用户名: 密码: 验证码:
大豆油分和蛋白质含量遗传效应及与环境互作效应QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆起源于中国,是世界范围内重要的经济作物,也是重要的植物油和蛋白来源,在国民生产生活中具有重要作用。目前我国生产上高油和高蛋白大豆品种还不能满足生产生活需要,迫切需要利用现代分子育种技术改良现有大豆品种的油分和蛋白质含量。探讨大豆油分和蛋白含量遗传、QTL(数量性状座位)定位、GE互作(基因型和环境互作)及上位性效应对于开展大豆优质育种、改善大豆油分和蛋白品质具有重要的理论及实践意义。不同研究机构对于大豆油分和蛋白含量的遗传及QTL定位进行了广泛而深入的研究,但是结果一致性较低,原因是大豆油分和蛋白含量性状受环境条件影响明显,以前的研究虽然分析了不同遗传背景对大豆油分和蛋白含量QTL定位的影响,进行了1年或2年多点实验,但是受统计方法和分析软件限制忽略了GE互作和上位性效应。研究表明GE互作和上位性效应对于植物表型变异影响显著,因此,有必要分析GE互作和上位性效应对大豆油分和蛋白含量的影响,研究作用机制,为大豆油分和蛋白优质育种及分子生物学研究提供必要的理论依据。而且大豆油分和蛋白含量性状都属于多基因控制的数量性状,对其数量性状位点进行分析和定位,在分子辅助育种上具有重要指导意义;大豆油分和蛋白含量在不同环境条件下动态稳定能够保证优质增收,但是还没有见到关于大豆油分和蛋白含量稳定性的相关研究,为分析大豆油分和蛋白含量稳定性的遗传、QTL主效应、GE互作及上位性特性,本文利用QTL Maper 1.6版本分析了大豆油分和蛋白含量的shukla方差,明确了大豆油分和蛋白稳定性的遗传及分子机制。
     本研究利用源自美国大豆Charleston和中国品种东农594杂交获得的147个株系组成的重组自交系群体,在2007、2008年和2009年3个不同的地点对大豆的油分和蛋白质含量进行了遗传分析;定位了控制大豆油分和蛋白质含量的QTL;分析了大豆油分和蛋白含量的GE互作、上位性效应和大豆油分和蛋白含量稳定性QTL的主效应、上位性效应和GE互作效应。
     利用P1(亲本1)、P2(亲本2)和RIL(重组自交系)群体世代联合分析方法,分别对三点三年的不同环境中组合的油分和蛋白含量进行主基因+多基因混和遗传模型分析,结果表明,大豆油分含量遗传在2007年地点1(红兴隆农场)、2(佳木斯),2008年地点1和2009年地点2均为多基因遗传模型;在2007年地点及2008年地点2、地点3(哈尔滨)均为3对主基因+多基因遗传模型,2009年地点1和3均为2对主基因+多基因遗传模型。蛋白的各个年份地点的最适模型在2007年地点1和3为多基因遗传模型,其它各年各点均为2对主基因+多基因遗传模型。
     利用符合区间作图法(CIM)和混合区间作图法(MIM)联合对大豆油分和蛋白含量进行QTL定位,互相验证和补充。在三点三年共检测到39个控制油分QTL,位于16个连锁群,平均每个连锁群分布2.44个QTL,其中3个连锁群聚集了15个QTL,位于B1、C2和G连锁群上的特定区域内,但是解释的表型变异都很小,不能被重复检测到;利用CIM和MIM方法共检测到23个控制大豆蛋白含量的QTL,分布在14个不同的连锁群A1、B1、C1、C2、D1a、D1b、E、F、G、I、J、K、L和O,平均每个连锁群分布1.64个QTL,控制大豆蛋白QTL在连锁群C2和Dla被集中检测到,共12个,在这2个连锁群上可能存在较多的控制大豆蛋白含量基因。
     大豆油分和蛋白QTL存在明显的环境效应。qOIL12-1在7-3和9-1利用CIM和MIM方法聚能检测到,在9-3利用MIM方法能够被检测到;qOIL3-1在7-2、9-2和9-3利用CIM和MIM方法能够被检测到,说明控制大豆油分含量的基因能够在同一地点不同年份间稳定表达;而qOIL2-1在2009年三个地点利用CIM和MIM方法也能够被检测到,说明控制大豆油分含量的基因能够在同一年份不同地点稳定表达。说明油分含量有明显的环境效应,但是在特定条件下能够检测到在各个环境中稳定表达的QTL。说明蛋白含量具有明显环境互作效应;控制蛋白含量的QTL在2007年和2008年各点没有重复出现,说明蛋白含量受环境影响较大,但是在特定条件下能够检测到在各个环境中稳定表达的QTL。
     利用方差分析联合累加分布方法分析表明,大豆油分和蛋白含量上位性互作普遍存在,而且存在环境互作效应。综合分析一点三年、一年三点和三点三年的主效、上位性效应和环境互作效应分析可知,主效QTL在各点各年稳定存在,但是一致性较差,说明受环境条件影响较大。主效QTL解释的总表型变异值均高于上位性QTL解释的表型变异值,远大于上位性效应和环境互作效应解释的表型变异值,说明,主效QTL是最主要的,QTL上位性效应和上位性环境互作效应均存在,但是上位性效应解释的表型变异远大于上位性环境互作影响的表型变异,因此,在重视主效QTL同时,也要考虑QTL的上位性效应,以研究基因互作的具体机制,为分子辅助选择提供重要的理论依据。
     利用三点三年数据估算的Shukla稳定性方差对大豆油分和蛋白含量进行了遗传和QTL分析。遗传分析表明大豆油分含量稳定性的最优遗传模型为E-1-1,即加性上位性遗传模型,大豆蛋白含量稳定性最优遗传模型为E-1-0。利用复合区间作图法(CIM)检测大豆油分稳定性QTL得到4个QTL,为qOIL7-9、qOIL8-3、qOIL15-2和qOIL12-2位于染色体D1a、D1b、J和O,贡献率分别为5.33%、14.61%、5.83%和5.37%,共解释31.14%表型变异。阈值最高的QTL(3.52)解释的表型变异也最大(14.61%),具有潜在的应用价值;检测大豆蛋白含量稳定性QTL得到2个QTL,为qPRO1-6和qPRO17-2,位于染色体A1和L,贡献率分别为4.70%和5.73%,共解释10.43%表型变异。大豆油分和蛋白含量稳定性QTL都表现出明显的上位性效应和GE互作效应。本研究鉴定到的控制大豆油分和蛋白含量稳定性的QTL和公共图谱上相应的QTL有非常好的一致性,而且是控制大豆油分、蛋白、产量性状及其它性状的基因集中分布连锁群区段,调控代谢能力较高,具有较强的适应环境条件变化的能力,能够保持油分和蛋白等性状相对于环境变化的稳定性,是非常重要的连锁群区段。
     本研究对大豆油分和蛋白含量进行的遗传和QTL定位分析为主效QTL精细定位和分子辅助育种提供了理论依据,大豆油分和蛋白的稳定性遗传及QTL定位、GE互作和上位性互作分析为大豆的稳产优质育种提供了一条新的途径好方法,所定位的QTL将对大豆稳产、优质新品种的选育具有重要的理论指导意义。
Soybean (Glycine max(L) Merr.) is the most important economic crops, originating from China.Soybean provides vegetable oil and protein for people and livestock. At present, the soybean varieties with high oil or protein content can not satisfy the demand as food or diet in China, which can be alleviated the urgent need by breed more soybean varieties with high oil or protein content than before. Molecular assistant selection (MAS) can facilitate it. To date, many studies on the genetics of oil and protein content, QTL mapping, GE effect and epistatic effect between QTL loci can help improve the quality of soybean seed. However, most results about genetics of oil content and protein content of soybean was not consistent, indicating that the oil and protein content of soybean was sensitive to environmental change. Many soybean varieties were introduced to analyze the effect of genetic background and planted in different locations and different years to clarify the environment effect. However, the GE effect and epistatic effect between QTL loci were neglected as the limitation of statistic method and no help of analysis software, nevertheless, which affected the phenotypic variation with a higher proportion. So it is necessary to clarify the effect of environmental change to GE and epistatic effect that can improve the efforts of MAS. To date, no research was reported to analyze the GE effect and epistatic effect in three years and three locations simultaneously.
     The population of 147 recombination inbred lines (RIL) derived from the cross of America cultivar Charleston and Chinese variety Dongnong 594 was planted in Harbin, Hongxinglong and Jiamusi in the year of 2007,2008 and 2009 simultaneously to analyze the G×E effect and epistatic effect; As the yield of oil or protein changed significantly resulted in the environmental change, QTL controlled the stability of oil and protein content was mapped using transforming method of shukla ANOVO with data of oil or protein content. The software MGDH1-4 with mixed model approach was used to analyze genetic models with data from parent 1, parent 2 and RIL population. Software QTL Maper version 1.6 was used to analyze the main effect, epistatic effect and GE effect.
     In current study, the genetic model of oil content of different year and location was observed as follows:multiple gene model in location 1 (Hong xinglong),2 (Jia musi) in 2007, and main genes of three pairs with multiple gene model in location 2,3 (Harbin) in 2007 and 2008, and main genes of two pairs with multiple gene model in location 1 and 3 in 2009; The genetic model of protein content of different year and location was observed as follows:multiple gene model in location 1,3 in 2007, and main genes of two pairs with multiple gene model in locations and years except location 1,3 in 2007.
     QTL controlling oil content and protein content of soybean was estimated by CIM and MIM which is supplementary and verified each other. Thirty-nine QTL controlling oil content were identified, which located sixteen linkage groups across 2007.2008 and 2009 in three locations. Fifteen QTL clustered to three linkage groups, B1, C2 and G, which R2 was small and no repeat in either years or locations; Twenty-three QTL controlling protein content were identified, which located fourteen linkage groups across 2007,2008 and 2009 in three locations. Twelve QTL clustered to two linkage groups, C2 and Dla, which R2 was small and no repeat in either years or locations.
     G×E effect was observed both for the QTL of oil content and protein content. Such as, qOIL12-1can be identified in location 3 in 2007 and in location 1 in 2009 by CIM and MIM, and in location 3 in 2009 by MIM; qOIL2-1 can be identified by CIM and MIM across 3 location in 2009. Similar result can be observed in protein.
     Epistatic effect can be observed by ANOVA and cumulative distribution method both oil content and protein content and interaction between epistatic effect and environment was observed. Main effect, epistatic effect and G×E were analyzed using the software QTL Maper 1.6 for the data of one location across three years, of one year across three location and three location across three years. QTL main effect can be identified across every year or every location with low consistency, which resulted from significantly environmental change. R2 of main QTL was high than epistatic QTL and much higher than interaction QTL between epistatic effect and environment. Therefore, it is necessary to analyze main QTL and epistatic QTL simultaneously for MAS.
     The stability of oil content and protein content was estimated using shukla ANOVO results. E-1-1 was estimated as the optimally genetic model for stability of oil content and E-1-0 was estimated as the optimally genetic model for stability of protein content. Four QTL, qOIL7-9、qOIL8-3、qOIL15-2 and qOIL12-2 located linkage group Dla、Dlb、J and O respectively and responsible for R2,5.33%、14.61%、5.83% and 5.37% respectively, were identified for stability of oil content by CIM. QTL with the highest LOD was responsible for the highest R2 (14.61%). Two QTL, qPRO1-6 and qPRO17-2, were identified for protein content, located on linkage group Al and L respectively, and accounted for 4.70% and 5.73% of the phenotyping variation. Moreover, the chromosome region controlled the stability of oil content and protein content also possess genes controlled other traits, which region can regulate the metabolic pathway more than other regions to adapt environmental change. The current study provides theoretical evidence for fine QTL mapping and MAS.
引文
1. Lincoln S and Lander E, Systematic detection of errors in genetic linkage data. Genomics,1992,14:604-610.
    2.滕海涛,赵久然等。遗传学研究中的群体模式。北京农业科学,1999,12(6):13-16。
    3.王永军,盖钧镒,邢邯,张志永,陈受宜。大豆抗感SCN基因的一个RAPD标记。大豆科学,2000,19(4):293-298。
    4 Bostein D et al. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Aum. Genet,1980,32:314-331.
    5 Olson M, Hood L, Cantor C, and Bostein D. A common language for physical mapping of the human genome. Science,1989,254:1434-1435.
    6 Paran I and Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics,1993,85: 985-993.
    7 Akopyanz N, Bukanov NO, Westblon T and Berg DE. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helocobacter pylori. Nucleic Acids Research, 1992,20(23):6221-6225.
    8 Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal,1993,4(2):403-410.
    9 Williams JPK, Kubelik AR, Livak KJ et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,1990,18:6531-6535.
    10 Welsh J, and McClell. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,1990,18:7213-7218.
    11 Caetano-Anolles G, Bassam BJ, and Gresshoff PM. DNA amplification fingerprinting using very short arbitrary oligonucleotides. Bio/technology,1991,9:553-557.
    12 Caetano-Anolles G, and Gresshoff PM. DNA amplification fingerprinting using mini-hairpin oligonucleotide primers. Bio/technology,1994,12:619-623.
    13 Caetano-Anolles G. MAAP:a versatile and universal tool for genome analysis. Plant Molecular Biology,1994,25:1011-1026.
    14 Zabeau M, Vos P. Selective restriction fragment amplification:A general method for DNA fingerprinting. European Patent Application Number,94202629.7(Publication No. 0534858a1). Paris:European Patent Office,1993.
    15 Jefferys AJ, Wilson V, Thein SL. Hypervariable "microSatellite" regions in human DNA. Nature,1985,316:76-79.
    16 Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research,1984,12:4127-4138.
    17 Jefferys AJ, Wilson V, Neumann R et al. Amplification of human miniSatellites by the polymerase chain reaction:towards DNA fingerprinting of single cell. Nucleic Acids Research,1988,16:10053-10071.
    18 Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genome,1994,20:176-183.
    19 Weising K, Atkinson RG, and Gardner RC. Genomic fingerprinting by microSatellite-primered PCR:A critical evaluation. PCR methods and Applications,1995,4:249-255.
    20 Wu KS, Jones R, Danneberger L and Scolnik PA. Detection of microSatellite polymorphisms without cloning. Nuclec Acids Research,1994,22(15):3257-3258.
    21 Cifarelli RA, Gallitelli M and Cellini F. Random amplified hybridization microSatellites (RAHM):isolation of a new class of microSatellite-containing DNA clones. Nucleic Acids Research,1995,23 (18):3802-3803.
    22 Richardson T, Cato S, Ramser J, Kahl G and Weising K. Hybridization of microSatellites to RAPD:a new source of polymorphic markers. Nucleic Acids Research,1995,23:3798-3799.
    23 Morgante M and Vogel J. Compound microSatellite primers for the detection of genetic polymorphisms. U.S. Patent Appl,1994,08/326456.
    24 Meyers RM et al. Detection of single base substitution in total genomic DNA. Nature, 1985,313:495-498.
    25 Myers RM, Fischer SG, Maniatis T and Lerman LS. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Research,1985,13:3111-3129.
    26 Orita M, Suzuki Y, Sekiya T and Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics,1989,5: 874-879.
    27 D'Ovidio R. and Anderson O. D. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theoretical and Applied Genetics,1994,88:759-763.
    28 Fodor S, Read L, Pirrrung M et al. Light-directed, spatially addressable parallel chemical synthesis. Science,1991,251:767-773.
    29 Nikiforov TT, Rendle RB, Goelet P, Rogers YH, Kotewicz ML, Anderson S, Trainor GL and Knapp MR. Genetic bit analysis:a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Research,1994,22(20):4167-4175.
    30 Taygi S, Kramer FR. Molecular beacons:probes that fluoresce upon hybridization. Nature Biotechnology,1996,14:303-308.
    31 Lawrence A, Haff and Smirnov IP. Single nucleotide polymorphism identification assays using thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Research,1997,7:378-388.
    32 Hcwell WM, Jobs M, Gyllenslen L et al. Dynamic allele-specific hybridization. Nature biotechnology,1999,17:87-88.
    33 Livak K.J. Allelic discrimination using fluorogenic probes and the 5'nuclease assay. Genel Anal,1999,14(5-6):143-149.
    34 Olson M, Hood L, Cantor C, and Bostein D. A common language for physical mapping of the human genome. Science,1989,254:1434-1435.
    35 Gupta M, Chyl Y-s, Romero-Severson J et al. Amplification of DNA markers from cvolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet,1994,89:998-1006.
    36 Sturtevant, A. H.1913. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. Journal of Experimental Zoology,14:43-59.
    37 Hadlane JBS. The combination of linkage values and the calculation of distance between the loci of linkage factors. J. Genet,1919,8:299-309.
    38 Kosambi DD. The estimation of map distances from recombination values. Ann Eugenics, 1944,12:172-175.
    39 Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics.1987,1(2):174-181.
    40 Kearsey MJ, Hyne V. QTL analysis:a simple marker regression approach. Theor Appl Genet.1998,489:698-702.
    41 Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics.1993, 135(1):205-211.
    42 Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics,1923,8:552-560.
    43 Lander ES and DR. Bostein. Mapping Mendelian factors underlying quantitative traits using RFLP linkage map. Genetics,1989,121:185-189.
    44 Rodolphe F and Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics,1993,134:1277-1288.
    45 Kao CH, Zeng ZB, Teasdale RD. Multiple Interval Mapping for Quantitative Trait Loci. Genetics,1999,152:1203-1216.
    46 Wang S, Basten C and Zeng ZB. WINDOWS QTL Cartographer. Department of Statistics. North Carolina State University, Raleigh, NC.
    47 Zhu J and Xu FH. A genetic model and its analysis methods for generation means of endosperm traits. (Chinese). Acta Agronomica Sinica.1994,20(3):264-270.
    48 Michelmore R, Paran I, Kesseli RV. Identification of marker linked to disease resistance gene by bulk segregant analysis:a rapid mathod to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci.1991,88:9828-9832.
    49 Lebowitz RJ, Soller M and Beckmann JS. Trait-Based Analyses for the Detection of Linkage between Marker Loci and Quantitative Trait Loci in Crosses between Inbred Lines. Theoretical and Applied Genetics.1987,73,556-562.
    50徐云碧。分子数量遗传学。中国农业出版社,1994。
    51王永军,盖钧镒,邢邯,张志永,陈受宜。大豆抗感SCN基因的一个RAPD标记。大豆科学,2000,19(4):293-298。
    52 Chapman A, Pantalone VR, Ustun A, Allen FL, Landau-Ellis D, Trigiano RN, and Gresshoff PM. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica,2003,129:387-393.
    53 Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, and Lark KG. Genetics of soybean agronomic traits:Ⅰ. Comparison of three related recombinant inbred populations. Crop Science,1999a,39:1642-1651.
    54 Palmer R G. Qualitative genetics and cytogenetics. Soybean:improvement, production, and use. No.16 American, Inc., Madison,1987,135-209.
    55 Shoemaker R and Specht J. Integration of the soybean molecular and classical genetic linkage groups. Crop Science,1995,35:436-446.
    56 Apuya NR, Frazier BL, Roth EJ, Lark KG. Restriction fragment length polymorphisms as genetic markers in soybean [Glycine max (L.) Merrill]. Theoretical and Applied Genetics, 1988,75:889-901.
    57 Akkaya MS, Shoemaker RC, Specht et al. Integration of simple sequence repeats DNA markers into a soybean linkage map. Crop Science,1995,35:1439-1445.
    58 Orf JH, Chase K, Adler FR, Mansur LM and Lark KG. Genetics of agronomic traits:Ⅱ. Interactions between yield quantitative trait loci in soybean. Crop Science,1999b,39:1 652-1657.
    59 Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND. Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by the rhgl locus. Theoretical and Applied Genetics,1999,39:811-818.
    60 Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics,2004,109:122-128.
    61张德水等。用栽培大豆与半野生大豆种间杂种F2群体构建基因组分子标记连锁框架图,科学通报,1997,42(12):1326-1330。
    62刘峰等。大豆遗传图谱的构建和分析,遗传学报,2000,27(11):1018-1026。
    63吴晓雷。大豆遗传图谱的构建和分析,遗传学报,2001,28(11):1051-1061。
    64宛煜嵩。大豆遗传图谱的构建及若干农艺性状的QTL定位分析,2002,中国农业科学院博士学位论文。
    65王珍。大豆SSR遗传图谱构建及重要农艺性状QTL分析。硕士学位论文,广西大学,2004。
    66陈庆山,张忠臣,刘春燕,王伟权,李文滨应用Charleston x东农594重组自交系群体构建SSR大豆遗传图谱,中国农业科学。38(7):1312-1316。
    67张忠臣,战秀玲,陈庆山,滕卫丽,杨庆凯,李文滨大豆油分和蛋白性状的基因定位。大豆科学2004,23(2):81-85。
    68 Mansur LM, Orf JH, Chase K et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science,1996,36:1327-1336.
    69 Lee GJ, Carter TE, Villagarcia MR, Li Z, Zhou X, Gibbs MO and Boerma HR. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics,2004,109:1610-1619.
    70 Mian MAR, Ashley DA, Vencill WK, Boerma HR. QTLs conditioning early growth in a soybean population segregating for growth habit. Theoretical and Applied Genetics,1998, 97:1210-1216.
    71 Tamulonis JP, Luzi BM, Hussey RS et al. DNA marker analysis of loci conferring resistance to peanut root-knot nematode in soybean. Theoretical and Applied Genetics, 1997,95:664-670.
    72 Ferreira AR, Foutz KR and Keim P. Soybean genetic map of RAPD markers assigned to an existing scaffold RFLP map. J. Hered,2000,91:392-396.
    73 Iqbal MJ, Meksem VN, Njiti M, Kassem A, Lightfoot DA. MicroSatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex x Forrest RILs. Theoretical and Applied Genetics,2001,102:187-192.
    74 Narvel JM, David RW, Brian GR, John NA, Wayne AP and Boerma HR. A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Science, 2001,41:1931-1939.
    75杨喆,关荣霞,王跃强,刘章雄,常汝镇,王曙明,邱丽娟大豆遗传图谱的构建和若干农艺性状的QTL定位分析。植物遗传资源学报,2004(4):309-314。
    76关荣霞。大豆重要农艺性状的QTL定位及中国大豆与日本大豆的遗传多样性分析。2004,中国农科院博士后研究工作报告。
    77杨喆。大豆遗传图谱的构建和若干农艺性状的QTL定位及应用分析。2004,东北农业大学硕士学位论文。
    78 Beavis WD and Keim. P Identi"cation of quantitative trait loci that are affected by environment. In:Kang MC, Gauch HG Jr (Eds) Genotype-by-environment interaction. CRC press, BocaRaton, Fla.,1996,123-149.
    79 Jiang C and Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics.1995,140:1111-1127.
    80 Crossa J, Gardner CO and Mumm RF. Heterosis among populations of maize (Zea mays L.) with different levels of exotic germplasm. Theor. Appl. Genet.1987,73:445-450.
    81 Boer MP, van Ooijen JW, Jansen RC et al. MapQTL TM410:software for the calculation of QTL positions on genetic maps. Wageningen, Netherlands:Plant Research International, 2002.
    82 Podlich DW, Christopher R, Winkler and Mark Cooper. Mapping as you go:an effective approach for marker-assisted selection of complex traits. Crop Sci.2004,44:1560-1571.
    83 Xie CQ, Xu SZ. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity,1998,80:489-498.
    84 Van Berlo R and Stam P. Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor. Appl. Genet.1999,98:113-118.
    85 Schneider K, Brothers M, Kelly J. Marker-assisted selection to improve drought resistance in common bean. Crop Sci.1997,37:51-60.
    86 Flint-Garcia SA, Thornsberry JM and Buckler ES. Structure of linkage disequilibrium in plants, Annu. Rev. Plant Biol.,2003,54:357-374.
    87 Zhu H, Briceno G, Dovel R, Hayes PM, Liu BH, Liu CT, Toojinda T, Ullrich SE. Molecular breeding for grain yield in barley:an evaluation of QTL effects in a spring barley cross. Theor Appl Genet.1999,98:772-779.
    88 Lecomte L, Gautier A, Luciani A, Duffe P, Hospital F, Buret M, Causse M. Recent advances in molecular breeding:the example of tomato breeding for flavor traits. Acta Horticulturae,2004,637:231-242.
    89 Van Berloo Ralph and P Stam. Marker-assisted selection in autogamous RIL populations:a simulation study. Theor. Appl. Genet.1998,96:147-154.
    90 Xie CQ, Xu SZ. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity,1998,80:489-498.
    91 Moreau L, Charcosset A, Hospital F and Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics,1998,148:1353-1365.
    92 Knapp JS. Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci.1998,38:1164-1174.
    93 Frisch M, Bohn M and A. Melchinger E. Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci. 1999,39:967-975.
    94 Chao Y T, Ukai Y. Sample size required for marker assisted selection in improving quantitative traits of self-fertilizing species. Euphytica.2000,116:87-94.
    95 Babu R, Nair SK, Prasanna BM, Gupta HS. Integrating marker assisted selection in crop breeding prospects and challenges. Curr. Sci.2004,87(5):607-619.
    96 Concibido VC, Vallee BL, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theoretical and Applied Genetics,2003,106:575-582.
    97 Yamanaka N, Nagamura Y, Tsubokura Y, Yamamoto K, Takahashi R, Kouchi H, Yano M, Sasaki T, Harada K. Quantitative trait locus analysis of flowering time in soybean using a RFLP linkage map. Breed Science,2000,50:109-115.
    98 Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Research,2001,8(2):61-72.
    99刘录祥,赵锁劳。作物品种的稳定性和适应性育种.陕西农业科学,1992,6:42-48。
    100 Becker HC, Leon J. Stability analysis in plant breeding. Plant Breeding,1998,101:1-23.
    101 Allard RW, Bradshaw. Implications of genotype-environmental interactions in applied plant breeding. Crop Sci,1964,4:503-508.
    102 Yates F, Cochram WG. The analysis of groups of experiments. J Agr Sci,1938,28:556-580
    103 Perkins JM and Jinks JL. Environmental and genotype-environmental components of variability.Ⅲ.Multiple lines and crosses. Heredity,1968,23:339-356.
    104 Tai George CC, Genotypic stability analysis and its application to potato regional trials. Crop Sci.,1971,11:184-192.
    105 Eberhart SA, Russell WA. Stability parameters for comparing varieties. Crop Sci,1966, 6(1):36-40.
    106 Westcott B. Some methods of analyzing genotype-environment interactions. Heredity, 1986,56:243-253.
    107 Roemer, J.,1917. Sinde die ertagdreichen sorten ertagissicherer? Mitt DLG,32:87-89.
    108 Plaisted RL and Peterson LC. Two cycles of phenotypic recurrent selection for high specific gravity. Amer. Potato J.1959,40:396-402.
    109 Killick, R. J. Genetic analysis of several traits in potatoes by means of diallel crosses. Ann. Appl. Biol.1977,86:279-289.
    110 Wricke G. Uber eine Methode zur Erfassung der okologischen Streubreite in Eldversuchen. Z Pflanzenzucht.1962,47:92-96.
    111 Shukla GK. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity,1972,29:237-245.
    112刘大群,王恒立.品种稳定性评价方法的比较和分析.作物学报,1988,14(4):290-295。
    113 Mandel J. A new analysis of variance model for non-additive data. Technometrics,1971, 13:1-18.
    114王磊.作物品种区域试验统计分析系统(RCTAS)简介.中国稻米,2006,4:26-26,29。
    115 Francis TR and Kannenberg LW. Yield stability studies in short-season maize. Ⅰ. A descriptive method for grouping genotypes. Can. J. Plant Sci..1978,58:1028-1034.
    116 Ryan C, Collins JJ and Neill MO. "Grammatical evolution:Evolving programs for an arbitrary language," in EuroGP'98:Proc. of the First European Workshop on Genetic Programming, vol.1391 of Lecture Notes on Computer Science, Springer-Verlag:Paris, 1998, pp.83-95.
    117俞世蓉,吴兆苏。小麦品种区域试验上的几个问题的探讨。中国农业科学,1986,(3):20-22。
    118 Westcott B. Some methods of analysing genotype-environment interaction. Heredity. 1986,56:243-253.
    119 Bateson W. Mendel's Principles of Heredity. Cambridge University Press, Cambridge. 1909.
    120 Fisher RA. The correlations between relatives on the supposition of Mendelian inheritance. Trans. R.Soc.Edinb,1918,52:399-433.
    121 Cockerham CC, Zeng ZB. Design Ⅲ with marker loci. Genet.1996,143:1437-1456.
    122 Li ZK. Molecular analysis of epistasis affecting complex traits in Molecular Analysis of Complex Traits. Edited by AH PATERSON.1997.119-130.
    123 Yu, SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maro of MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci, 1997,94:922-931.
    124 Chase K.1997. Epistat:a computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor. Appl. Genet.94:724-730.
    125何平,李晶昭,朱立煌。影响水稻花药培养力的数量性状基因座位间的互作,遗传学报,1999,26(5):524-538。
    126 Cockerham CC and Zeng ZB. Design Ⅲ with marker loci. Genetics.1996,143:1437-1456.
    127 Falconer DS. Introduction to Quantitative Genetics.1st Ed. Oliver and Boyd, Edinburgh. 1960.
    128 Lu H, Shen L. Tan Z, Xu Y, He P. Comparative mapping of QTL for agronomic traits of rice across environments using a doubled haploid population. Theorr Appl Genet.1996,93: 1211-1217.
    129 Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW and Zheng KL. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor. Appl. Genet.2002,105:1137-1145.
    130朱军。复杂数量性状基因定位的混合线性模型方法,王连铮,戴景瑞(主编),全国作物育种学术讨论会文集,中国农业科技出版社,北京,1998,9-20。
    131 Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In Advanced Topics in Biomathematics:Procceedings of International Conference on Mathematical Biology. Edited by Chen LS, Ruan SQ and Zhu J. World Scientific Publishing Co., Singapore,1998,321-330.
    132朱军.运用混合线性模型定位复杂数量性状基因的方法,浙江大学学报(自然科学版),1999,33(3):327-344。
    133 Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theorr Appl Genet,1999, 1255-1264.
    134高用明。复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究,浙江大学博士学位论文,2001。
    135 Diers B W. RFLP analysis of soybean seed protein and oil content. Theor Appl Genet. 1992,83:608-612.
    136 Sebolt AM. Shoemaker RC. Diers BW. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Science,2000, 40(5):1438-1444.
    137 Brummer EC, Graef GL, Orf J, Wilcox JR, Shoemaker RC. Mapping QTL for seed protein and oil contentin eight soybean populations. Crop Sci,1997,37:370-378.
    138 Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME. Seed quality QTL in a prominent soybean population. Theor. Appl. Genet,2004,109: 552-561.
    139 Csanadi GJ, Vollmann G, Shift T, Lelley. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet,2001,103:912-919.
    140 Qui BX, Arelli PR, Sleper DA. RFLP markers associated with soybean cyst nematode resistance and seed composition in a'Peking'×'Essex'population. Theor Appl Genet, 1999,98:356-364.
    141 Lee SH, Bailey MA, Mian MAR, Carter TE, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR. RFLP loci associated with soybean seed protein and oil content across population sand locations. Theor Appl Genet,1996,93:649-657.
    142 Smalley MD, Fehr WR, Cianzio SR, Han F, Sebastian SA, Streit LG. Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm. Crop Science,2004, 44(2):436-442.
    143 Kabelka EA, Diers BW, Fehr WR, LcRoy AR, Baianu IC, You T, Neece DJ, Nelson RL. Putative alleles for increased yield from soybean plant introductions. Crop Science,2004, 44:784-791.
    144 Concibido VC, La VB, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultival. Theor Appl Genet,2003,106(4):575-582.
    145 Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY,Chen SY. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet,2004,108(6):1131-1139.
    146 Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lighfoot DA. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Science,2002,42:271-277.
    147 Mian MAR, Bailey MA, Tamulonis JP, Shipe ER, CarterTE, Jr. Parrott WA, Ashley DA, Hussey RS, Boerma HR. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet,1996,93:1011-1016.
    148 Mian MAR, Wells R, Carter TE. RFLP tagging of QTLs conditioning specific leaf weight and leaf size in soybean. Crop Sci,1998b,96:354-360.
    149 Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, German M, Orf JH, Lark KG. Soybean Response to Water:A QTL Analysis of Drought Tolerance Crop Science,2001,41:493-509.
    150 Mansur L M, Orf J H, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed trait of Soybean(Glycine max L. Merr.). Theor Appl Genet,1993,86:907-913.
    151 Hoeck JA, Fehr WR, Shoemaker RC, Welke GA, Johnson SL, Cinazio SR. Molecular marker analysis of seed size in soybean. Crop Sci,2003,43:68-74.
    152胡中立,章志宏。质量-数量性状的遗传参数估计。Ⅱ.利用DH群体或RIL群体.武汉大学学报(自然科学版),1998,144:784-788。
    153章元明,盖钧镒,王建康。利用B1和B2或F2群体鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应.生物数学学报,2000,15(3):358-366。
    154章元明,盖钧镒,王永军.。利用P1、P2和DH或RIL群体联合分离分析的拓展.遗传,2001,23:467-470。
    155盖钧镒,章元明,王建康。植物数量性状遗传体系.北京:科学出版社,2003。
    156胡中立,章志宏,章元明。质量-数量性状遗传参数估计的P1、P2、DH联合分析方法.作物学报,2000,26:631-63。
    157 Kearsey MJ, Hyne V. QTL analysis:a simple marker regression approach. Theor Appl Genet.1998,489:698-702.
    158殷剑美,武耀廷,朱协飞,张天真。陆地棉产量与品质性状的主基因与多基因遗传分析,棉花学报,2003,15(2):67-72。
    159张培通,朱协飞,郭旺珍,张天真。陆地棉衣分及相关性状的遗传和QTL分子标记,江苏农业学报,2005,21(4):264-271。
    160 McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl,1997,14:11-13.
    161 Wilcox JR., and Shibles RM. Interrelationships among seed quality attributes in soybean. Crop Sci.2001,41:11-14.
    162 Takagi Y, Rahman SM. Inheritance of high oleic acid content in the seed oil of soybean mutant M23. Theor Appl Genet.1996,92:179-182.
    163 Lewers KS and Palmer RG. Recurrent selection in soybean. Plant Breeding Review.1997, 15:275-313.
    164 Rahmana SM, Kinoshita TA, Takagi TY. A novel soybean germplasm with elevated Saturated fatty acids. Crop Sci.2003,43:527-531.
    165文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒。中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析Ⅱ.优异等位变异的发掘。作物学报,。
    166 Yong G Y, Glenn R B, Saghaim M A, Isolation of a superfamily of candidate disease resistance genes in soybean based on a conseved nudeotide binding site. P roc Natl Acad Sci,1996,93:11751-11756.
    167 Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR. Quantitative trait loci for yield and yield components in an oryza Sativaxoryza rufipogon BC2F2 population evaluated in an unpland environment. Theor Appl Genet,2001,102:41-52.
    168 Jansen RC. Interval mapping of multiple quantitative trait loci. Genet,1993,135:205-211
    169邢永忠。用分子标记剖析水稻重要农艺性状的遗传基础。博士学位论文。武汉:华中农业大学图书馆,1999。
    170 Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet,2002,105:248-257.
    171 Fan CC, Yu XQ, Xing XY, Xu CG, Luo LJ, Zhang QF. The main effects, epistatic effects and environmental interations of QTLs on the cooking and eatingquality of rice in a double-haploid line population. Theor Appl Genet,2005,110:1445-1452.
    172 Ohno Y, Tanase H, Nabika T, Otsuda K, Sasaki T, Suzawa T, Korii T, Yamori Y, Saruta T Selective genotyping with epistasis can be utilized for a major quantitative trait locus mapping in hypertension in rats. Genetics.2000,155:785-792.
    173 Yang DL, Jing R, Chang XP, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics.2007,176:571-584.
    174 Carlborg O and Haley CS. Epistasis:too often neglected in complex trait studies? Nat. Rev. Genet.2004,5:618-625.
    175 Malmberg RL, Mauricio R. QTL-based evidence for the role of epistasis in evolution. Genet Res.2005,86:89-95.
    176 Wilfert L, Schmid-Hempel P. The genetic architecture of susceptibility to parasites. BMC Evol Biol.2008,8:187.
    177 Purcell S, Sham PC. Epistasis in quantitative trait locus linkage analysis:interaction or main effect? Behav Genet.2004,34:143-152.
    178 Carlborg O, Haley CS. Epistasis:too often neglected in complex trait studies? Nat Rev Genet.2004,5:618-624.
    179 Liu P, Zhu J, Lu Y Marker-assisted selection in segregating generations of self-fertilizing crops. Theor Appl Genet.2004,109:370-376.
    180 Glover KD, Wang D, Arelli PR, Carlson SR, Cianzio SR, Diers BW. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI 88788 on linkage group J. Crop Sci.2004,44:936-941.
    181 Ashikari M, sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005,29,309:741-750.
    182张玉山。水稻重要农艺性状的QTL分析和主效QTL近等基因系的构建。博士学位论文,武汉:华中农业大学图书馆,2006。
    183张启发,李建雄。水稻杂种优势的遗传和分子生物学基础的研究进展《全国作物育种学讨论会论文集》。北京:中国农业科技出版社。1998。
    184 Jansen R, Lister C, Dean C, et al. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet,1995,91:33-37.
    185 Chapman A, Pantalone U R, Ustun A, et al. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4;soybean population. Euphytica,2002, (90):1-7.
    186朱晓丽。大豆遗传图谱构建及在两个群体重要农艺性状的QTL定位。硕士毕业论文,东北农业大学,2006。
    187吕祝章。大豆遗传图谱构建、重要农艺性状QTL定位及优异基因发掘.山东农业大学,2006。
    188陈庆山,张忠臣,刘春燕等。应用Charleston×东农594重组自交系群体构建大豆遗传图谱.中国农业科学,2005,38(7):1312-1316。
    189 Jun TH, Van K, Kim MY, Lee SH and Walker DR. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica,
    190徐鹏。大豆蛋白质和油份含量的遗传分析及QTL定位.南京农业大学,2006。
    191 Li, ZK, Yu, SB, Huang, N, Courtois, B, Hittalmani, S, et al. QTL x environmental interactions in rice:I. plant height and heading date. Theor. Appl. Genet.2003,108(1): 141-153.
    192 Tanksley SD and Nelson JC. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. TAG. 1996,92:191-203.
    193丁海,宛煜嵩,朱美霞,方宣钧。植物抗线虫策略的分子进展,中国农学通报.2002,18(5):60-65。
    194 Moncada P,Martinez, Borrero, M Chatel, H Gauch Jr., E Guimaraes, J Tohme, S R McCou ch. Quantitative trait loci for yield and yield components in an Oryza Sativa×Oryza rufip ogon BC2F2 population evaluated in an upland environment. Theor Appl Genet.2001,102 :41-52.
    195 Chung J, Babka HL, Graef GL, Staswick PE, Lee DJ, Cregan PB, Shoemaker RC and Specht JE. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 2003,43:1053-1067.
    196 Jansen R, Lister C, Dean C, et al. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet,1995,91:33-37.
    197 Cardwell, K. F., J. G. Kling, B. Maziya-Dixon, and N. A. Bosque-Perez. Interactions between Fusarium verticillioides, Aspergillus flavus, and insect infestation in four maize genotypes in lowland Africa. Phytopathology.2000.90:276-284.
    198 Malmberg RL, Held S, Waits A and Mauricio R. Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics.2005, 171:2013-2027.
    199 Phansak P, Soonsuwan W, Specht JE, Graef GL, Cregan P and Hyten D. http://a-c-s.confex.com/crops/2009am/webprogram/Paper52759.html.
    200 Purcell S and Sham PC. Epistasis in Quantitative Trait Locus Linkage Analysis: Interaction or Main Effect? Behavior Genetics.2004,34(2):143-152.
    201 Carlborg 6 and Haley CS. Opinion:Epistasis:too often neglected in complex trait studies? Nature Reviews Genetics.2004,5:618-625.
    202 Liu GM, Li WT, Zeng RZ, Zhang ZM, Zhang GQ. Identification of QTLs on substituted segments in single segment substitution lines of rice. Yi Chuan Xue Bao,2004,31(12): 395-400.
    203 Glover KD, Wang D, Arelli PR, Carlson SR, Cianzio SR, Diers BW. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI 88788 on linkage group J. Crop Sci.2004,44:936-941.
    204国际大豆数据库:http://soybeanbreederstoolbox.org/search/search results.php?category =LocusName&search term=.
    205 Hartwig EE, and Kilen TC. Yield and composition of soybean seed from parents with different protein, similar yield. Crop Sci.1991,31:290-292.
    206 Leffel RC, Cregan PB, Bolgiano AP and Thibeau DJ. Nitrogen metabolism of normal and high-seed-protein soybean. Crop Sci.1992,32,747-750.
    207 Stella A, Boettcher PJ. Optimal designs for linkage disequilibrium mapping and candidate gene association tests in livestock populations.Genetics.2004,166,341-350.
    208 Cardon LR and Bell J. Association study designs for complex diseases. Nature genetics. 2001,2:91-99.
    209 Reinprecht Y, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome,2006,49(12):1510-152.
    210 Concibido VC, La VB, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultival. Theor Appl Genet,2003,106(4):575-58.
    211 Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science,2005,45:2015-202.
    212 Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS,2003,100(5),2574-2579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700