angew. Chem. Int. Edit.,2009,48(8):1467-1471.
    [140]Suo Z H, Jin M S, Lu J Q, et al. Direct gas-phase epoxidation of propylene to propylene oxide using air as oxidant on supported gold catalyst. J.Natural Gas Chem.,2008,17(2):184-190.
    [141]Sinha A K, Seelan S, Okumura M, et al. Three-dimensional mesoporous titanosilicates prepared by modified sol-gel method:Ideal gold catalyst supports for enhanced propene epoxidation. J.Phys. Chemi.B,2005,109(9):3956-3965.
    [142]Meiers R, Dingerdissen U, Holderich W F. Synthesis of propylene oxide from propylene, oxygen, and hydrogen catalyzed by palladium-platinum-containing titanium silicalite.J.Catal.,1998,176(2): 376-386.
    [143]Miyazaki T, Ozturk S, Onal I, et al. Selective oxidation of propylene to propylene oxide using combinatorial methodologies. Catal.Today,2003,81(3):473-484.
    [144]Qi C X, Akita T, Okumura M, et al. Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature. Appl.Catal. A:Gen.,2003,253(1):75-89.
    [145]Badani M V, Vannice M A. Effects of cesium and chlorine on oxygen adsorption on promoted Ag/alpha-A12O3 catalysts. Appl. Catal. A:Gen.,2000,204(1):129-142.
    [146]Carvalho M, Perez C A, Simao R A, et al. The promoting effect of cesium on structure and morphology of silver catalysts. Anais da Academia Brasileira de Ciencias,2004,76(1):19-27.
    [147]Chimentao R J, Medina F, Fierro J L G, et al. Propene epoxidation by nitrous oxide over Au-Cu/TiO2 alloy catalysts.J.Mol. Catal.A:Chem.,2007,274(1-2):159-168.
    [148]Dai M H, Tang D L, Lin Z J, et al. Ti-Si mixed oxides by non-hydrolytic sol-gel synthesis as potential gold catalyst supports for gas-phase epoxidation of propylene in H2 and O2. Chem.Lett., 2006,35(8):878-879.
    [149]Jin G J, Guo Y L, Liu X H, et al. Study on the direct gas phase epoxidation of propylene over Ag-MoO3/ZrO2 catalyst by in situ FT-IR. Acta Chim. Sinica,2006,64(19):1941-1946.
    [150]Lu J Q, Zhang X M, Bravo-Suarez J J, et al. Direct propylene epoxidation over/barium-promoted Au/Ti-TUD catalysts with H2 and O2:Effect of Au particle size.J.Catal.,2007,250:350-359.
    [151]Schwarz A J. Methods for Preparation of Catalytic Materials. Chem. Rev.,1995,95(3):477-510.
    [152]Shiraishi Y, Teshima Y, Hirai T. Visible light-induced partial oxidation of olefins on Cr-containing silica with molecular oxygen. J.Phys.Chem. B,2006,110(12):6257-6263.
    [153]Zhu W M, Zhang Q H, Wang Y. Cu(I)-catalyzed epoxidation of propylene by molecular oxygen.J.Phy.Chem.C,2008,112(20):7731-7734.
    [154]Duan S, Kahn M, Senkan S. High-throughput nanoparticle catalysis:Partial oxidation of propylene. Comb. Chem. High Throughput Screening,2007,10(2):111-119.
    [155]Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-supported palladium nanoclusters:A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc.,2004,126(34):10657-10666.
    [156]Wang L, Peng B, Guo X F, et al. Ferric molybdate nanotubes synthesized based on the Kirkendall effect and their catalytic property for propene epoxidation by air. Chemi.Commun.,2009, (12):1565-1567.
    [157]Wang F S, Qi C X, Ma J T. The study of the uncalcined Au catalyst and inorganic salts on direct gas-phase epoxidation of propylene. Catal.Commun.,2007,8:1947-1952.
    [158]Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science,328(5975):224-228.
    [159]Ding W Y, Xu J, Piao Y, et al. Deposition of hydrogen-free silicon nitride thin films by microwave ECR plasma enhanced magnetron sputtering at room temperature. Chin.Phys.Lett.,2005,22(9): 2332-2334.
    [160]Ma T C, Deng X L, Lu W Q, et al. Synthesis of ceramic films on metallic substrates using magnetron-sputtering deposition synchro-enhanced by microwave ECR plasma source ion implantation under high vacuum conditions. Pure Appl. Chem.,1998,70(6):1199-1202.
    [161]Xu J, Deng X L, Zhang J L, et al. Characterization of CNx films prepared by twinned ECR plasma source enhanced DC magnetron sputtering. Thin Solid Films,2001,390(1-2):107-112.
    [162]陈琳,雷乐成.低温等离子体技术应用于二氧化钛光催化剂制备与改性.2007,33(9):1-5.
    [163]朴勇.等离子体技术制备硅碳氮薄膜研究:(硕士学位论文).大连:大连理工大学,2006.
    [164]Liu C J, Vissokov G P, Jang B W L. Catalyst preparation using plasma technologies. Catal.Today, 2002,72(3-4):173-184.
    [165]Serafin J G, Liu A C, Seyedmonir S R. Surface science and the silver-catalyzed epoxidation of ethylene:an industrial perspective.J.Mol.Catal.A:Chem.,1998,131(1-3):157-168.
    [166]Chowdhury B, Bravo-Suarez J J, Mimura N, et al. In situ UV-vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 catalyst. J.Phys. Chem. B,2006,110(46):22995-22999.
    [167]Chretien S, Gordon M S, Metiu H. Density functional study of the adsorption of propene on mixed gold-silver clusters, AunAgm:Propensity rules for binding. J.Chem.Phys.,2004,121(20):9931-9937.
    [168]Lu J Q, Zhang X M, Bravo-Suarez J J, et al. Kinetics of propylene epoxidation using H-2 and O-2 over a gold/mesoporous titanosilicate catalyst. Catal.Today,2007,123(1-4):189-197.
    [169]Kilos B, Aouine M, Nowak I, et al. The role of niobium in the gas-and liquid-phase oxidation on metallosilicate MCM-41-type materials J.Catal.,2004,224(2):314-325.
    [170]Joshi A M, Delgass W N, Thomson K T. Comparison of the catalytic activity of Au-3, Au-4(+), Au-5, and Au-5(-) in the gas-phase reaction of H-2 and O-2 to form hydrogen peroxide:A density functional theory investigation. J.Phys. Chem. B,2005,109(47):22392-22406.
    [171]Chretien S, Gordon M S, Metiu H. Density functional study of the adsorption of propene on silver clusters, Ag-m(q) (m=1-5; q=0,+1). J. Chem. Phys.,2004,121(20):9925-9930.
    [172]Jin G J, Lu G Z, Guo Y L, et al. Cation of Ag-MoO3/ZrO2 catalyst with metallic chloride for propylene epoxidation by molecular oxygen. Catal. Lett.,2004,97(3-4):191-196.
    [173]Joshi A M, Delgass W N, Thomson K T. Investigation of gold-silver, gold-copper, and gold-palladium dimers and trimers for hydrogen peroxide formation from H-2 and O-2. J.Phys.Chem.C,2007,111(20):7384-7395.
    [174]Taylor B, Lauterbach J, Blau G E, et al.Reaction kinetic analysis of the gas-phase epoxidation of propylene over Au/TS-1.J. Catal.,2006,242(1):142-152.
    [175]Miyaji T, Wu P, Tatsumi T. Selective oxidation of propylene to propylene oxide over Ti-MCM-41 supporting metal nitrate. Catal.Today,2001,71(1-2):169-176.
    [176]Bond G C, Thompson D T. Catalysis by gold. Catalysis Rev.Sci.Eng.,1999,41(3-4):319-388.
    [177]Turner M, Vaughan O P H, Lambert R M. Partial oxidations with NO2 catalyzed by large gold particles.Chem.Commun.,2008,(20):2316-2318.
    [178]Nijhuis T A, Weckhuysen B M. The direct epoxidation of propene over gold-titania catalysts - A study into the kinetic mechanism and deactivation. Catal. Today,2006,117(1-3):84-89.
    [179]Ruiz A, van der Linden B, Makkee M, et al. Acrylate and propoxy-groups:Contributors to deactivation of Au/TiO2 in the epoxidation of propene. J. Catal.,2009,266(2):286-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700