3Y-ZrO_2纤维增韧ZrB_2基超高温陶瓷材料微观结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高温材料是指能够在超高温环境(>2000℃)以及反应气氛中(原子氧、等离子体)保持物理、化学稳定性的一类特殊材料,其中ZrB_2基超高温陶瓷材料具有高熔点、高强度及抗热震性等优点,成为使用于极端环境下的新型候选材料。本研究针对ZrB_2基超高温陶瓷材料相对较低的韧性和抗热冲击性等缺点,引入3Y-ZrO_2纤维作为增韧相,利用其具备纤维和相变双重增韧的效果,以达到改善材料本征脆性的目的。采用热压烧结法制备了ZrO_2纤维增韧的ZrB_2基超高温陶瓷复合材料,深入研究了材料合成工艺中球磨时间、烧结速率、烧结温度、保温时间、原料形貌、材料组分等因素对材料微观结构以及力学性能的影响,得出了制备ZrO_2纤维增韧ZrB_2基超高温陶瓷复合材料的最优组分和工艺。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电子背散射衍射(EBSD)及能谱分析(EDS)等技术对复合材料的微观组织结构进行了研究。基于断裂力学理论,采用包络线法和压痕-弯曲强度法研究了材料的阻力曲线行为,并且结合材料的微结构特征分析了材料的强韧化机理。最后利用炉内静态氧化考核了ZrO_2纤维增韧ZrB_2基超高温陶瓷复合材料的裂纹自愈合与预氧化性能。
     单独引入ZrO_2纤维到ZrB_2基体虽然能够抑制ZrB_2晶粒的长大,但是为了提高ZrB_2-ZrO_(2f)二元陶瓷体系的致密度需要较高的烧结温度和较长的保温时间,会对纤维造成损害,不利于达到增韧的效果。优化复合材料的体系设计,选用碳化硅颗粒(SiC_p)或者碳化硅晶须(SiC_w)复合添加制备了ZrB_2-SiC-ZrO_(2f)三元陶瓷。研究了制备工艺,球磨20h获得混合均匀的粉体,纤维长短均一且在基体中均匀分布,热压烧结升温速率为3.75℃·min~(-1),降温速率为1.67℃·min~(-1),在1850℃,30MPa,保温1h可以制成致密的陶瓷块体材料。材料组成为ZrB_2-20vol.%SiC_p--15vol.%ZrO_(2f)(记为Z20S_p15Z_f)和ZrB_2-20vol.%SiC_w-15vol.%ZrO_(2f)(记为Z20Sw15Zf)的室温弯曲强度和断裂韧性分别为1084MPa、680MPa和6.8MPa·m~(1/2)、8.0MPa·m1/2,并且两种材料900℃的高温弯曲强度分别为604MPa和724MPa。
     利用透射电镜技术观察了ZrB_2-SiC-ZrO_(2f)复合材料的界面特征,Z20Sp15Zf复合材料的晶界界面轮廓比较模糊归因于SiC晶粒与ZrO_2纤维之间发生微量反应;而Z20S_w15Z_f复合材料的晶界界面清晰,没有明显反应层。衍射斑点标定结果表明ZrO_2纤维的主相为t相,相变的相位关系符合100m//100t,001m//001t晶体学关系,t-ZrO_2相的存在是发生相变增韧的必要条件。此外EBSD分析结果证实了在热压烧结制备的三元ZrB_2-SiC-ZrO_(2f)复合材料中,氧化锆纤维具有相似的取向关系。Z20S_p15Z_f材料中ZrB_2和SiC晶粒随机分布,宏观上表现出各向同性;而Z20S_w15Z_f材料表现出明显的择优取向,宏观上各向异性。在两种材料中均存在低能的小角度晶界和低Σ值的CSL晶界,直接关系到多晶材料的力学性能。
     陶瓷的阻力曲线行为可以准确地表征材料的韧性,具有阻力曲线行为的材料在工程应用上拥有较高的可靠性,强度数据离散性小。选用Vickers压痕-弯曲强度法和包络线法研究了ZrO_2纤维增韧ZrB_2基陶瓷的阻力曲线行为。研究表明,采用ZrO_2纤维增韧的ZrB_2基陶瓷表现出明显的阻力曲线行为。根据增韧理论模型定量化分析了每种增韧机制的贡献,利用线性叠加法计算了总断裂韧性Ktot。相对于Z20S_p15Z_f复合材料,Z20S_w15Z_f陶瓷基复合材料具有较高的断裂韧性,归功于裂纹偏转和桥联增韧的效果分别提高了97%和5%,拔出增韧效果提高了26%,相变增韧效果提高了15%。SiC晶须的加入不仅发挥了晶须增韧的效果,还证实了弱界面有利于实现裂纹偏转,对于其他增韧机制也有促进作用。
     系统地研究了ZrB_2-SiC-ZrO_(2f)复合材料预氧化和裂纹自愈合行为。Z20S_p15Z_f和Z20S_w15Z_f两种材料表现出不同的氧化敏感性,Z20S_p15Z_f材料的氧化起始温度为800℃,低于Z20S_w15Z_f材料的1000℃,Z20S_w15Z_f材料的氧化速率低于Z20S_p15Z_f材料。过快的氧化速率会使材料表面生成过多的氧化层,造成力学性能有所下降。800℃预氧化30min的Z20S_w15Z_f材料弯曲强度提高至757±23MPa,比原始强度提高了11%,主要是由于相对较低的氧化速率降低了表面的氧化程度,新生成的细小颗粒填充于原始材料表面的微缺陷之间,形成了致密的氧化薄层,起到了自愈合作用和钝化效应。此外材料的氧化敏感性为裂纹自愈合提供了契机,借由氧化物的生成,可以填充于材料表面的裂纹缺陷中,达到自愈合裂纹的目的。对于Z20S_p15Z_f和Z20S_w15Z_f材料,裂纹自愈合处理的最佳条件为1200℃保温时间30min,弯曲强度达到了最大值分别为630±51MPa和632±29MPa。
Ultrahigh temperature ceramics (UHTCs) possess physical-chemical stability inultra-high temperature environment (>2000℃) and reaction atmosphere (atomic oxygenand plasma). As a new potential candidate for high temperature structural applications,ZrB_2-based ultra-high temperature ceramics (UHTCs) exhibit unique properties, such ashigh melting point, high strength, as well as great thermal shock resistance. In this study,ZrO_(2f)iber was used as toughening phase in ZrB_2-based ceramics in order to improvethe low toughness and unsatisfactory thermal shock resistance, since ZrO_(2f)iber hadboth the virtue of fiber-toughening and phase transformation toughening. Highly denseand good-properties ZrB_2-based ceramics toughened by ZrO_(2f)ibers were prepared byhot-pressing. The effect of each factor on the microstructure and mechanical propertiesof the final bulk was thoroughly investigated to find the most suitable preparationprocess, including milling time, sintering rate, sintering temperatures, dwelling time,morphology of raw powders and constituents. By means of X-ray diffraction (XRD),scanning electron microscopy (SEM) transmission electron microscopy (TEM), andelectron backscatter diffraction (EBSD) with simultaneous chemical analysis by energydispersive spectroscopy (EDS), the microstructure were investigated. Based on fracturemechanics theory, the damage resistance and R-curves behavior were evaluated by usingthe indentation-strength in bending (ISB) technique, and compared with the envelopemethod, the difference between the two being analyzed. With the combination ofanalysis of microstructure, the strengthening and toughening mechanism were alsodiscussed. In addition, self-crack healing and pre-oxidation were further presented bymeans of muffle furnace.
     Introduction of ZrO_2fibers was significantly beneficial for the restriction of graingrowth of ZrB_2during densification. However, in order to obtain nearly full densematerial, higher sintering temperature and longer dwelling time were needed whichwould cause degradation of ZrO_2fibers and was also harmful to the mechanicalproperties. The optimum proportion of ceramic materials was studied, both SiC particleor SiC whisker and ZrO_2fiber were added into ZrB_2matrix ceramics. The preparationprocess was studied, the production of a homogeneous ceramic could be successfullyachieved by using a combination of20h milling time and hot-pressing at1850℃for1hunder a uniaxial load of30MPa with heating velocity of3.75℃·min~(-1)and coolingvelocity of1.67°C·min~(-1). The flexural strength and fracture toughness of thehot-pressed ZrB_2-20vol.%SiC_p-15vol.%ZrO_(2f)(Z20S_p15Z_f) and ZrB_2-20vol.%SiC_w- -15vol.%ZrO_(2f)(Z20S_w15Z_f) ceramics reached1084MPa,680MP and6.8MPa·m1/2,8.0MPa·m1/2, respectively. And the flexural strengths after testing at900℃were604MPa and724MPa, respectively.
     A transmission electron microscopy study on the characteristics of grain boundaryof ZrB_2-SiC-ZrO_(2f)ceramics was presented. The contour of grain boundary ofZ20S_p15Z_fceramic was illegible, which was attributed to the weak reaction of SiCparticle and ZrO_(2f)iber. On the contrary, no reaction between the SiC whisker and ZrO_2fiber was existed in Z20S_w15Z_fceramic. The analysis of single crystal electrondiffraction pattern was presented, showing that the ZrO_2in fibers was of the tetragonalcrystalline structure, and the phase relationship between tetragonal and monoclinicphase was consistent to the crystal orientation relationship of100m//100t,
     001m//001t. The existence of tetragonal phase was the necessary condition fortransformation toughening. In addition, the orientation distribution of ZrO_(2f)ibers inhot-pressed ZrB_2-SiC-ZrO_(2f)exhibited the same preferred orientation obtained from themeasured data of electron backscatter diffraction. The distribution of ZrB_2and SiCparticles in Z20S_p15Z_fceramic was random, which could reach the macro isotropy. Butthe appearance of preferred orientation was found in Z20S_w15Z_fceramic, which wouldshow the macro anisotropy. The low energy boundaries related to mechanical propertiesof materials, such as low angle and low ΣCSL grain boundaries, were found in bothmaterials.
     In order to predict the instability of ceramics, characterizing and understandingcrack resistance curve (R-curve) behavior are very important. The traditional ceramicswithout R-curve behavior exhibit a large strength scatter. In this study, R-curves forZrB_2-SiC-ZrO_(2f)ceramics were evaluated by using the indentation-strength in bending(ISB) technique and the envelope method. The analytical results revealed thatZrB_2-based ceramics toughened by ZrO_(2f)ibers provided obvious R-curve. Based on thetheoretic models for toughening mechanisms, quantification of every tougheningmechanism was analyzed, and the total fracture toughness (Ktot) was calculated by usingthe linear superposition method. Compared to Z20S_p15Z_fceramics, Z20S_w15Z_fceramics had higher fracture toughness, which attributed to improvements oftoughening effects of crack deflection (97%), crack bridging (5%), fiber pull-out (26%)and transformation toughening (15%). The introduction of SiC whisker was benefit tothe crack deflection and also had promotion impact to other toughening mechanisms.
     Self-crack healing and preoxidation treatment of ZrB_2-SiC-ZrO_(2f)ceramics weresystematically studied. The oxidized sensitivity of Z20S_p15Z_fand Z20S_w15Z_fwere different. The initial oxidation temperature of Z20S_p15Z_fceramic was800℃, while thatof Z20S_w15Z_fwas1000℃, and the oxidation rate of Z20S_w15Z_fwas lower than that ofZ20S_w15Z_fceramic. Overquick oxidation rate would produce too much surface oxide,which was harmful to the improvement of mechanical properties. Flexural strength ofZ20S_w15Z_fwas greatly improved to757±23MPa after preoxidation at800℃for30min in air, which was improved by11%compared to the original strength. The effect ofpreoxidation on the mechanical properties was investigated. Microstructure analysissuggested that less oxide was produced because of low oxidation rate, and the formedoxide could heal and blunt the surface defects i.e. microcraks, porosities, which wasalso benefit for self-crack healing. The optimum healing condition for both Z20S_p15Z_fand Z20S_w15Z_fwas treated at1200℃for30min, and the flexural strength wasimproved to630±51MPa and632±29MPa, respectively.
引文
[1] Fahrenholtz W G, Hilmas G E. Refractory Diborides of Zirconium andHafnium[J]. Journal of the American Ceramic Society,2007,90(5):1347-1364.
    [2] Opeka M M, Talmy I G, Zaykoskl J A. Oxidation-Based Materials Selection for2000℃Hypersonic Aerosurfaces: Theoretical Considerations and HistoricalExperience[J]. Journal of Materials Science,2004,39:5887-5904.
    [3]逄婷婷,傅正义,张东明.放电等离子(SPS)快速烧结TiB2陶瓷[J].陶瓷学报,2001,22(3):129-132.
    [4]张国军,金宗哲.原位合成复相陶瓷概述[J].材料导报,1996,2:62-65.
    [5]赵稼样.苏联新材料现状与一些特种工艺技术[R].北京:航天情报研究所,1991(1):88-106.
    [6] Monteverde F. Progress in the Fabrication of Ultra-High-Temperature Ceramics“In Situ” Synthesis, Microstructure and Properties of a Reactive Hot-PressedHfB2-SiC Composite[J]. Composites Science and Technology,2005,65:1869-1879.
    [7] Zhang G J, Ohji T. In Situ Reaction Synthesis of Silicon Carbide-Boron NitrideComposites[J]. Journal of the American Ceramic Society,2001,84(7):1475-1479.
    [8] Tripp W C, Davis H H, Graham H C. Effect of a SiC Addition on the Oxidationof ZrB2[J]. American Ceramic Society Bulletin,1973,52(8):612-616.
    [9] Upadhya K, Yang J M, Hoffman W P. Materials for Ultrahigh TemperatureStructural Applications[J]. American Ceramic Society Bulletin,1997,76(12):51-56.
    [10] Netter P, Cambros P. Oxidation Resistance Coating Produced by CVD: Iridiumand Aluminium Oxynitride Coatings[J]. Materials Research Society SymposiumProcess,1990,168:247-254.
    [11] Reed B D. Long Life Testing of Oxide-Coated Iridium/Rhenium Rockets[J].AIAA95-2401, Sam Diego, CA,1995:1-18.
    [12] Reed B D, Biaglow J A. Engineering Issues of Iridium-Coated RheniumRochets[J]. Materials and Manufacturing Processes,1998,13(5):757-771.
    [13]胡昌义,陈松,杨家明,等. CVD法制备的Ir/Re涂层复合材料界面扩散研究[J].稀有金属材料与工程,2003,32(10):796-798.
    [14] Tuffias R H. Protective Oxide Coatings for Iridium/Rhenium Chambers[R].Final Report, Contract NASA-26253, May1995.
    [15]陈肇友. ZrB2质与TiB2质耐火材料[J].耐火材料,2000,34(4):224-229.
    [16]辜萍.助燃剂对二硼化锆陶瓷烧结行为、结构与性能的影响[D].武汉工业大学硕士论文,1999:10-15.
    [17] Karlsdottir S N, Halloran J W, Grundy A N. Zirconia Transport by LiquidConvection during Oxidation of Zirconium Diboride-Silicon Carbide[J]. Journalof American Ceramic Society,2008,91(1):272-277.
    [18] Jacobson N S. Corrosion of Silicon-Based Ceramics in CombustionEnvironments[J]. Journal of American Ceramic Society,1993,76(1):3-28.
    [19] Schneider S J. Card Number89-3651, Powder Diffraction File, InternationalVentre for Diffraction Data[M]. ASM International, Materials Park, OH,1991(4):945-963.
    [20] Chamberlain A L, Fahrenholtz W G, Hilmas G E, et al. High StrengthZrB2-Based Ceramics[J]. Journal of the American Ceramic Society,2004,87(6):1170-1172.
    [21] Vajeeston P, Ravindran P, Ravi C, et al. Electronic Structure, Bonding, andGround State Properties of AlB2-Type Transition Metal Diborides[J]. PhysicsReview B,2001,63(4):1-11.
    [22] Cutler R A. Engineering Properties of Borides Ceramics and Glasses:Engineered Materials Handbook,32-5Card Number75-1050, PowderDiffraction File, International Center for Diffraction Data[M]. Edited by S. J.Schneider Jr. ASM International, Materials Park, OH,1991,4:787-803.
    [23] Chamberlain A L, Fahrenholtz W G, Hilmas G E. Pressureless Sintering ofZirconium Diboride[J]. Journal of the American Ceramic Society,2006,89(2):450-456.
    [24] Sciti D, Guicciardi S, Bellosi A. Properties of a Pressureless-SinteredZrB2-MoSi2Ceramic Composite[J]. Journal of the American Ceramic Society,2006,89(7):2320-2322.
    [25] Silvestroni L, Sciti D. Effects of MoSi2additions on the properties of Hf-and Zr-B2composites produced by pressureless sintering[J]. Scripta Materialia,2007,57:165-168.
    [26] Guo S Q, Kagawa Y, Nishimura T, et al. Pressureless sintering and physicalproperties of ZrB2-based composites with ZrSi2additive[J]. Scripta Materialia,2008,58:579-582.
    [27] Wang X G, Guo W M, Zhang G J. Pressureless sintering mechanism andmicrostructure of ZrB2-SiC ceramics doped with boron[J]. Scripta Materialia,2009,61:177-180.
    [28] Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless Densification ofZirconium Diboride with Boron Carbide Additions[J]. Journal of the AmericanCeramic Society,2006,89(5):1544-1550.
    [29] Zhang H, Yan Y J, Huang Z R, et al. Pressureless sintering of ZrB2-SiC ceramics:the effect of B4C content[J]. Scripta Materialia,2009,60:559-562.
    [30] Zhu S, Fahrenholtz W G, et al. Pressureless Sintering of Zirconium DiborideUsing Boron Carbide and Carbon Additions[J]. Journal of the American CeramicSociety,2007,90(11):3660-3663.
    [31] Zou J, Zhang G J, Kan Y M, et al. Pressureless densification of ZrB2-SiCcomposites with vanadium carbide[J]. Scripta Materialia,2008,59:309-312.
    [32] Brochu M, Gauntt B D, Boyer L, et al. Pressureless reactive sintering of ZrB2ceramic[J]. Journal of the European Ceramic Society,2009,29:1493-1499.
    [33] Guo W M, Zhang G J. Reaction Processes and Characterization of ZrB2PowderPrepared by Boro/Carbothermal Reduction of ZrO2in Vacuum[J]. Journal of theAmerican Ceramic Society,2009,92(1):264-267.
    [34] Guo S Q, Nishimura T, Kagawa Y, et al. Spark Plasma Sintering of ZirconiumDiborides[J]. Journal of the American Ceramic Society,2008,91(9):2848-2855.
    [35] Mizuguchi T, Guo S Q, Kagawa Y. Transmission electron microscopycharacterization of spark plasma sintered ZrB2ceramic[J]. CeramicsInternational,2010,36:943-946.
    [36] Venkateswaran T, Basu B, Raju G B, et al. Densification and properties oftransition metal borides-based cermets via spark plasma sintering[J]. Journal ofthe European Ceramic Society,2006,26:2431-2440.
    [37] Bellosi A, Monteverde F, Sciti D. Fast Densification of Ultra-High-TemperatureCeramics by Spark Plasma Sintering[J]. International Journal of AppliedCeramic Technology,2006,3(1):32-40.
    [38] Balbo A, Sciti D. Spark plasma sintering and hot pressing of ZrB2-MoSi2ultra-high-temperature ceramics[J]. Materials Science and Engineering A,2008475:108-112.
    [39] Sciti D, Silvestroni L, Nygren M. Spark plasma sintering of Zr-and Hf-borideswith decreasing amounts of MoSi2as sintering aid[J]. Journal of the EuropeanCeramic Society,2008,28:1287-1296.
    [40] Wu W W, Zhang G J, Kan Y M, et al. Synthesis and microstructural features ofZrB2-SiC-based composites by reactive spark plasma sintering and reactive hotpressing[J]. Scripta Materialia,2007,57:317-320.
    [41] Zhao Y, Wang L J, Zhang G J, et al. Effect of holding time and pressure onproperties of ZrB2-SiC composite fabricated by the spark plasma sinteringreactive synthesis method[J]. International Journal of Refractory Metals andHard Materials,2009,27:177-180.
    [42] Zhao Y, Wang L J, Zhang G J, et al. Preparation and Microstructure of aZrB2-SiC Composite Fabricated by the Spark Plasma Sintering-ReactiveSynthesis (SPS-RS) Method[J]. Journal of the American Ceramic Society,2007,90(12):4040-4042.
    [43] Akin I, Hotta M, Sahin F C, et al. Microstructure and densification of ZrB2-SiCcomposites prepared by spark plasma sintering[J]. Journal of the EuropeanCeramic Society,2009,29:2379-2385.
    [44] Wang H L, Wang C A. Processing and Mechanical Properties of ZirconiumDiboride-Based Ceramics Prepared by Spark Plasma Sintering[J]. Journal of theAmerican Ceramic Society,2007,90(7):1992-1997.
    [45] Zhang X H, Xu L, Du S Y, et al. Spark plasma sintering and hot pressing ofZrB2-SiCwultra-high temperature ceramics[J]. Journal of Alloys and Compounds,2008,466:241-245.
    [46] Shim S H, Niihara K, Auh K H, et al. Crystallographic orientation of ZrB2-ZrCcomposites manufactured by the spark plasma sintering method[J]. Journal ofMicroscopy,2002,205(3):238-244.
    [47] Kim K H, Shim K B. The effect of lanthanum on the fabrication of ZrB2-ZrCcomposites by spark plasma sintering[J]. Materials Characterization,2003,50:31-37.
    [48] Goutier F, Trolliard G, Valette S, et al. Role of impurities on the spark plasmasintering of ZrCx-ZrB2composites[J]. Journal of the European Ceramic Society,2008,28:671-678.
    [49] Guo W M, Yang Z G, Zhang G J. Comparison of ZrB2-SiC ceramics with Yb2O3additive prepared by hot pressing and spark plasma sintering[J]. InternationalJournal of Refractory Metals and Hard Materials,2011,29:452-455.
    [50] Hu C F, Sakka Y, Tanaka H, et al. Microstructure and properties of ZrB2-SiCcomposites prepared by spark plasma sintering using TaSi2as sinteringadditive[J]. Journal of the European Ceramic Society,2010,30:2625-2631.
    [51] Snyder A, Quach D, Groza J R, et al. Spark Plasma Sintering of ZrB2-SiC-ZrCultra-high temperature ceramics at1800℃[J]. Materials Science and EngineeringA,2011,528:6079-6082.
    [52] Medri V, Monteverde F, Balbo A, et al. Comparison of ZrB2-ZrC-SiCComposites Fabricated by Spark Plasma Sintering and Hot-Pressing[J].Advanced engineering materials,2005,7(3):159-163.
    [53] Guo S Q, Kagawa Y, Nishimura T, et al. Elastic properties of spark plasmasintered (SPSed) ZrB2-ZrC-SiC composites[J]. Ceramics International,2008,34:1811-1817.
    [54] Guo S Q, Kagawa Y, Nishimura T, et al. Mechanical and physical behavior ofspark plasma sintered ZrC-ZrB2-SiC composites[J]. Journal of the EuropeanCeramic Society,2008,28(6):1279-1285.
    [55] Monteverde F, Bellosi A. Beneficial effects of AlN as a sintering aid tohot-pressing ZrB2[J]. Advanced engineering materials,2003,5(7):508-512.
    [56] Wang H L, Chen D L, Wang C A, et al. Preparation and characterization ofhigh-toughness ZrB2/Mo composites by hot-pressing process[J]. InternationalJournal of Refractory Metals and Hard Materials,2009,27:1024-1026.
    [57] Guo S Q, Kagawa Y, Nishimura T. Mechanical behavior of two-step hot-pressedZrB2-based composites with ZrSi2[J]. Journal of the European Ceramic Society,2009,29:787-794.
    [58] Chamberlain A L, Fahrenholtz W G, Hilmas G E. High strength Zirconiumdiboride-based ceramics[J]. Journal of the American Ceramic Society,2004,87(6):1170-1172.
    [59] Chamberlain A, Fahrenholtz W, Hilmas G, et al. Oxidation of ZrB2-SiCCeramics Under Atmospheric and Reentry Conditions[J]. RefractoriesApplications Transactions,2005,1(2):1-8.
    [60] Rezaie A, Fahrenholtz W G, Hilmas G E. Effect of hot pressing time andtemperature on the microstructure and mechanical properties of ZrB2-SiC[J].Journal of Materials Science,2007,42:2735-2744.
    [61] Guo W M, Vleugels J, Zhang G J, et al. Effects of Re2O3(Re=La, Nd, Y and Yb)addition in hot-pressed ZrB2-SiC ceramics[J]. Journal of the European CeramicSociety,2009,29:3063-3068.
    [62] LüZ H, Jiang D L, Zhang J X, et al. ZrB2-SiC laminated ceramic composites[J].Journal of the European Ceramic Society,2012,32,(7):1435-1439.
    [63] Zhou P, Hu P, Zhang X H, et al. Laminated ZrB2-SiC ceramic with improvedstrength and toughness[J]. Scripta Materialia,2011,64:276-279.
    [64] Wei C C, Zhang X H, Hu P, et al. The fabrication and mechanical properties ofbionic laminated ZrB2-SiC/BN ceramic prepared by tape casting and hotpressing[J]. Scripta Materialia,2011,65:791-794.
    [65] Wei C C, Zhang X H, Hu P, et al. Microstructure and mechanical properties oflaminated ZrB2-SiC ceramics with ZrO2interface layers[J]. International Journalof Refractory Metals and Hard Materials,2012,30:173-176.
    [66] Zhu S, Fahrenholtz W G, Hilmas G E. Influence of silicon carbide particle sizeon the microstructure and mechanical properties of zirconium diboride-siliconcarbide ceramics[J]. Journal of the European Ceramic Society,2007,27:2077-2083.
    [67] Monteverde F, Bellosi A. Development and characterization ofmetal-diboride-based composites toughened with ultra-fine SiC particulates[J].Solid State Sciences,2005,7:622-630.
    [68] Zhou S B, Wang Z, Sun X, et al. Microstructure, mechanical properties andthermal shock resistance of zirconium diboride containing silicon carbideceramic toughened by carbon black[J]. Materials Chemistry and Physics,2010,122:470-473.
    [69] Zhang X H, Qu Q, Han J C, et al. Microstructural features and mechanicalproperties of ZrB2-SiC-ZrC composites fabricated by hot pressing and reactivehot pressing[J]. Scripta Materialia,2008,59:753-756.
    [70] Qu Q, Zhang X H, Meng S H, et al. Reactive hot pressing and sinteringcharacterization of ZrB2-SiC-ZrC composites[J]. Materials Science andEngineering A,2008,491:117-123.
    [71] Guo S Q, Yang J M, Tanaka H, et al. Effect of thermal exposure on strength ofZrB2-based composites with nano-sized SiC particles[J]. Composites Scienceand Technology,2008,68:3033-3040.
    [72] Liu Q, Han W B, Hu P. Microstructure and mechanical properties of ZrB2-SiCnanocomposite ceramic[J]. Scripta Materialia,2009,61:690-692.
    [73] Sun X, Han W B, Hu P, et al. Microstructure and mechanical properties ofZrB2-Nb composite[J]. International Journal of Refractory Metals and HardMaterials,2010,28:472-474.
    [74] Sun X, Han W B, Liu Q, et al. ZrB2-ceramic toughened by refractory metal Nbprepared by hot-pressing[J]. Materials and Design,2010,31:4427-4431.
    [75]王明福,汪长安,尉磊,等. SiC晶片增韧ZrB2复合陶瓷材料的制备与性能[J].稀有金属材料与工程,2009,38(2):913-915.
    [76] Zhang X H, Wang Z, Sun X, et al. Effect of graphite flake on the mechanicalproperties of hot pressed ZrB2-SiC ceramics[J]. Materials Letters,2008,62:4360-4362.
    [77] Zhou S B, Wang Z, Zhang W. Effect of graphite flake orientation onmicrostructure and mechanical properties of ZrB2-SiC-graphite composite[J].Journal of Alloys and Compounds,2009,485:181-185.
    [78] Zhang X H, Wang Z, Hu P, et al. Mechanical properties and thermal shockresistance of ZrB2-SiC ceramic toughened with graphite flake and SiCwhiskers[J]. Scripta Materialia,2009,61:809-812.
    [79] Wang Z, Wang S, Zhang X H, et al. Effect of graphite flake on microstructure aswell as mechanical properties and thermal shock resistance of ZrB2-SiC matrixultrahigh temperature ceramics[J]. Journal of Alloys and Compounds,2009,484:390-394.
    [80] Hannink R H J, Kelly P M. Transformation toughening in zirconia-containingceramics[J]. Journal of the American Ceramic Society,2000,83(3):461-487.
    [81] Garvie RC, Hannink RHJ, Pascoe RT. Ceramic steel?[M] London: Nature,1975,258:703-704.
    [82]周玉. ZrO2-Y2O3陶瓷的组织结构与力学性能[D].哈尔滨:哈尔滨工业大学,1989.
    [83]葛启录. Al2O3-ZrO2陶瓷材料的显微结构和力学性能[D]哈尔滨:哈尔滨工业大学,1992.
    [84]朱卫忠. ZrO2(Y2O3)陶瓷忠四方相至单斜相转变的研究[D].哈尔滨:哈尔滨工业大学,1994.
    [85] Zhou Y, Ge Q L, Lei T C, et al. Microstructure and mechanical properties ofZrO2-2mol%Y2O3ceramics[J]. Ceramic International,1990,16(6):349-354.
    [86] Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysisof the monoclinic-tetragonal ZrO2system by X-ray diffraction[J]. Journal of theAmerican Ceramic Society,1984,67:119-121.
    [87] Bartolomé J F, Gutiérrez-González C F, Pecharromán C, et al. Synergistictoughening mechanism in3Y-TZP/Nb composites[J]. Acta Materialia,2007,55:5924-5933.
    [88] Basu B, Vleugels J, Van Der Biest O. Development of ZrO2-ZrB2composites[J].Journal of Alloys and Compounds,2002,334:200-204.
    [89] Basu B, Venkateswaran T. Microstructure and Properties of SparkPlasma-Sintered ZrO2-ZrB2Nanoceramic Composites[J]. Journal of theAmerican Ceramic Society,2006,89(8):2405-2412.
    [90] Bakshi S D, Basu B, Mishra S K. Microstructure and mechanical properties ofsinter-HIPed ZrO2-ZrB2composites[J]. Composites Part A Applied Science andManufacturing,2006,37:2128-2135.
    [91] Mukhopadhyay A, Basu B, Das Bakshi S, et al. Pressureless sintering ofZrO2-ZrB2composites: Microstructure and properties[J]. International Journal ofRefractory Metals and Hard Materials,2007,25:179-188.
    [92] Zhang X H, Li W J, Hong C Q, et al. Microstructure and mechanical propertiesof hot pressed ZrB2-SiCp-ZrO2composites[J]. Materials Letters,2008,62:2404-2406.
    [93] Li W J, Zhang X H, Hong C Q, et al. Preparation, microstructure and mechanicalproperties of ZrB2-ZrO2ceramics[J]. Journal of the European Ceramic Society,2009,29:779-786.
    [94] Zhu T, Li W J, Zhang X H, et al. Damage tolerance and R-curve behavior ofZrB2-ZrO2composites[J]. Materials Science and Engineering A,2009,516:297-301.
    [95]李伟杰. ZrO2相变增韧超高温陶瓷基复合材料微观结构及性能研究[D].哈尔滨:哈尔滨工业大学,2009.
    [96] Wang Y G, Liu W, Cheng L F, et al. Preparation and properties of2DC/ZrB2-SiC ultra high temperature ceramic composites[J]. Materials Science andEngineering A,2009,524:129-133.
    [97] Li L L, Wang Y G, Cheng L F, et al. Preparation and properties of2DC/SiC-ZrB2-TaC composites[J]. Ceramics International,2011,37:891-896.
    [98] Sciti D, Guicciardi S, Silvestroni L. SiC chopped fibers reinforced ZrB2: Effectof the sintering aid[J]. Scripta Materialia,2011,64:769-772.
    [99] Yang F Y, Zhang X H, Han J C, et al. Processing and mechanical properties ofshort carbon fibers toughened zirconium diboride-based ceramics[J]. Materialsand Design,2008,29:1817-1820.
    [100] Yang F Y, Zhang X H, Han J C, et al. Characterization of hot-pressed shortcarbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites[J].Journal of Alloys and Compounds,2009,472:395-399.
    [101] Faber K T, Evans A G. Crack Deflection Processes-I. Theory[J]. ActaMetallurgica,1983,31(4):565-576.
    [102]傅绍云,周本濂,龙期威.纤维从弹性基体中的脱粘和拔出[J].金属学报,1992,28(11):514-522.
    [103]何柏林,孙佳.陶瓷基复合材料增韧技术的研究进展[J].粉末冶金工业,2009,19(4):48-53.
    [104]黄勇,汪长安.高性能多相复合陶瓷[M].北京:清华大学出版社,2008:49.
    [105]刘鹏飞,俞学中,陶伟明,等.纤维增强复合材料桥联增韧模型[J].浙江大学学报(工学版),2006,40(5):903-909.
    [106] Becher P F. Microstructural Design of Toughened Ceramics[J]. Journal of theAmerican Ceramic Society.1991,74(2):255-269.
    [107] Zhang X H, Xu L, Han W B, et al. Microstructure and properties of siliconcarbide whisker reinforced zirconium diboride ultra-high temperatureceramics[J]. Solid State Sciences,2009,11:156-161.
    [108] Chen D J, Xu L, Zhang X H, et al. Preparation of ZrB2based hybrid compositesreinforced with SiC whiskers and SiC particles by hot-pressing[J]. InternationalJournal of Refractory Metals and Hard Materials,2009,27:792-795.
    [109] Silvestroni L, Sciti D, Melandri C, et al. Toughened ZrB2-based ceramicsthrough SiC whisker or SiC chopped fiber additions[J]. Journal of the EuropeanCeramic Society.2010,30:2155-2164.
    [110]周曦亚,方培育.自增韧陶瓷复合材料的研究[J].中国陶瓷,2003,39(6):30-32.
    [111] Yan Y J, Zhang H, Huang Z R, et al. In Situ Synthesis of Ultrafine ZrB2-SiCComposite Powders and the Pressureless Sintering Behaviors[J]. Journal of theAmerican Ceramic Society,2008,91(4):1372-1376.
    [112] Zhao H L, Wang J L, Zhu Z M, et al. In situ synthesis mechanism of ZrB2-ZrNcomposite[J]. Materials Science and Engineering A,2007,452-453:130-134.
    [113] Guo Q L, Yang Y H, Li J G, et al. In situ synthesis and properties ofZr2Al3C4/ZrB2composites[J]. Materials and Design,2011,32:4289-4294.
    [114] Sciti D, Silvestroni L, Medri V, et al. Pressureless sintered in situ toughenedZrB2-SiC platelets ceramics[J]. Journal of the European Ceramic Society,2011,31(12):2145-2153.
    [115] Gogotsi G A, Galenko V I, Mudrik S P, et al. Fracture behaviour of Y-TZPceramics: New outcomes[J]. Ceramics International,2010,36:345-350.
    [116] Kuo C W, Shen Y H, Wen S B, et al. Phase transformation kinetics of3mol%yttria partially stabilized zirconia (3Y-PSZ) nanopowders prepared by anon-isothermal process[J]. Ceramics International,2011,37:341-347.
    [117] Rauchs G, Fett T, Munz D, et al. Tetragonal-to-monoclinic phase transformationin CeO2-stabilised zirconia under uniaxial loading[J]. Journal of the EuropeanCeramic Society,2001,21:2229-2241.
    [118] Lin J D, Duh J G. Fracture toughness and hardness of ceria-and yttria-dopedtetragonal zirconia ceramics[J]. Materials Chemistry and Physics,2002,78:253-261.
    [119] Rong T J, Huang X X, Wang S W, et al. State of Magnesia in Magnesia (10.4mol%)-Doped Zirconia Powder Prepared from Coprecipitation[J]. Journal of theAmerican Ceramic Society,2002,85(5):1324-1326.
    [120] Schoenlein L H, Hobbs L W, Heuer A H. Precipitation and ordering in calcia-and yttria-stabilized zirconia[J]. Journal of Applied Crystallography,1980,13(4):375-379.
    [121] Funkenbusch E F, Tran T T. Zirconium oxide fibers and process for theirpreparation[P]. US Pat:4937212,1990-06-26.
    [122] Hamling B H. Metal Oxide Fibers[P]. US Pat:3663182,1972-05-16.
    [123] Hamling B H. Stabilized Tetragonal Zirconia Fiber and Textiles[P]. US Pat:3860529,1972-05-01.
    [124]张定金,夏淑琴.稳定多晶ZrO2纤维的制造,性能及应用[J].陶瓷,1990,(6):51-54.
    [125]何顺爱.氧化锆纤维和制品的制备及烧结研究[D].北京:中国建筑材料科学研究总院,2008.
    [126] Marshall D B, Lange F F, Morgan P D. High-strength zirconia fibers[J]. Journalof the American Ceramic Society,1987,70(8):187-188.
    [127] De G, Chatterjee A, Ganguli D. Zirconia fibers from the zirconiumn-propoxide-acetylacetone-water-isopropanol system[J]. Journal of MaterialsScience Letters,1990,9:845-846.
    [128] Yogo T. Synthesis of polycrystalline zirconia fiber with organozirconiumprecursor[J]. Journal of Materials Science,1990,25:2394-2398.
    [129] Abe Y, Tomioka H, Gunji T, et al. A one-pot synthesis of polyzirconoxane as aprecursor for continuous zirconia fibres[J]. Journal of Materials Science Letters,1994,13:960-962.
    [130] Abe Y, Kudo T, Tomioka H, et al. Preparation of continuous zirconia fibres frompolyzirconoxane synthesized by the facile one-pot reaction[J]. Journal ofMaterials Science,1998,33:1863-1870.
    [131]刘久荣,潘梅,许东,等.由二氯氧锆-醇-醋酸盐体系制备氧化锆纤维[J].硅酸盐通报,2001,20(3):66-69.
    [132]潘梅,刘久荣,盂凡青,等.由醋酸锆前驱体制备ZrO2:连续纤维的过程及研究[J].无机材料学报,2001,16(4):729
    [133]刘久荣,潘梅,许东,等.Sol-gel法制备ZrO2连续纤维的烧结过程的研究[J].山东工业大学学报,2001,31(2):140-146.
    [134] Chakrabarty P K, Chatterjee M, Naskar M K, et al. Zirconia Fiber Mats Preparedby Sol-gel Spinning Technique[J]. Journal of the European Ceramic Society,2001,21:355-361.
    [135] Liu H Y, Hou X Q, Wang X Q, et al. Fabrication of High-strength ContinuousZirconia Fibers and Their Formation Mechanism Study[J]. Journal of theAmerican Ceramic Society,2004,87(12):2237-2241.
    [136] He S A, Li M Q. Injection of Aqueous Slurry for Making Zirconia Fiber[J].China’s Refractories,2009,18(2):19-22.
    [137]刘和义,侯宪钦,王彦玲,等.氧化锆连续纤维的制备进展与应用前景[J].材料导报,2004,18(8):18-21.
    [138]曹丽云,郑斌,黄剑锋,等.工艺因素对ZrO2(f)/PMMA-PMA复合材料抗折强度的影响[J].复合材料学报,2007,24(3):59-62.
    [139] Kane R J, Yue W M, Mason J J, et al. Improved fatigue life of acrylic bonecements reinforced with zirconia fibers[J]. Journal of the mechanical behavior ofbiomedical materials,2010,3:504-511.
    [140]詹红兵,叶阿清,伍友胜.纤维补强SiC基复合材料的研究[J].福州大学学报(自然科学版),1999,27(1):106-109.
    [141]廖荣,胡利明,程之强,等.氧化锆纤维对氮化物复合材料性能的影响[J].硅酸盐通报2006,25(6):76-79.
    [142]华中胜,姚广春,马俊飞,等.制备工艺对合成ZrO2(f)/NiFe2O4复合材料的影响[J].东北大学学报(自然科学版),2011,32(7):976-980.
    [143]金属维氏硬度试验方法[S]. GB4340-84,1984.
    [144]仇沱,马春荣.工程陶瓷弯曲强度试验方法[S].中国建筑材料科学研究院,1986.
    [145]高温结构陶瓷平面应变断裂韧性试验方法[S]. GB75-70-03,1988.
    [146] Becher P F, Wei G C. Toughening Behavior in SiC-whisker-reinforcedAlumina[J]. Journal of the American Ceramic Society,1984,67(12):267-269.
    [147]李庆利,曹建新,赵丽媛,等.球磨制度对压电陶瓷预烧粉体粒度的影响[J].科学技术与工程,2008,18(5):1306-1307.
    [148]杨粉荣,文洪杰,钟勤.陶瓷粉体特性及激光粒度分析中若干影响因素[J].物理测试,2006,24(1):13-15.
    [149]殷海荣,王明华,章春香.球磨时间对钛酸钡介电性能的影响[J].中国陶瓷,2007,2:47-50.
    [150]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2005,11:12-58.
    [151]卢柯,刘学东,胡壮麒.纳米晶体材料的Hall-Petch关系[J].材料究学报,1994,8(5):385-391.
    [152]孟庆昌.透射电子显微学[M].哈尔滨:哈工大出版社,1998:60-65.
    [153]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1999,2:374-424.
    [154]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007:8-12.
    [155]吕珺,郑治祥,金志浩.氧化铝基陶瓷复合材料的阻力曲线行为及其抗热震性能[J].复合材料学报,2001,18(4):76-81.
    [156]席俊,关振铎.工程陶瓷材料的阻力曲线行为[J].现代技术陶瓷,1995(3):22-27.
    [157]李永利,张久兴,乔冠军,等. Al2O3/BN复相陶瓷的R曲线特性[J].硅酸盐学报,2005,33(6):723-726.
    [158] Swain M V. R-curve behavior and thermal shock resistance of ceramics[J].Journal of the American Chemical Society,1990,73:621-628.
    [159] Tajima Y, Urashima K. Fracture mechanics of ceramics[M]. Edited by R. C.Bradt, et al. New York,1992:235.
    [160] Duan K, Mai Y W, Cotterell B. R-curve effect on strength and reliability oftoughened ceramic materials[J]. Journal of Materials Science,1995,30:1405-1408.
    [161]李冬云. SiC/BN层状陶瓷的制备和性能[D].西安:西安交通大学,2004.
    [162]关振铎,李淑琴,杨征. Si3N4-TiN/BN层状陶瓷材料阻力曲线及其增韧机制的研究[J].硅酸盐学报,2001,29(1):8-12.
    [163] Moon R J, Bowman K P. Fracture resistance curve behavior of multilayeredalumina zirconia composites produced by centrifugation[J]. Acta Materialia,2001,49(6):995-1003.
    [164]李冬云,乔冠军,金志浩. SiC/BN层状陶瓷耐损伤性能[J].复合材料学报,2003,20(6):21-25.
    [165] Rauchs G, Fett T, Munz D. R-curve behavior of Ce-TZP zirconia ceramics[J].Engineering Fracture Mechanics,2002,69(3):389-340.
    [166] Marshall D B, Lawn B R, Chantikul P. Residual stress effects in sharp contactcracking: strength degradation[J]. Journal of Materials Science,1979,14:225-235.
    [167] Ramachandran N, Shetty D K. Rising crack growth resistance behavior oftoughened alumina and silicon nitride[J]. Journal of the American CeramicSociety,1991,74(10):2634-2641.
    [168] Anstis G R, Chantickul P, Lawn B R, et al. A critical evaluation of indentationtechniques for measuring fracture toughness:, Direct crack measurements[J].Journal of the American Ceramic Society,1981,64(2):533-538.
    [169] Cook R F, Lawn B R, Fairbanks C J. Microstructure strength properties inceramics: effect of crack size on toughness[J]. Journal of the American CeramicSociety,1985,68(11):604-615.
    [170]张光磊,邢朋飞,高辉,等.脆性陶瓷材料的增韧方法及其应用现状[J].材料开发与应用,2008,23(2):77-82.
    [171] Warrier S G, Majumdar B S, Miracle D B. Interface Effects on Crack Deflectionand Bridging during Fatigue Crack Growth of Titanium Matrix Composites[J].Acta Materialia,1997,45(12):4969-4980.
    [172] Song G M, Zhou Y, Sun Y, et al. Modelling of Combined Reinforcement ofCeramic Composites by Whisker and Transformation Toughening[J]. CeramicsInternational,1998,24:521-525.
    [173] Song G M, Zhou Y, Sun Y. Modeling of fiber toughening in fiber-reinforcedceramic composites[J]. Ceramics International,1999,25:257-260.
    [174] Becher P F. Microstructural Design of Toughened Ceramics[J]. Journal of theAmerican Ceramic Society,1991,74(2):255-269.
    [175] Evans A G, Cannon R M. Toughening of Brittle Solids by MartensiticTransformations[J]. Acta Metallurgica,1986,34(5):761-800.
    [176] Kosmac T, Wagner R, Claussen N. X-Ray Determination of TransformationDepths in Ceramics Containing Tetragonal ZrO2[J]. Communications of theAmerican Ceramic Society,1981, C:72-73.
    [177] Kim H S, Kim M K, Kang S B, et al. Bending Strength and Crack-healingBehavior of Al2O3/SiC Composites Ceramics[J]. Materials Science andEngineering A,2008,483-484:672-675.
    [178] Lee S K, Ishida W, Lee S Y, et al. Crack-healing Behavior and Resultant StrengthProperties of Silicon Carbide Ceramic[J]. Journal of the European CeramicSociety,2005,25:569-576.
    [179] Chou I A, Chan H M, Harmer M P. Effect of Annealing Environment on theCrack Healing and Mechanical Behavior of Silicon Carbide-reinforced AluminaNanocomposites[J]. Journal of the American Ceramic Society,1998,81(5),1203-1208.
    [180] Lee S K, Ono M, Nakao W, et al. Crack-healing Behaviour ofMullite/SiC/Y2O3[J]. Journal of the European Ceramic Society,2005,25:3495-3502.
    [181] Nakao W, Ono M, Lee S K, et al. Critical Crack-healing Condition for SiCWhisker Reinforced Alumina Under Stress[J]. Journal of the European CeramicSociety,2005,25:3649-3655.
    [182] Ando K, Houjyou K, Chu M C, et al. Crack-healing Behavior of Si3N4/SiCCeramics under Stress and Fatigue Strength at the Temperature of Healing(1000℃)[J]. Journal of the European Ceramic Society,2002,22:1339-1346.
    [183] Choi S R, Tikare V. Crack Healing Bahavior of Hot Pressed Silicon Nitride Dueto oxidation[J]. Scripta Materialia,1992,27(8):1263-1268.
    [184] Song G M, Pei Y T, Sloof W G, et al. Oxidation-induced Crack Healing inTi3AlC2Ceramics[J]. Scripta Materialia,2008,58:13-16.
    [185] Clougherty E V, Pober R L, Kaufman L. Synthesis of Oxidation Resistant MetalDiboride Composites[J]. Transactions Metal Society,1968,242:1077-1082.
    [186] Lebugle A, Montel G. Comparative Study of the Oxidation of Zirconium,Hafnium, and Titanium Diborides[J]. Revue Internationale des HautesTemperatures et des Refractaires,1974,11(3):231-244.
    [187] Parthasarathy T A, Rapp R A, Opeka M, et al. A model for the oxidation of ZrB2,HfB2and TiB2[J]. Acta Materialia,2007,55:5999-6010.
    [188] Chen C M, Zhang L T, Zhou W C, et al. High temperature oxidation ofLaB6-ZrB2eutectic in situ composite[J]. Acta Materialia,1999,47:1945-1952.
    [189] Ma Y J, Yao X F, Hao W F, et al. Oxidation mechanism of ZrB2/SiC ceramicsbased on phase-field model[J]. Composites Science and Technology,2012,72:1196-1202.
    [190] Mogilevsky P, Zangvil A. Modeling of oxidation behavior of SiC-reinforcedceramic matrix composites[J]. Materials Science and Engineering A,1999,262:16-24.
    [191] Zhu T, Li W J, Zhang X H, et al. Oxidation behavior of ZrB2–SiC–ZrO2ceramiccomposites in the temperature range of800-1200℃[J]. Materials Chemistry andPhysics,2009,116:593-598.
    [192] Cecilia B, Teodoro V, Mario T. Plasma Spray Deposition and High TemperatureCharacterization of ZrB2-SiC Protective Coatings[J]. Surface and CoatingsTechnology.2002,155:260-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700