高体积分数SiC颗粒增强Al基复合材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高体积分数SiC/Al复合材料具有高热导率、低密度和较高的力学性能等优点,而且可通过调整SiC体积分数来调整膨胀系数实现与各种基板的热匹配,使其在微波集成电路、功率模块和微处器盖板等领域得到广泛应用。高体积分数SiC/Al复合材料加工困难,开发能近净成形复杂形状SiC/Al复合材料构件的方法成为目前这一领域的研究热点。
     本文探讨了高体积分数SiC/Al复合材料的制备方法,通过粉末注射成形和压力浸渗法成功地制备了近净成形的高体积分数SiC/Al复合材料,首先用粉末注射成形制备出具有一定体积分数的碳化硅预制件,其中采用粗细碳化硅粉末搭配和新型粘结剂可以获得较高的粉末装载量(65 vol.%),注射坯60℃溶剂中脱脂9小时,可将粘结剂中的可溶性组分脱除70%以上并有效地避免了热脱脂缺陷的形成;接着施加压力使铝熔体浸渗到预制件的孔隙中形成接近全致密的复合材料,体积分数为65%的复合材料的典型性能如下:密度3.00g.cm~(-3),30-100℃热膨胀系数7.18×10~(-6).K~(-1),热导率175W/m.K,强度431MPa,可以满足电子封装的使用要求。
     本文通过金相显微技术、扫描电镜分析、能谱分析、X射线衍射分析、SEM等现代分析手段开展了大量的实验工作及理论分析,主要得到以下结论:热脱脂后的碳化硅预制件的孔隙率符合粉末装载量并具有很高的开孔率。复合材料致密度高,粗细碳化硅粉末可以均匀地分布在铝基体上,XRD分析和TEM证实了碳化硅和铝基体并没有发生界面反应。复合材料断裂模式基本为增强体解理类型,这是由于大粒径碳化硅颗粒很难和基体协调变形;碳化硅粉末的粒径越大,复合材料的力学性能就越差。利用Hasselman and Johnson方程预测了复合材料的导热性能,结果符合样品导热性能的变化趋势。最后分析了温度,碳化硅体积分数、粒径和深冷处理等对复合材料热膨胀性能的影响。
SiC/Al composites with high volume fraction have the properties of high thermal conductivity,low density and high mechanical properties, which can also be adjusted by the reinforcement according to their usage. Therefore,SiC/Al composites have received great interest as potential materials for most the electronic packaging and thermal management. However,as the high workability of the SiC/Al composites with high volume fraction,to develop a new method to manufacture the composite pasts with near-net shape and complex geometry have become a hot point in this composite area.
     In this work,powder injection molding and pressure infiltration have been employed to manufacture the SiC/Al composites with high volume fraction and near-net shape.Firstly,the SiC perform with the desired volume fraction was prepared by powder injection molding.The feedstock with high powder(65 vol.%)is easy to obtain by the means of using the SiC power with bimodal particle size and a new binder system. Most of the binder is extracted after 9 hours' solvent debinding at 60℃, which can avoid the appearance of the defects during the thermal debinding.Secondly,the molten alloy was pressure infiltrated into the pores among the performs to form the dens composites.The as-prepared SiC/Al composite(65 vol.%)with the properties of density 3.00g·cm~(-3), coefficient of thermal expansion 7.18×10~(-6)·K~(-1)(30~100℃),thermal conductivity 175W/m.K and bending strength 431MPa can fully meet the requirements of the electric package.
     The composites have been investigated by the means of Metallographic analysis,XRD,Emerge spectrum,SEM and TEM.The major conclusion in the current paper is introduced as follows:the SiC preforms have the desired volume fraction and high open pores ratio.The coarse and fine SiC particles distribute evenly dense composites,and there is no interface reaction observed according to the XRD and TEM analysis.The mechanical properties are desired by the size of the coarse particles,the larger of the coarse particles,the worse of the mechanical properties.The thermal conductivity of the composites is accounted according to Hasselman and Johnson equation,and the results show the same rules among the composites.Finally,effects of the temperature,the volume fraction and particle size of the reinforcement and the cryogenic treatment on the coefficient of thermal expansion was investigated.
引文
[1]杨邦朝.MCM技术及应用[M].北京:电子科技大学出版社,2001:18
    [2]田民波.电子封装技术和封装材料[J].半导体情报,1995,(4):42-61
    [3]李枚.微电子封装技术的发展与展望[J].半导体技术,2000,5:1-4
    [4]胡志勇.集成电路的发展和组装工艺地考虑[J].电子工艺技术,1998,119,(6):234
    [5]聂存珠,赵乃勤.金属基电子封装复合材料的研究进展[J].金属热处理,2003,28(6):1-5
    [6]喻学斌等.金属基电子封装复合材料的研究现状及发展助[J].材料导报,1994,(3):64-66
    [7]Rawal S.Metal-matrix composites for space applications[J].JOM,2001(4):14
    [8]张蜀平,郑宏宇.电子封装技术的新进展[J].电子与封装.2004,4(1):12-14
    [9]D.K.White,I.S.Smith,A.Silzars.New Ground in Hybrid Packaging[J].Hybrid Circuit Technology.1990,12(1):14-19
    [10]Carl Zweben.Metal-Matrix composites for electronic packaging[J].JOM,1992,44(7):15-23
    [11]Weir Cheng,JiangXiao-lin.Study on the Thermal Failure of Metal Substrates in Electronic Packaging[J].Journal of experimental mechanics,2003,18(1):17-22
    [12]周贤良,吴江晖等.电子封装用金属基复合材料的研究现状[J].南昌航空工业学院学报,2001,15(1):11-15
    [13]Cai Xia Huang,Wei dong.Morphology of the Water in Plastic Electronic Packaging Materials[J].Chinese Journal of Material Research,2002,12(5):11-13
    [14]武高辉,张强等.SiC_p/Al复合材料在电子封装应用中基础研究[J].电子元件与材料,2003,22(6):27-29
    [15]马伯信.新型铝基复合材料的研究与应用展望[J].固体火箭技术,1995,18(3):5
    [16]武高辉,张强,姜龙涛,陈国钦,修子扬.SiCp/Al复合材料在电子封装应用中的基础研究[J].电子元件与材料,2003,22(6):63-66
    [17]熊兆贤.材料物理导论[M].北京:科学出版社,2001:82
    [18]杨涤心.无压自浸制备金属基复合材料的工艺研究[J].兵器材料科学与工程,2001,24(4):42
    [19]王晓虹,冯培忠,强颖怀.SiCp增强铝基复合材料的制备与应用的研究进展[J].轻合金加工技术.2002,13(12):9-11
    [20]黄强,顾明元,全燕萍.电子封装材料的研究现状[J].材料导报,2000,1(9):28-32
    [21]R.Arpo'n,J M Molina,R A Saravanan,C García-Cordovilla,E.Louis,J.Narciso.Thermal expansion behavior of aluminium-SiC composites with bimodal particle distributions[J].Acta Materialia,2003(51):3145-3156
    [22]M.K.Premkumar,W.H.Hunt,R.R.Sawtell.Aluminum composite materials for multichip modules.JOM,1992,(7):24-28
    [23]Lee Hyo S,et al.Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic package[J].J Mater Sci,2000,35(24):6231-6236
    [24]Kevin A Moores,Yogendra K Joshi.High performance packaging materials and architectures for improved thermal management of power electronics[J].Future Circuits International,2001,7:45-49
    [25]Bugeau J L,et al.Aluminum silicon carbide for high performance microwave packages[J].Microwave Symposium Digest,1995,3(2):16-20
    [26]郑小,胡明,周国柱.新型电子封装材料的研究现状及展望[J].佳木斯大学学报,2005,23(3):461-464
    [27]Y Flom,R.J.Aresenault.Effect of particle size on fracture toughness of SiC/Al composite materials[J].Acta Metall.1989,37:2413
    [28]Kny E.Properties and application of binary pseudo alloy of Cu and refractory metals.Proceedings of the 12th international plan see seminar[C].Plan see AG,Reutte,May 1989
    [29]Davla M.IEEE Transactions on Components Packing Technology-part A,1998,21(3):87
    [30]Mark A.Occhionero,Richard W.Adams.铝碳化硅为电子封装提供热管理解决方案.电子产品世界,2004,(20):75-77
    [31]向华,曲选辉,肖平安,李乐思.SiC/Al电子封装复合材料的现状和发展[J].材料导报,2003,(2):54-57
    [32]胡国新,杨丽辉,田答蔚.离心渗铸充型过程中伴随有瞬态固化与再熔现象的流场变化规律[J].化工学报,2004,55(5):794-799
    [33]胡国新,田芩蔚,王明磊等.离心渗铸工艺中铝熔体在SiC多孔介质内的渗流传热过程[J].复合材料学报,2002,19(6):25-30
    [34]秦孝华,韩维新,戎利建.等离心铸造法制备陶瓷颗粒增强Al合金基功能梯度复合管闭[J].金属学报,2001.37(10):1117-1120
    [35]谢盛辉,曾燮榕,汤皎宁.SiC/Al复合材料的离心熔渗法制备及其性能[J]. 特种铸造及有色合金,2003,(5):3-7
    [36]黄泽文.碳化硅颗粒增强铝基复合材料在高速机械中的应用.首届海内外中华青年学者材料科学技术研讨会论文摘要集.1995,64
    [37]王治海.碳化硅颗粒增强铝合金复合材料特性[J].中国有色金属学报,1995,5(3):123-125
    [38]平延磊,贾成厂,曲选辉等.SiC/Al电子封装复合材料预成形坯的制备[J].北京科技大学学报,2004,26(3):301-305
    [39]Hunt M.Progress in powder metal composites[J].Materials Engineering,1990,107(11):33-36
    [40]欧阳柳章,罗承萍,隋贤栋,等.SiCp/Al复合材料的制造及新动向[J].铸造,2000,49(1):17-20
    [41]White,DannyR,Urquhart,etal.Metal matrix composites[P].UnitedStates Patent:5395701,1995
    [42]朱炳琨.无压浸渗制备SiCp/Al复合材料[J].机械工程材料,1999,23(2):30-33
    [43]张少卿,崔岩,宋颍刚.无压浸渗制备的SiC/Al复合材料的微观组织研究[J].工程材料.2000,(11):3-6
    [44]Rquhart A W.Molten metals MMCs CMCs[J].Advanced Materials and Process,1991,33(7):26-28
    [45]E Parras-Mede'cigo,M I Pech-Canul,M Rodríguez-Reyes,A Gorokhovsky.Effect of processing parameters on the production of bilayer-graded Al/SiCp composites by pressureless infiltration[J].Materials Letters,2002(56):460-464
    [46]Shubin Ren,Xinbo He,Xuanhui Qu,Islam S.Humail,Yan Li.Effect of Si addition to Al-8Mg alloy on the microstructure and thermo-physical properties of SiCp/Al composites prepared by pressureless infiltration[J].Materials Science and Engineering,2007 138:263-270
    [47]张少卿,崔岩,王美炫,宋颍刚.碳化硅颗粒增强铝基复合材料的无压浸渗反应机理探讨[J].材料工程,2001(12):8-12
    [48]Hunt M.Electronic packaging[J].Materials Engineering,1991,108(1):24-25
    [49]Aghajanian M K et al.The fabrication of metal matrix composites by a pressureless infiltration technique[J].Journal of Materials Science,1991,26(2):447-454
    [50]Urquhart A W.Molten Metals Sire MMCs,CMCs[J].Advanced Materials and Processes,1991,140(7):25-29
    [51]Pech-Canul M I,Katz R N,et al.Optimum conditions for pressureless infiltration of SiCp preforms by aluminum alloys[J].J Mater Proc Technol.2000.108:68-71
    [52]Lee K,et al.Fabrication and characteristics of Al6061/SiC_p composites by pressureless infiltration technique[J].J Mater Sct.2001,36:3179-3182
    [53]Chen Y,et al.Aluminium-matrix silicon carbide whisker composites fabricated by pressureless infiltration.J Mater Sci,1996,31:407-410
    [54]Pech-canul M I,Katz R N,Makhloul M.The role of silicon in wetting and pressureless infiltration of SiC_p preforms by aluminum alloys[J],J Mater Sci,2000,35:2167-2170
    [55]张建云,华小珍,周贤良.电子封装用SiC/Al复合材料渗透法制备及渗透机制[J].金属功能材料,2002,9(1):26-28
    [56]石锋.无压浸渗法制备SiC/Al复合材料的研究:[D].长沙:湖南大学,2001.1.
    [57]王涛.铝渗碳化硅电子封装材料的热物理性能:[D].西安:西北工业大学,2003.3
    [58]朱炳琨.无压浸渗法制备SiC/Al复合材料.机械工程材料,1999,23(2):30
    [59]崔岩.国内首台无压浸渗专用设备建成并正式投入使用.材料工程,2001,(9):38
    [60]张少卿,张少卿,崔岩,王美炫,宋颖刚.SiC粉末增强铝基复合材料的无压浸渗反应机理探讨.材料工程,2001,(12):8-11
    [61]崔岩,张少卿,等.高体分SiC/Al复合材料无压浸渗近净成形制备加工技术研究[C].2000年材料科学与工程新进展(下).2000年中国材料研讨会论文集:1591
    [62]崔岩.无压浸渗法制备高性能SiC/Al电子封装复合材料[C].2002年材料科学与工程进展.2002年中国材料研讨会论文集.1080
    [63]俞剑,喻学斌,张国定.真空压力浸渗法制备SiCp/Al的研究[J].材料科学与工艺,1995,3(4):6-10
    [64]喻学斌,张国定,吴人洁.真空压渗铸造铝基电子封装[J].复合材料研究材料工程,1994,(6):9-11.
    [65]熊德赣,程辉,刘希从,赵恂,鲍小恒,杨盛良,堵永国[J].AlSiC电子封装材料及构件研究进展.材料导报,2006,20(3):111-115
    [66]Boq-Kong Hwu.Su-lien Lin.Min-Ten Jahn.Effects of process parameters on the properties of squeeze-cast SiCp-6061 Al metal-matrix composite[J].Mater.Sci.Ene,1996,207:135-141
    [67]张强,陈国钦,武高辉.等含高体积分数SiC的铝基复合材料制备与性能[J]. 中国有色金属学报,2003,3(5):1 180-183
    [68]Eloman S.et al.Thermal expansion response of pressure infiltrated SiC/Al metal-matrix composites[J].J Mater Sct,1997,32:2131-2135
    [69]Murty B S,Thinker S K,et al.On the infiltration behave for of Al,Al-Li and Mg melt through SiCp bed[J].Metall Mater Trans A,2000,31:319-321
    [70]杨金龙,等.精细陶瓷成形上艺现状及趋势[J].材料导报,1995,9(3):35-38
    [71]张崎.功率微电子封装用铝基复合材料[J].微电子技术,1999 27(2):37-41
    [72]Liu D M,Tseng W J.Influence of solids loading on the green microstructure and sintering behaviour of ceramic injection mouldings[J].Mater.Sci.1997,32:6475-6479
    [73]Liu D M,Yseng W J.Influence of Debinding Rate,Solid loading and binder formulation on the green microstructure and sintering behaviour of ceramic injection mouldings[J].Cerm Inter,1998,24:471-474
    [74]黄培云主编.粉末冶金原理[M].第2版.北京:冶金工业出版社,1997
    [75]叶斌,何新波,任淑彬,曲选辉.无压浸渗法制备高体分比SiCp/Al[J].北京科技大学学报,2006,1(28):269-273
    [76]R.M.German.Power Injection Molding.曲选辉.中南工业大学出版社2001:27
    [77]R.Arpon,J M Molina,R A Saravanan,C.Garcia-Cordovilla,E.Louis,J.Narciso.Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions.Acta Materialia,2003,51(11):3145-3156
    [78]卫芝贤,欧海峰,宫喜军,等.表面活性剂PEG在掺锑纳米SnO_2粉末氧化共沉淀制备中的作用[J].过程工程学报,2005,5(3):305-308
    [79]付胜聪,肖汉宁,李玉平,等.纳米TiO_2表面吸附聚乙二醇及其分散稳定研究[J].无机材料学报,2005,20(2):310-316
    [80]胡书春,周祚万,楚珑晟.纳米PEG/Fe_3O_4磁流体的制备[J].西南交通大学学报,2004,39(6):805-808
    [81]徐明霞,方洞浦,郭瑞松.PEG在ZrO_2前驱体表面的吸附及改性作用[J].天津大学学报,1994,27(2):172-178
    [82]Bialo D,et al.Water soluble binder for MIM[C].PM 94,Paris,1994.2:1121-1125
    [83]Chung C et al.A new binder system for powder injection molding[J].P/M,1991,21:193-196
    [84]Anwar M Y,et al.A novel binder system for powder injection molding.adv P/M.1992,6:15-18
    [85]Cao M Y,et al.A novel water soluble solid polymer solution binder for powder injection.In:PIMs.Princeton:MPIF,1992,85:71
    [86]Mater S A,Edirisinghe M J,Evans J R G.Modeling the removal of organic vehicle from ceramic or metal moulding:the effect of gas permeation on the incidence of defects[J].J Mater Sci,1995,30:3805-3810
    [87]Kurauchi T,Ohta T.J Mater Sci,1984,19(5):1699-1709
    [88]Viala J C.et al.J Mater Sci,1990,25:1842
    [89]邱鑫.挤压铸造SiCp/AZ91镁合金复合材料的显微结构与性能:[D].哈尔滨:哈尔滨工业大学,2006.11
    [90]J M Molina,J Narciso L,Weber,A.Mortensen,Elouis.Thermal conductivity of SiC/Al composites with monomodal and bimodal particle size distribution.Materials Science and Engineering A,2008,481(1):483-488
    [91]Carl Zweben.Metal-matrix composites for Electronic Packaging.JOM,1992,(7):25-29
    [92]Hyo.S.Lee,Kyung Y.Jeon,Hee Y.Kim.Fabrication Process and Thermal Properties of SiC/Al Metal Matrix Composites for Electronic Packaging Applications[J].Journal of Materials Science,2000,35(24):6231-6236
    [93]张涛,徐烈,熊炜,赵兰萍.低温真空下Cu-Cu界面间接触热阻的实验研究[J].低温工程,1999,108(2):19-26
    [93]赵兰萍,徐烈,李兆慈,孙恒.固体界面间接触导热的机理和应用研究[J].2000,116(4):29-34
    [94]石零,王惠龄,赵淡.调制光热法低温接触界面层热阻研究[J].低温工程,2001,2:38-40
    [95]Maxwell,C J.A Treatise on Electricity and Magnetism[M],Oxford:Clarendon,1873:253
    [96]Hasselman,D P H.and Johnson,L F.Effective thermal conductivity with interfacial thermal barrier resistance[J].Journal of Composite Materials,1987,21:508-515
    [97]A.L.Geiger,D.P.H.Hasselman,P.Welch.Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperatures.Acta Materialia,1997,45(9):3911-3914
    [98]J M Molina,M Rheme,J Carron and L Weber.Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles [J].ScriptaMaterialia, 2007, 58(5): 393-396
    
    [99] Geiger, A L, Hasselman, D P H, Donaldson, K Y .Effect of reinforcement particle size on the thermal conductivity of a particulate silicon carbide-reinforced aluminium-matrix composite. Journal of Materials Science Letters, 1993, 12(6): 420-423
    
    [100] Turner P S. Thermal expansion stresses in reinforced plastic [J]. J Res NBS 1946, 37: 239-250
    
    [101] Kerner E H. The elastic and thermoplastic properties of composites [J]. Proc. Phys. Soc, 1956, 69: 808-811
    
    [102] Schapery R. A. Thermal Expansion at Elevated Temperatures [J]. Carbon-fiber Composites, 1968(2): 380-384
    
    [103] R Arpon, J M Molina, R A Saravanan. Thermal Expansion Coefficient and Thermal hysterresis of SiC/Al composites with bimodal particle distributions [C] .Materials Science Forum 2003: 2187-2192
    
    [104] Byung G, Kim, S L Dong, Su D Park. Effects of thermal processing on thermal expansion coefficient of a 50 vol.% SiCp/Al composite. Materials Chemistry and Physics, 2001, 72(1): 42-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700