潜在缺锌土壤上土施锌肥对冬小麦锌营养品质及土壤锌形态转化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国小麦主产区主要位于北方石灰性土壤地带,其土壤有效Zn含量多处于潜在缺锌水平(DTPA-Zn含量为0.5~1.0mg·kg-1),生产的小麦籽粒Zn含量较低(平均含量26.8mg·kg-1),难以满足以其为主食人群对锌的营养需求,从而众多人口由于缺锌导致严重健康问题。施用锌肥是提高小麦籽粒Zn含量的最直接有效途径,而前期在石灰性土壤上田间试验结果表明,土施低量锌肥对小麦籽粒Zn含量提高幅度有限,不能满足人体Zn营养需求,那么增加施锌量是否能继续增加小麦籽粒Zn含量?同时石灰性土壤对外源锌肥固定是限制锌肥肥效的主要原因,为此监测锌肥施入潜在缺锌石灰性土壤后各形态Zn含量动态变化,揭示土壤对锌肥的固定机制,对指导潜在缺锌石灰性土壤地区施用锌肥提高小麦籽粒Zn含量具有重要科学意义。且在实际生产中氮磷肥的大量施用对锌肥肥效亦有一定影响,尤其是磷锌间的拮抗作用早已成为被关注热点问题,但关于土壤中二者关系研究较少,尤其是磷锌配施对土壤中不同形态Zn含量的影响还未见报道,因此本研究在潜在缺锌石灰性土壤上分别进行了不同施锌量、氮锌配施、磷锌配施3个冬小麦田间定位试验,得到以下主要结果:
     1.不同施锌量(0、7.5、15、30、45kg Zn·hm~(-2))对小麦Zn营养品质影响的两季冬小麦田间定位试验。结果表明:土施锌肥对小麦籽粒Zn含量提高有限,增幅仅为11.4~33.2%,锌肥当季利用率仅为0.14~0.98%,且以高施锌量(45kg·hm~(-2))处理Zn肥利用率最低,而锌肥后效对第二季小麦籽粒Zn含量未有显著增加;两季小麦地上部锌携出总量仅占施锌量的0.13~1.29%。不同施锌量对小麦籽粒植酸含量及[植酸]/[Zn2+]摩尔比影响均不显著。可见,在潜在缺锌石灰性土壤上增加施锌量不能继续增加小麦籽粒Zn含量,反而进一步降低了Zn肥利用率。
     2.氮锌配施(施氮量分别为0、105kg·hm~(-2),施锌量分别为0、6.8kg·hm~(-2),完全方案)对10个小麦品种Zn营养品质影响的两季冬小麦田间定位试验。结果表明:施锌肥对小麦籽粒Zn含量的影响因不同品种而异,单施锌肥仅增加了西杂1号、武农148、郑麦9023籽粒Zn含量,氮锌配施增加了除小偃22外其余9种供试小麦品种籽粒Zn含量,增幅为7.3-54.7%。单施锌肥对小麦地上部Zn累积量增加不明显,单施氮肥可显著增加小麦地上部Zn吸收,但其主要累积在小麦茎叶部,氮锌配施显著增加小麦地上部Zn累积量,两季分别增加了6.5%、29.8%。氮锌配施处理比单施锌肥显著增加了Zn肥利用率,单施锌肥和氮锌配施处理两季小麦地上部携出Zn总量分别占施锌量0.25%、1.50%。可见,潜在缺锌石灰性土壤上,在施氮肥基础上施锌肥对小麦籽粒Zn含量提高效果更好。
     3.磷锌配施(施P2O5量分别为0、50、100、150、200kg·hm~(-2),施Zn量为0、7kg·hm~(-2),完全方案)对小麦Zn营养品质影响的两季冬小麦田间定位试验。结果表明:低磷配施锌(P_(50)Zn_7)使两季小麦籽粒Zn含量比对照(P0Zn0)分别增加37.7%、8.8%,高磷配施锌(P_(200)Zn_7)反而使两季小麦籽粒Zn含量分别降低37.6%、17.0%;小麦籽粒植酸含量、[植酸]/[Zn~(2+)]摩尔比均随施磷量增加而增加,磷锌配施的[植酸]/[Zn2+]摩尔比低于单施等量磷肥。可见,在潜在缺锌石灰性土壤上,高磷配施锌肥显著降低了小麦籽粒Zn生物有效性,为此在该地区施磷量不能高于100kg·hm~(-2)。
     4.土施锌肥(7.5~45kg·hm~(-2))及磷锌配施均增加了小麦籽粒微量元素(Zn、Fe、Cu、Mn)总累积量,不同施锌量对Zn、Fe、Cu、Mn的分配比例影响较小,而磷锌配施时,随着施磷量的增加,Zn的吸收比例逐渐降低,Fe的吸收比例增加,造成小麦籽粒微量元素吸收不平衡。在不同试验条件下,小麦籽粒植酸含量与Zn、Fe、Cu、Mn间相关关系不一致,从而同时提高Zn、Fe、Cu、Mn微量元素含量和降低植酸含量而提高微量元素生物有效性较为困难。
     5.监测不同用量Zn肥(7.5~45kg·hm~(-2))施入潜在缺锌土壤后DTPA-Zn含量变化结果表明,施锌可显著增加土壤DTPA-Zn含量,且随施锌量增加DTPA-Zn含量逐渐增加,锌肥施入土壤后7d,DTPA-Zn含量增加幅度为267~529%;到639d时,增加幅度为68~137%,可见随时间推移土壤DTPA-Zn含量虽有所降低,但在两季小麦生育期内仍能维持较高水平(>1.0mg·kg-1)。氮锌配施及磷锌配施试验结果表明,氮锌配施及磷锌配施对土壤DTPA-Zn含量增加幅度均低于单施锌肥处理,尤其磷锌配施条件下,DTPA-Zn含量随施磷量增加而逐渐降低。
     6.石灰性土壤中锌主要以矿物态(Min-Zn)存在,占全锌91.5~97.6%,其次为松结有机态锌(Wbo-Zn,1.34~5.53%)、碳酸盐结合态锌(Carb-Zn0.47~1.55%)。相关分析、通径分析及主成分分析结果表明,土壤中交换态Zn(Ex-Zn)和Wbo-Zn对有效锌贡献最大,Carb-Zn亦间接影响土壤有效锌含量。小麦籽粒Zn含量与土壤中Ex-Zn、Wbo-Zn含量呈显著正相关关系,石灰性土壤中Wbo-Zn和Carb-Zn含量占有较为可观的比例,因此增加这两种形态储备容量是调节和控制土壤锌营养状况的重要措施。
     7.监测不同量锌肥(7.5~45kg·hm~(-2))施入石灰性土壤后不同形态Zn含量动态变化结果表明,锌肥施入土壤初期(7d)主要增加了Wbo-Zn和Carb-Zn,两者增加量分别占施Zn量的63.4~84.0%和6.5~10.3%;其后Wbo-Zn含量逐渐降低,到两季小麦收获后(231d、639d),施入锌肥的42.4~69.0%和62.0~78.1%已转化为无效的Min-Zn。氮锌配施及磷锌配施结果表明,氮锌交互作用对不同形态Zn含量影响不显著;磷锌交互作用对Wbo-Zn和Crab-Zn含量有影响显著,低磷配施锌(P0Zn7、P_(50)Zn_7)可使土壤Wbo-Zn含量分别增加4.0、4.4倍,对其他形态Zn含量无显著增加,高磷锌配施(P150Zn7、P_(200)Zn_7)对土壤Wbo-Zn和Crab-Zn影响均有负交互效应。
     基于以上3个田间试验结果可以得出以下主要结论:(1)在潜在缺锌土壤上,土施锌肥可以显著增加土壤DTPA-Zn含量,且能维持两季小麦生育期,但对小麦籽粒Zn含量提高幅度有限,锌肥利用率极低,氮锌配施比单施锌肥提高锌肥利用率。(2)高磷配锌降低土壤中有效性较高形态Zn(Wbo-Zn和Carb-Zn)含量,显著降低籽粒Zn生物有效性,因此在该地区磷锌配施时施磷量应低于100kg·hm~(-2)。(3)土壤中Ex-Zn、Wbo-Zn含量对有效锌贡献最大,与小麦籽粒Zn含量呈显著正相关。(4)锌肥施入土壤最初主要增加有效性较高的形态Zn含量,其后逐渐向无效态Zn(Min-Zn)转化,到小麦收获后一大部分转化为矿物态。综上在潜在缺锌石灰性土壤地区控制氮磷肥施用量对施锌效果至关重要,调节和控制土壤Wbo-Zn含量对提高小麦籽粒Zn含量解决人体Zn营养健康问题具有重要意义。
In China, wheat is mainly grown on calcareous soils, of which DTPA-Zn is potentiallydeficient, being0.5-1.0mg·kg-1. Wheat grain Zn concentration is relativey low, averagely26.8mg·kg-1, which leading to Zn deficiency in human beings. Zinc fertilization is the mostdirect and efficient method to solve Zn deficiency. However, results from the previous fieldexperiments on calcareous soil showed that, Zn fertilization to soil with a low level had a littleeffect on increasing grain Zn concentration and then should grain Zn concentration beingincreased with the increasing level of Zn fertilizer? Meanwhile, Zn fixation in calcareous soilis the main inhibitory factor for low Zn effectiveness. How to increase grain Zn concentrationby Zn fertilization on potentially Zn-deficient soil, it is very important to research thedynamic changes of Zn fractions and Zn fixation on potentially Zn-deficient soil after Znfertilization to soil. Meanwhile, in practical producation, nitrogen and phosphorus also affecton Zn fertilizer effectiveness and the antagonist effect between P and Zn becomes a hot topic.However, the interaction between P and Zn in soil and the information of combined P with Znfertilization on Zn fraction was little. Therefore, three field location experiments onpotentially Zn-deficient soil were conducted to study the effects of Zn fertilization withdifferent levels, combined N and Zn fertilization and combined P and Zn fertilization on grainZn nutritional quality of winter wheat and Zn fractions in soil. The main results were asfollows.
     1. The effectiveness of Zn application to a potentially Zn-deficient calcareous soil wasmeasured using two winter wheat cultivars and five Zn fertilizer rates (0,7.5,15,30,45kg Znha-1). The results showed that Zn fertilizer increased grain Zn concentration in2008-2009by11.4to33.2%. The apparent Zn utilization efficiency was between0.14and0.98%with thelowest Zn effectiveness in45kg Zn ha-1treatment. The after effect of Zn had no significanteffect on grain Zn concentration in2009-2010. The Zn uptake in shoots were0.13-1.29%inthe levels of Zn fertilizer in the two cropping. There was no significant effect of Znfertilization on grain phytic acid (PA) content and the PA: Zn molar ratio. Therefore, grain Znconcentration was not increased with the increasing Zn fertilizer levels and the effectiveness of Zn was also relatively reduced.
     2. A two-year experiment was conducted to investigate the effects of combined N-Znfertilizers on growth and Zn accumulation of10varieties of winter wheat. Results showedthat the effect of single Zn fertilizer application on yield and grain Zn concentration weresignificantly different among various varieties of winter wheat. Single Zn fertilizerapplication increased grain Zn concentrations of Xiza1, Wunong148, and Zhengmai9023.Combined N-Zn fertilizer increased grain Zn concentration of9varieties of wheat exceptXiaoyan22and the increment was7.3%-54.7%. There was no significant effect of single Znfertilizer application on Zn uptake. While single N fertilizer supply significantly enhancedshoot Zn uptake which primarily accumulated in wheat stem and leaf. Combined N-Znfertilizer significantly increased Zn uptake in wheat shoots, by6.5%and29.8%in the twoyears experiment. Combined N-Zn fertilizers significantly increased Zn fertilizereffectiveness compared to single Zn fertilizer application. The Zn uptakes in shoots were0.25%and1.5%of the levels of Zn fertilizer in the single Zn fertilizer application and theapplication of N and Zn fertilization. Therefore, the application of N and Zn fertilization is asensible method to increase grain Zn concentration on potentially Zn-deficient soil.
     3. A two-year field experiment was conducted to investigate the effects of combinedapplication of Zn and phosphorus fertilizers on Zn nutritional quality of winter wheat. Resultsshowed the application of50kg P_2O_5ha-1combined with Zn fertilizer (P50Zn7) increasedgrain Zn concentrations by37.7%in2006-2007and8.8%in2007-2008compared to theP0Zn0treatment. However, the P_(200)Zn_7treatment reduced grain Zn concentrations by37.6%in2006-2007and17.0%in2007-2008compared to the control (P_0Zn_0). The PA concentrationand the PA: Zn molar ratio in wheat grain increased as P fertilizer application rate increased,regardless of the Zn fertilizer application rate. Meanwhile, the PA: Zn molar ratio wasrelatively lower in combined P with Zn fertilization compared to single P fertilization. Inconclusion, on potentially Zn-deficient calcareous soil, combined P with Zn fertilizationreduced grain Zn nutritional quality and P fertilizer application rates used in this study shouldbe <100kg P2O5ha-1to ensure the effectiveness of the Zn fertilizer.
     4. Zinc fertilization with the extent of7.5-45kg·ha-1and combined P-Zn fertilizerincreased the accumulation of grain micronutrients, such as Zn, Fe, Cu and Mn. However, theeffect of Zn fertilization on the distribution of Zn, Fe, Cu and Mn was little. The uptake of Znwas gradually reduced and Fe was increased with P levels increased in the combined P and Znfertilization treatment. Therefore, the balance of micronutrient uptake in grain of wheat wasbroken. Under different experimental conditions, the interaction between phytic acid and Zn,Fe, Cu, Mn was also different. Therefore, it is a big work to increase Zn, Fe, Cu, Mn concentration and at the same time to reduce phytic acid content.
     5. A two-year field experiment was conducted to study the effect of Zn fertilizerapplication on soil DTPA-Zn. Results showed that soil DTPA-Zn content was significantlyincreased with Zn levels increasing. After7d of Zn fertilizer application to soil, soilDTPA-Zn increased by267-529%, after639d, the extent was68-137%. Therefore, with timeelapsing, soil DTPA-Zn content was relatively reduced and in the two cropping, the soilDTPA-Zn was also higher than1.0mg·kg-1. The results in combined N with Zn fertilizationand combined P with Zn fertilization, these two application methods relatively had a littleeffect on reduced soil DTPA-Zn concent compared to single Zn fertilizer application.Especially in the combined P with Zn fertilization, the content of soil DTPA-Zn was graduallyreduced with P levels increasing in soil.
     6. In the soil Zn appeared mainly in the following fractions, mineral bonded Zn (Min-Zn)accounted for91.5%-97.6%of total Zn, Zinc weakly bound to organic matter (Wbo-Zn)accounted for1.34%-5.53%of total Zn and carbonate bonded Zn (Carb-Zn) accounted for0.47%-1.55%of total Zn. The analysis of path analysis and principal component showed thatthe exchangeable Zn (Ex-Zn), the Wbo-Zn, the Carb-Zn could indicate the availability Zn insoils in various degrees, respectively. Zinc congcentration of wheat grain showed a strongpositive correlation with Ex-Zn and Wbo-Zn. Carbonate bounded Zn and Wbo-Zn accountedfor most parts of total Zn in calcareous soil. To stimulate and control the Zn nutrient conditionin calcareous soil, it is an important measure to increase the content of the Carb-Zn and theWbo-Zn in soil.
     7. A two-year field experiment was conducted to study the effect of Zn fertilizerapplication on soil Zn fractions. Results showed that, within one week of Zn fertilizerapplication, soil Wbo-Zn and Carb-Zn content was significantly increased by amountsequivalent to63.4-84.0%and6.5-10.3%of the fertilizer Zn application, respectively. TheWbo-Zn fraction decreased gradually over time. Calculations indicated that42.4-69.0%and62.0-78.1%of the Zn fertilizer was mineral bound after231d and639d, respectively. In thecombined N-Zn fertilization and combined P-Zn fertilization treatments, the interactionbetween N-Zn had no significant effect on Zn fractions; however, P0Zn7and P50Zn7treatments significantly increased soil Wbo-Zn content by4.0and4.4folds, respectively. Onthe other hand, P_(150)Zn_7and P_(200)Zn_7treatments significantly reduced soil Wbo-Zn andCarb-Zn content.
     Based on these results of the three field experiments, conclusions can be made:(1) Onpotentially Zn-deficient soil, Zn fertilization to soil significantly can increase soil DTPA-Zncontent within two cropping; however, the effect of Zn fertilizer on grain Zn concentration is relatively little. Respect to Zn effectiveness, combined N-Zn fertilization has a higher Zneffectiveness compared to single Zn fertilization.(2) High P levels combined with Znfertilization reduces soil Wbo-Zn, Carb-Zn content and grain Zn bioavailability. Therefore, onpotentially Zn-deficient soil, P fertilizer application rates used should be <100kg P2O5ha-1.(3) The Ex-Zn, the Wbo-Zn, the Carb-Zn could indicate the availability Zn in soils in variousdegrees, respectively. Meanwhile, these two Zn fractions significantly are positively relatedwith grain Zn concentration.(4) Zinc fertilizer application to soil is firstly transformed intomore effective Zn fractions and then gradually transforms into Min-Zn. After wheat harvest, alarge part of Zn fertilizer can be transformed into Min-Zn. Therefore, on potentiallyZn-deficient soil, sensible N and P application rate could increase Zn fertilizer effectivenessand to solve Zn deficiency in human, it is possible to increase grain Zn concentration byincreasing soil Wbo-Zn content.
引文
保琼莉,田霄鸿,杨习文,李生秀.2007.不同供Zn量对三种小麦基因型幼苗生长和养分吸收的影响.植物营养与肥料学报,13(5):816~823
    鲍士旦.2000.土壤农化分析.北京:中国农业出版社
    曹玉贤,田霄鸿,杨习文,陆欣春,陈辉林,南雄雄,李秀丽.2010a.土施和喷施锌肥对冬小麦子粒锌含量及生物有效性的影响.植物营养与肥料学报,16(6):1394~1401
    曹玉贤,田霄鸿,杨习文,陆欣春,南雄雄.2010b.小麦和小黑麦籽粒的营养品质及其相关性分析.西北农林科技大学学报(自然科学版),38(1):104~110
    陈有鑑,黄艺,曹军,陶澍.2003.玉米根际土壤中不同重金属的形态变化.土壤学报,40(3):367~373
    陈有鑑,陶澍,邓宝山,张学青,黄艺.2001.不同作物根际环境对土壤重金属形态的影响.土壤学报,38(1):54~59
    崔娟,田霄鸿,陆欣春,任思潮,代二战.2011.玉米秸秆腐解对石灰性土壤Zn形态及其有效性的影响.应用生态学报,22(12):3221~3226
    党红凯,李瑞奇,孙亚辉,张馨文,李雁鸣.2010.高产冬小麦对锌的吸收、积累与分配.中国农业科学,43(9):1791~1799
    高美荣,朱波,蒋明富.1999.石灰性紫色土中锌的形态分布及其影响因素.应用生态学报,10(4):415~418
    宫彦章,刘月秀,刘姝媛,叶金盛,曾曙才.2011.广东省林地土壤有效锌、镉含量及其与有机质和pH的关系.华南农业大学学报,32(1):15~18
    郭海彦,周卫军,张杨珠,郝金菊,齐龙波.2007.湖南省主要茶园土壤锌的形态及其有效性.土壤,39(4):497~502
    韩凤祥,胡霭堂,秦怀英,史瑞和.1990.我国某些旱地土壤中锌的形态及其有效性.土壤,22(6):302~306
    韩晓日,袁程,王月,杨劲峰,李娜,张欣昕.2011.长期定位施肥对土壤铜、锌形态转化及其空间分布的影响.水土保持学报,25(5):140~143,167
    郝汗舟,靳孟贵,李瑞敏,王支农,韩冰华,祖文普.2010.耕地土壤铜、镉、锌形态及生物有效性研究.生态环境学报,19(1):92~96
    郝明德,魏孝荣,党廷辉.2003.旱地长期施用锌肥的增产作用及土壤效应.植物营养与肥料学报,9(3):377~380
    何忠俊,华珞,洪常青.2004.氮锌交互作用对黄棕壤锌形态的影响.农业环境科学学报,23(2):209~212
    何忠俊,华珞.2005.氮锌交互作用对白三叶草叶片活性氧代谢和叶绿体超微结构的影响.农业环境科学学报,2005,24(6):1048~1053
    黄文川,李录久,李文高.2000.小麦氮锌配施效应及增产机理研究.核农学报,14(4):225~229
    黄友宝,马义兵,夏荣基,孙祖琰,张国印,王重廉.1989.土壤微量元素研究Ⅳ.碳酸钙对土壤中加入锌的形态转化的影响.北京农业大学学报,15(3):304~308
    蒋廷惠,胡霭堂,秦怀英.1989.土壤中锌、铜、铁、锰的形态与有效性的关系.土壤通报,20(5):228~231
    蒋廷惠,胡霭堂,秦怀英.1990.土壤锌、铜、铁、锰形态区分方法的选择.环境科学学报,10(3):280~286
    蒋廷惠,胡霭堂,秦怀英.1993.土壤中锌的形态分布及其影响因素.土壤学报,30(3):260~266
    姜雯,赵明,樊堂群,金灵娜.2006.粮食作物锌的吸收运转分配和改善子粒锌含量的理论与技术途径.中国土壤与肥料,(4):10~15
    李惠英,朱永官.2002.不同磷锌施肥量对大麦产量及其吸收的影响.中国生态农业学报,10(4):51~53
    李伶俐,马宗斌,王文亮,邰国琴,杜远仿.2004.苗期喷施氮、锌肥对麦套夏棉某些生理特性及产量的影响.河南农业大学学报,38(1):33~35
    李强.2004.锌对小麦生长及产量的影响.土壤肥料,(1):16~18
    李廷强,朱恩,杨肖娥,申屠佳丽.2008.超积累植物东南景天根际可溶性有机质对土壤锌吸附解析的影响.应用生态学报,19(4):838~844
    李玉双,孙丽娜,孙铁珩,王洪.2006.北方常见农作物根际土壤中铅、锌的形态转化及其植物有效性.生态环境,15(4):743~746
    练春兰,鲍士旦,史瑞和.1992.大麦磷锌相互关系的研究.土壤学报,29(3):282~289
    林玉锁,薛家骅.1987.锌在石灰性土壤中的吸附.土壤学报,24(2):135~141
    刘福来.1998.土壤—植物系统中锌的研究概况.土壤肥料,(5):10~14
    刘合满,张兴昌,苏少华.2008.黄土高原主要土壤锌有效性及其影响因素.农业环境科学学报,27(3):898~902
    刘义,邵树勋.2010.凤冈富硒富锌茶园土壤中的锌及其形态分析.地球与环境,38(3):328~332
    刘铮.1991.微量元素的农业化学.北京:中国农业出版社
    刘铮.1994.我国土壤中锌含量的分布规律.中国农业科学,27(1):30~37
    陆欣春,田霄鸿,杨习文,买文选,保琼莉,赵爱青.2010.氮锌配施对石灰性土壤锌形态及肥效的影响.土壤学报,47(6):181~192
    马义兵,夏荣基.1988.土壤微量元素研究Ⅰ石灰性中锌的分组方法研究.北京农业大学学报,14(2):149~155
    买文选,田霄鸿,保琼莉,陆欣春.2008.利用螯合-缓冲营养液对小麦苗期磷-锌关系的研究.植物营养与肥料学报,14(6):1056~1063
    莫润苍,邹邦基.1997.土壤锌铁铜锰形态分布及其有效性.热带亚热带土壤科学,6(3):171~175
    莫争,王春霞,陈琴,王子健.2002.重金属Cu Pb Zn Cr Cd在土壤中的形态分布和转化.农业环境保护,21(1):10~17
    慕晓茹,劳家柽,祁明楣.1990.大豆氮锌营养研究.土壤通报,21(1):30~32
    南开.2006.中国人的膳食结构.中国食物与营养,(6):55~57
    倪吾钟,龙新宪,孙琴,何积秀,杨肖娥.2000.菜园土壤锌营养状况及其与土壤有机碳的关系.浙江大学学报(农业与生命科学版),26(6):640~642
    宁运旺,张永春,汪吉东,许仙菊,胡永红.2009.“土壤-植物-人类”系统中的锌与富锌农产品的开发.见:邹春琴,张福锁(主编):中国土壤-作物中微量元素研究现状和展望.北京:中国农业大学出版社:172~178
    裴雪霞,党建友,吴俊兰.2000.冬小麦锰、锌、铜、营养研究现状.小麦研究,21(2):28~29
    彭琳,彭祥林,余存祖,戴鸣钧,刘要红.1983.黄土地区土壤中锌的含量分布、锌肥肥效及其有效施用条件.土壤学报,20(4):361~371
    任顺荣,朱建国,李辉信,王小治,谢祖彬,曾青.2007.大气CO2浓度升高对稻田土壤中微量元素的影响.生态环境,16(3):982~986
    茹淑华,张国印,苏德纯,孙世友,王凌,耿暖,陈贵今.2011.禽粪有机肥对土壤锌积累特征及其生物有效性的影响.华北农学报,26(2):186~191
    邵煜庭,甄清香,刘世铎.1995.甘肃主要农业土壤中Cu、Zn、Mn、Fe的形态及有效性研究.土壤学报,32(4):423~429
    盛锦涛,蔡桢妹,林闻闻.2006.耕地土壤定量检测微量元素的变化.耕作与栽培,(3):27~28
    史吉平,张夫道.1999.长期定位施肥对土壤中、微量营养元素的影响.土壤肥料,(1):3~7
    石荣丽,邹春琴,张福锁.2006.籽粒铁、锌营养与人体健康研究进展.广东微量元素科学,13(7):1~8
    孙远明,余群力.2002.食品营养学.北京:中国农业大学出版社,73~78
    唐新莲,顾明华,潘丽梅,凌桂芝,钱单霞.2007.氮、磷、钾、锌配施对小白菜产量和品质的效应.中国土壤与肥料,(3):47~51
    田霄鸿,陆欣春,曹玉贤,买文选,陈自惠,李峰,杨习文,周密,伊田,宋月霞.2009.黄土区土壤锌肥力状况及施锌对提高小麦籽粒锌含量的效果.见:邹春琴,张福锁(主编).中国土壤-作物中微量元素研究现状和展望.北京:中国农业大学出版社:156~164
    田霄鸿,陆欣春,买文选,杨习文,李生秀.2008.碳酸钙含量对土壤中锌有效性和小麦锌铁吸收的影响.土壤,40(3):425~431
    涂从,郑春荣,陈怀满.1997.土壤-植物系统重金属与养分元素交互作用.中国环境科学,17(6):526~529
    汪洪,刘新保,褚天铎,杨清,李春花.2003.锌肥对作物产量、子粒锌及土壤有效锌含量的后效.土壤肥料,(1):3~6,9
    王人民,杨肖娥.2001.不同锌离子活度对水稻养分吸收的影响及其基因型差异.作物学报,27(5):566-574。
    王帅,丁亦男,王楠,尹丽华,邸文静.2011.不同磷浓度处理暗棕壤对Zn2+吸附解吸行为的研究.中国土壤与肥料,(3):54~56,61
    王洋,刘景双,郑娜.2010.土壤pH值对冻融黑土重金属锌赋存形态的影响.干旱区资源与环境,24(1):163~167
    魏孝荣,郝明德,田梅霞.2005a.长期定位施锌土壤-作物系统锌分布特征研究.中国生态农业学报,13(2):96~98
    魏孝荣,郝明德,张春霞.2005b.黄土高原地区连续施锌条件下土壤锌的形态及有效性.中国农业科学,38(7):1386~1393
    夏海龙.2009.小麦价格变动分析及2009年行情展望.中国农业信息,(2):46~48
    谢忠雷,杨佰玲,包国章,董徳明.2006.茶园土壤锌的形态分布及其影响因素.农业环境科学学报,25(增刊):32~36
    徐立新,赵会杰,郭占玲,薛延丰,毛凤梧.2007.灌浆期喷施钼、锌、镁肥对小麦品质的影响.河南农业大学学报,37(3):217~223
    徐卫红,王正银,袁德厚,曹秋华,郭先锋.2006.不同阴离子形态锌肥对水稻营养及土壤锌形态的影响.中国生态农业学报,14(3):52~55
    徐晓燕,杨肖娥,杨玉爱.1996.锌从土壤向食物链的迁移.广东微量元素科学,3(7):21~29
    徐晓燕,杨肖娥,杨玉爱.2001. HCO-3对不同水稻品种Zn吸收运输的影响.应用与环境生物学报,7(6):532~535
    严连香,黄标,邵学新,赵永存,孙维侠,顾志权,钱卫飞,黄耀.2007.长江三角洲典型地区土壤有效铜和锌的时空变化及其影响因素研究土壤通报,38(5):971~977
    杨芳,田霄鸿,陆欣春,杨习文,李秀丽.2011.小麦秸秆腐解对自身锌释放及土壤供锌能力的影响.植物营养与肥料学报,17(5):1188~1196
    杨娟,王冬艳.2003.吉林省土壤中有效锰、铜、钼和锌含量的时空变化.世界地质,22(4):392~395
    杨丽娟,李天来,付时丰,邱忠祥.2006.长期施肥对菜田土壤微量元素有效性的影响.植物营养与肥料学报,12(4):549~553
    杨丽娟,李天来,刘妤,苏娜.2005.长期施用有机肥和化肥对菜田土壤锌有效性的影响.土壤通报,36(3):395~397
    杨利华,郭丽敏,傅万鑫.2003.施锌对玉米氮磷钾肥料利用率、产量及籽粒品质的影响.中国生态农业学报,11(2):41~43
    杨清,刘新保,褚天铎,王淑惠,李春花,张燕卿.1995.小麦氮、磷与锌配合施用的研究.中国农业科学,28(1):15~24
    杨习文,田霄鸿,陆欣春,曹玉贤.2010.喷施锌肥对小麦籽粒锌铁铜锰营养的影响.干旱地区农业研究,28(6):95~102
    杨志敏,郑绍建,胡霭堂.1999.植物体内磷与重金属元素锌、镉交互作用的研究进展.植物营养与肥料学报,5(4):366~376
    姚丽贤,周修冲,彭智平,李国良.2006.广东省柑桔园土壤养分肥力研究.土壤通报,37(1):41~44
    叶优良,韩燕来,王文亮,黄玉芳.2006.高产小麦氮肥施用研究进展.中国农学通报,22(9):264~267
    于素华,杨守祥,刘春生,刘方春.2006.水分淋洗下菜园土壤各形态锌的迁移转化特征.水土保持学报,20(4):31~34,39
    余存祖,刘耀宏,戴鸣钧,彭琳.1984.陕西省土壤微量元素含量与微肥效应.土壤通报,(6):268~271
    余存祖,彭琳,刘耀宏,戴鸣钧,彭祥林.1991.黄土区土壤微量元素含量分布与微肥效应.土壤学报,28(3):317~326
    曾昭华.1996.长江中下游地区地下水中化学元素的背景特征及形成.地质学报,70(3):262~269
    曾昭华.2001.农业生态与土壤环境中锌元素的关系.吉林地质,20:58~63
    张春梅.2011.古浪灌区土壤耕层有效锌、锰、铜、铁含量分析与评价.草业科学,28(6):1221~1225
    张效仆.1994.淮北砂姜黑土区小麦高产高效的施肥技术.土壤,26(1):13~16
    张永清,吴俊兰.2003.石灰性褐土小白菜优质高产与氮、锌、锰肥配施.植物营养与肥料学报,9(3):348~352
    张勇,王德森,张艳,何中虎.2007.北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析.中国农业科学,40(9):1871~1876
    赵宁春,张其芳,程方民,周伟军.2007.氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性.中国水稻科学,21(2):185~190
    赵同科.1996.植物锌营养研究综述与展望.河北农业大学学报,19(1):374~377
    郑绍建,杨志敏,胡霭堂.1999.玉米、小麦细胞磷、锌营养及交互作用的研究.植物营养与肥料学报,5(2):150~155
    朱波,青长乐,牟树森.2002.紫色土外源锌、镉形态的生物有效性.应用生态学报,13(5):555~558
    朱静,黄标,孙维侠,丁峰,邹忠,苏建平.2007.农田土壤有效态微量元素的时空变化及其影响因素研究.南京大学学报(自然科学版),43(1):1~12
    邹春琴,张福锁.2009.中国农业生产中的微量元素.见:邹春琴,张福锁(主编).中国土壤-作物中微量元素研究现状和展望.北京:中国农业大学出版社:1~10
    左东峰.盐渍土冬小麦叶面喷施硼、锌、铁肥优化配比及增产效应研究.北京农业大学学报,1992,18(3):293~297
    Agbenin J Q.1998. Phosphate-induced zinc retention in a tropical semi-arid soil. European Journal ofSoil Science,49(4):693~700
    Alexei M, Hugo F Gómez B, Abgalieva A, Dzhunusova M, Yessimbekova M, Hafiz muminjanov,Zelenskiy Y, Ozturk L, Cakmak I.2007. Iron and zinc grain density in common wheat grown in CentralAsia. Erphytica,155:193~203
    Alloway B J.2008. Zinc in Soils and Crop Nutrition. IZA Publications. International Zinc Association,Brussels.38~46
    Alloway B J.2009. Soil factors associated with zinc deficiency in crops and humans. EnvironGeochem Health,31:537~548
    Asad A, Rafique R.2000. Effect of zinc, copper, iron, manganese and boron on the yield and yieldcomponents of wheat crop in Tehsil Peshawar. Pakistan Journal of Biological Sciences,3:1615~1620
    Bagci S A, Ekiz H, Yilmaz A, Cakmak I.2007. Effects of zinc deficiency and drought on grain yieldof field-grown wheat cultivars in Central Anatolia. Journal of Agronomy and Crop Science,193:198~206
    Barber S A.1984. Soil Nutrient Bioavailability: A Mechanistic Approach. Wiley Interscience, NewYork
    Basta N T, Tabatabai M A.1992. Effect of croping systems on adsortiong of metals by soils:Ⅰ.Single-metal adsorption. Soil Science,153(2):108~114
    Bates T E, Johnston R W.1975. Zinc requirments for field crops. Factsheet. Ministry of Agricultureand Food, Ontario
    Batten G D.1986. Phosphorus fractions in the grain of diploid, tetraploid, and hexaploid wheat grownwith contrasting phosphorus supplies. Cereal chemistry,63(5):384~387
    Black R E.2008. Zinc deficiency, infectious disease and mortality in the developing world. Journal ofNutrition,133:1485~1489
    Boawn L C.1974. Residual availability of fertilizer zinc. Soil Sci Soc Am Proc38:800~803
    Brennan R F, Armour J D, Reuter D J.1993. Diagnosis of zinc deficiency. In ‘Zinc in Soil and Plants’.(Ed.AD Robson)168~181(Kluwer Acad. Publ.: Dordrecht, The Letherlands)
    Broadley M R, White P J, Hammond J P, Zelko I, Lux A.2007. Zinc in plants. New Phytologist,173:677~702
    Brown A L, Krantz B A, Eddings J L.1970. Zinc-phosphorus interactions as measured by plantresponse and soil analysis. Soil Science,110(6):415~420
    Buyckx M.1993. The international community’s commitment to combating micronutrient deficiencies.Food Nutrition and Agriculture,7:2~7
    Cakmak I, Kalayci M, Ekiz H, Braun H J, Kilinc Y, Yilmaz A.1999a. Zinc deficiency as a practicalproblem in plant and human nutrition in Turkey: A NATO-science for stability project. Field CropsResearch.60:175~188
    Cakmak I, Pfeiffer W H, McClafferty B.2010. Biofortification of durum wheat with zinc and iron.Cereal Chemistry,87(1):10~20
    Cakmak I, Sari N, Marschner H, Kalayci M, Yilmaz A, Eker S, Gülüt K Y.1996a. Dry matterproduction and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency. Plantand Soil,180:173~181
    Cakmak I, Tolay I, Ozdemir A.1999b. Differences in zinc efficiency among and within Diploid,Tetraploid and Hexaploid wheats. Annals of Botany,84:163~171
    Cakmak I, Torun B, Erenoglu B, ztürk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A.1998.Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica,100:349~357
    Cakmak I, Yilmaz A, Kalayci M, Ekiz H, Torun B, Ereno lu B, Braun H J.1996b. Zinc deficiency as acritical problem in wheat production in Central Anatolia. Plant and Soil,180:165~172
    Cakmak I.2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways.Plant and Soil,247:3~14
    Cakmak I.2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plantand Soil,302:1~17
    Cakmak I.2009. Enrichment of fertilizers with zinc: An excellent investment for humanity and cropproduction in India. Journal of Trace Elements in Medicine and Biology,23:281~289
    Cakmak I.2010. Potassium for better crop production and quality. Plant and Soil,335:1~2
    Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E.2009.Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.).Theoretical and Applied Genetics,118:1211~1221
    Chen Z H, Tian X H, Yang X W, Lu X C, Mai W X, Gale W J, Cao Y X.2010. Comparison of zincefficiency among winter wheat genotypes cultured hydroponically in chelator-buffered solutions. Journalof Plant Nutrition,33(11):1612~1624.
    Dai F, Wang J M, Zhang S H, Xu Z Z, Zhang G P.2007. Genotypic and environmental variation inphytic acid content and its relation to protein content and malt quality in barley. Food Chemistry,105:606~611
    Demment W M, Young M M, Sensenig R L.2003. Providing micronutrients through food-basedsolutions: a key to human and national development. Journal of Nutrition.33:3879~3885
    Dong B, Rengel Z, Graham R D.1995. Root morphology of wheat genotypes differing in zincefficiency. Plant Nutrition,18:2761~2773
    Doran I, Akinci C, Yildirim M, Gül I, Kaya Z.2009. Effects of different zinc application method onagronomic traits of durum wheat in a semi-arid Anatolian environment. Asian Journal of Chemistry,21(5):3772~3780
    Erdal I, Yilmaz A, Taban S.2002. Phytic acid and phosphorus concentrations in seeds of wheatcultivars grown with and without zinc fertilization. Journal of Plant Nutrition,25(1),113~127
    Erenoglu B, Nikolic M, R mheld V, Cakmak I.2002a. Uptake and transport of foliar applied zinc(65Zn) in bread and durum wheat cultivars differing in zinc efficiency. Plant and Soil,241:251~257
    Erenoglu B, R mheld V, Cakmak I.2002b. Retranslocation of zinc from older leaves to youngerleaves and roots in wheat cultivars differ in zinc efficiency. Plant Nutrition,92:224~225
    Fan M S, Zhao F J, Fairweather-Tait S J, Poulton P R, Dunham S J, McGrath S P.2008. Evidence ofdecreasing mineral density in wheat grain over the last160years. Journal of Trace Elements in Medicineand Biology,22:315~324
    FAO.2002. State of food insecurity in the world. Rome
    Ferguson E L, Gibson R S, Thompson L U, Ounpuu S.1989. Dietary calcium, phytate, and zincintakes and the calcium, phytate, and zinc molar ratios of the a selected group of East Africa children.American Journal of Clinic Nutrition,50:1450~1456
    Ficco D B M, Riefolo C, Nicastro G, Di Gesù A M, Beleggia R, De Simone V, Menga V, Cattivelli Land P De Vita.2008. Content of macro-and microelements in a collection of durum wheat cultivars.(http://www.fromseedtopasta2008.it/PDF%20POSTER%202/P.%207.8_Ficco%20et%20al.pdf)
    Fileppi M, Galasso I, Tagliabue G, Daminati M G, Campion B, Doria E, Sparvoli F.2010.Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolusvulgaris L.). Molecular Breeding,25:453~470
    Fomina M A, Alexander I J, Colpaert J V, Gadd G M.2005. Solubilization of toxic metal minerals andmetal tolerance of mycorrhizal fungi. Soil Biology&Biochemistry.37:851~866
    Gao X P, Zou C Q, Zhang F S, Sjoerd E A T M.2005. Van der Zee, Ellis Hoffland. Tolerance to zincdeficiency in rice correlates with zinc uptake and translocation. Plant and Soil,278:253~261
    Gargari B P, Mahboob S, Razavieh S V.2007. Content of phytic acid and its mole ratio to zinc in flourand breads consumed in Tabriz, Iran. Food Chemistry,100:1115~1119
    Gerriste R G, Van Driel W.1984. The relationship between adsorption of trace metals, organic matterand pH in temperate soils. Journal of Environmental Quality,13:197~204
    Ghanbari G A, Mameesh M S.1971. Iron, zinc, manganese, and copper content of semidwarf wheatvarieties grown under different agronomic conditions. Cereal Chemistry,48:411~414
    Gharib A G, Mohseni S G, Mohajer M, Gharib M.2006. Bioavailability of essential trace elements inthe presence of phytate, fiber and calcium. Journal of Radioanalytical and Nuclear Chemistry,270(1):209~215
    Ghasemi-Fasaei R, Ronaghi A.2008. Interaction of iron with copper, zinc, and manganese in wheat asaffected by iron and manganese in a calcareous soil. Journal of Plant Nutrition,31:839~848
    Gibson R S.2006. Zinc: the missing link in combating micronutrient malnutrition in developingcountries. Proceedings of the Nutrution Society,65(1):51~60
    Gibson R S.2007. The role of diet-and host-related factors in nutrient bioavailability and thus innutrient-based dietary requirement estimates. Food Nutrition Bulletin,28:77~100
    Giorgio G, Azmi A R, Livia D T, Diletta P, Beatrice P.2000. Interaction effects of phosphorus andzinc on photosynthesis, growth and yield of dwarf bean grown in two environments. Plant and Soil,220(1-2):219~228
    Gomez-Becerra H F, Yazici A, Ozturk L, Budak H, Peleg Z, Morgounov A, Fahima T, Saranga Y,Cakmak I.2010. Genetic variation and environmental stability of grain mineral nutrient concentrations inTriticum dicoccoides under five environments. Euphytica,171:39~52
    Graham R D, Asher J S, Hynes S C.1992. Selecting zinc-efficient cereal genotypes for soil of soil oflow zinc status. Plant and Soil,146:241~250
    Graham R D, Rengel Z.1993. Genotypic variation in Zn uptake and utilization by plants. In: RobsonA D (ed). Zinc in Soils and Plants. Kluwer Academic Publishers, Dordrecht,107~114
    Graham R D, Welch R M.1996. Breeding for stable food crops with high micronutrient density.Agricultural Strategies for Micronutrients, Working paper No.3, IFPRI, Washington, D C
    Graham R, Senadhira D, Beebe S, Iglesias, Monasterio C I.1999. Breeding for micronutrient densityin edible portions of staple food crops: conventional approaches. Field Crops Research,60:57~80
    Grant C A, Monreal M A, Irvine R B, Mohr R M, McLaren D L, Khakbazan M.2010. Preceding cropand phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional andreduced tillage. Plant and Soil,333:337~350
    Grusak M A, Pearson J N, Marentes E, Welch R M, Graham R D.1999. The physiology ofmicronutrient homeostasis in field crops. Field Crops Research,60(1-2):41~56
    Günes A, Inal A, Alpaslan M, Gikli Y.1999. Effect of salinity on phosphorus induced zinc deficiencyin pepper (Capsicum annuum L.) plant. Turkish Journal of Agriculture and Forestry,23:459~464
    Hajiboland R, Yang X E, R mheld V.2003. Effects of bicarbonate and high pH on growth ofZn-efficiency and Zn-inefficient genotypes of rice, wheat and rye. Plant and Soil,250:349~357
    Han F X, Hu A T, Qi H Y.1995. Transformation and distribution of forms of zinc in acid, neutral andcalcareous soils of China. Geodenma,66:121~135
    Hao H L, Wei Y Z, Yang X E, Feng Y, Wu C Y.2007. Effects of different nitrogen fertilizer levels onFe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Science,14(4):289~294
    Harter R D, Naidu R.1995. Role of metal-organic complexation in metal sorption by soils. Advancesin Agronomy,55:219~263
    Haslett B S, Reid R J, Rengel Z.2001. Zinc mobility in wheat: uptake and distribution of zinc appliedto leaves or roots. Annals of Botany,87:379~386
    Herren T, Feller U.1997. Transport of cadmium via xylem and phloem in maturing wheat shoots:Comparison with the translocation of zinc, strontium and rubidium. Annals of Botany,80:623~628
    Hotz C, Brown K H.2004. Assessment of the risk of zinc deficiency in populations and options for itscontrol. Food and Nutrition Bulletin,25:94~204
    Hotz C, Gibson R S.2007. Traditional food-processing and preparation practices to enhance thebioavailability of micronutrients in plant-based diets. Journal of Nutrition,137:1097~1100
    Ishiguro M.2005. Ion transport and permeability in an Allophanic Andisol at Low pH. Soil Science&Plant Nutrition,51(5):637~640
    Jalali M, Khanlari Z V.2008. Effect of aging process on the fractionation of heavy metals in somecalcareous soils of Iran. Geoderma,143:26~40
    Kalayci M, Torun B, Eker S, Aydin M, Ozturk L, Cakmak I.1999. Grain yield, zinc efficiency andzinc concentration of wheat cultivars grown in a zinc-deficiency calcareous soil in field and greenhouse.Field Crops Research,63:87~98
    Karunaratne A M, Amerasinghe P H, Ramanujam V M S, Sandstead H H, Perera P A J.2008. Zinc,iron and phytic acid levels of some popular foods consumed by rural children in Sri Lanka. Journal of FoodComposition and Analysis,21:481~488
    Kaushik R D, Gupta V K, Singh J P.1993. Distribution of zinc, cadmium, and copper forms in soils asinfluenced by phosphorus application. Arid Soil Research and Rehabilitation,7:163~171
    Kaya C, Higgs D, Burton A.1999. Foliar application of iron as a remedy for zinc toxic tomato plants.Journal of Plant Nutrition,22:1829~1837
    Kutman U B, Yildiz B, Ozturk L, Cakmak I.2010. Biofortification of durum wheat with zinc throughsoil and foliar applications of nitrogen. Cereal Chemistry,87(1):1~9
    Kwun I S, Kwon C S.2000. Dietary molar ratios of phytate: zinc and millimolar ratios ofphytate×calcium: zinc in South Koreans. Biological Trace Element Research,75:29~41
    Liang J F, Han B Z, Nout M J R, Hamer R J.2009. Effect of soaking and phytase treatment on phyticacid, calcium, iron and zinc in rice fractions. Food Chemistry,115:789~794
    Liang J F, Li Z G, Tsuji K, Nakano K, Nout M J R, Hamer R J.2008. Milling characteristics anddistribution of phytic acid and zinc in long-medium-and short-grain rice. Journal of Cereal Science,48:83~91
    Liu Q L, Xu X H, Ren X L, Fu H W, Wu D X, Shu Q Y.2007a. Generation and characterization of lowphytic acid germplasm in rice (Oryza sativa L.). Theoretical and Applied Genetics,114(5):803~814
    Liu Z H, Cheng F M, Zhang G P.2005. Grain phytic acid content in japonica rice as affected bycultivar and environment and its relation to protein content. Food chemistry,89:49~52
    Liu Z H, Wang H Y, Wang X E.2007b. Phytase activity, phytate, iron, and zinc contents in wheatpearling fractions and their variation across production locations. Journal of Cereal Science,45:319~326
    Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, Liu D J.2006. Genotypic and spike positionaldifference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat(Triticum aestivum L.). Journal of Cereal Science,44:212~219
    Longnecker N E, Robson A D.1993. Distribution and transport of zinc in plants. In: Robson A D,(Ed.)Zinc in soils and plants. Dordrecht, The Netherlands: Kluwer Academic Publishers,79~91
    Loosemore N, Straczek A, Hinsinger P, Jaillard B.2004. Zinc mobilization from a contaminated soilby three genotypes of tobacco as affected by soil and rhizosphere pH. Plant and Soil,260:19~32
    Lu A X, Zhang S Z, Shan X Q.2005. Time effect on the fractionation of heavy metals in soils.Geoderma,125:225~234
    Ma G S, Jin Y, Li Y P, Zhai F J, Jacobsen E, Yang X G.2008. Iron and zinc deficiencies in China:what is a feasible and cost-effective strategy? Public Health Nutrition,11:632~638
    Ma G, Li Y, Jin Y, Zhai F, Kok F J, Yang X.2007. Phytate intake and molar ratios of phytate to zinc,iron and calcium in the diets of people in China. European Journal of Clinical Nutrition,61(3):368~374
    Marschner H.1995. Mineral Nutrition in Higher Plants. London: Academic Press,139~158
    Marschner H.1993. Zinc Uptake from Siols. In: Robson A D. Zinc in Soils and Plants. KluwerAvademic Publishers, Dordrecht, The Netherlands,59~77
    Mason J B, Garcia M.1993. Micronutrient deficiency-the global situation. SCN News,9:11~16
    McLaren R G, McLenaghen R D, Swift R S.1991. Zinc application to pastures: effect on herbage andsoil zinc concentrations. New Zealand Journal of Agricultural Research,34:113~118
    Mench M J, Fargue S.1994. Mental uptake by iron-efficient and in inefficient oats. Plant and Soil,165:227~233
    Miller R O, Jacobsen J S, Skogley E O.1993. Aerial accumulation and partitioning of nutrients byhard red spring wheat. Communications in Soil Science and Plant Analysis,24(17-18):2389~2407
    Moraghan J T.1994. Accumulation of zinc, phosphorus, and magnesium by navy bean seed. Journalof Plant Nutrition,17:1111~1125
    Mortvedt J J, Gilkes R J.1993. Zinc fertilizers. In ‘zinc in soils and plants’.(Ed. AD Robson)pp.33~44.(Kluwer Acad. Publ.: Dordrecht, The Letherlands)
    Mousia Z, Edherly S, Severino S.2004. Effect of wheat pearling on flour quality. Food ResearchInternational,34:449~459
    Muminjanov H, Morgounov A, Cakmak I.2007. Variation of zinc and iron content in wheat grain inTajikistan.(http://www.zinc-crops.org/ZnCrops2007/PDF/2007_zinccrops2007_muminjanov_abstract.pdf)
    Nable R O, Webb M J.1993. Further evidence that zinc is requried throughout the root zone foroptimal plant growth and development. Plant and Soil,150:247~253
    Naik S K, Das D K.2008. Relative performance of chelated zinc and zinc sulphate for lowland rice(Oryza sativa L.). Nutrient Cycling Agroecosystems,81:219~227
    Nambiar E K S.1976a. The uptake of zinc-65by oats in relation to soil water content and root growth.Australian Journal of Soil Research,14:67~74
    Nambiar E K S.1976b. The uptake of zinc-65by oats in relation to soil water content and root growth.Australian salinity in lowland rice systems. Field Crops Research,56:139~155
    Neue H U, Quijano C, Senadhira D, Setter T.1998. Strategies for dealing with micronutrient disordersand salinity in lowland rice systems. Field Crops Research,56(1):139~155
    Obrador A, Novillo J, Alvarez J M.2003. Mobility and availability to plants of two zinc sourcesapplied to a calcareous soil. Soil Science Society of America Journal,67:564~572
    Ozturk L, Yazici M A, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun H J, Sayers Z, Cakmak I.2006. Concentration and localization of zinc during seed development and germination in wheat.Physiologia Plantarum,128:144~152
    Page V, Feller U.2005. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the rootsystem and transfer to the leaves in young wheat plants. Annals of Botany,96(3):425~434
    Page V, Weisskopf L, Feller U.2006. Heavy metals in white lupin: uptake, root-to-shoot transfer andredistribution within the plant. New Phytologist,171:329~341
    Pahlavan-Rad, M R, Pessarakli M.2009. Response of wheat plants to zinc, iron, and manganeseapplications and uptake and concentration of zinc, iron, and manganese in wheat grains. Communicationsin Soil Science and Plant Analysis,40:1322~1332
    Palmgren M G, Clemens S, Williams L E, Kr mer U, Borg S, Schjφrring J K and Sanders D.2008.Zinc biofortification of cereals: problems and solutions. Trends in Plant Science,13(9):464~473
    Pardo M T, Guadalix M E.1996. Zinc sorption-desorption by two Andepts: effect of pH and supportmedium. European Journal of Soil Science,47(2):257~263
    Parker D R, Aguilera J J, Thomason D N.1992. Zinc-phosphorus interactions in two cultivars oftomato(Lycopersicon esculentum L.) grown in chelator-buffered nutrient solutions. Plant and Soil,143:163~177
    Pearson J N, Rengel Z, Jenner C F, Graham R D.1995. Transport of zinc and manganese todeveloping wheat grains. Physiologia Plantarum,95:449~455
    Pearson J N, Rengel Z, Jenner C F and Graham R D.2008. Manipulation of xylem transport affects Znand Mn transport into developing wheat grains of cultured ears. Physiologia Plantarum,98:229~234
    Pedersen H B, Hatzack F, Sorensen L D, Holm P B.2003. Concerted action of endogenous andheterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.).Transgenic Research,12:649~659
    Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I.2008. Grain zinc, iron and proteinconcentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant andSoil,306:57~58
    Ponnamperuma F N.1982. Breeding crop plant to tolerate soil stress. Plant improvement and somaticcell genetics. New York: Academic Press,73~79
    Pradhan Y, Kanwar B B.1990. Contribution of zinc fraction to available zinc extracted, by somechemical methods, from rice growing soils of North-Western Himalayas. Plant and Soil,126:149~153
    Prasad A S.2007. Zinc: Mechanisms of host defense. Journal of Nutrition,137:1345~1349
    Prasad R.1998. Effects of soil properties on different chemical pools of zinc in limy soil. Journal ofthe Indian Society of Soil Science,36(2):246~251
    Prom-u-thai C, Rerkasem B, Cakmak I, Huang L B.2010. Zinc fortication of whole rice grain throughparboiling process. Food Chemistry,120:858~863
    Ramalingaswami V.1995. New global perspectives on overcoming malnutrition. American Journal ofClinical Nutrition,61:259~263
    Ranjbar G A, Bahmaniar M A.2007. Effects of soil and foliar application of Zn fertilizer on yield andgrowth characteristics of bread wheat (Triticum aestivum L.) cultivars. Asian Journal of Plant Sciences,6(6):1000~1005
    Rashid A, Fox R L.1992. Evaluating internal zinc requirements of grain crops by seed analysis.Agronomy Journal,84:469~474
    Reddy N R, Sathe S K, Salunkhe D K.1982. Phytates in legumes and cereals. Advances in FoodResearch,28:1~92
    Rengel Z, Batten G D, Crowley D E.1999. Agronomic approaches for improving the micronutrientdensity in edible portions of field crops. Field Crops Research,60:27~40
    Rengel Z, Graham R D.1995a. Importance of seed Zn content for wheat growth on Zn-deficient soil. I.Vegetative growth. Plant and Soil,173:259~266
    Rengel Z, Graham R D.1995b. Wheat genotypes differ in Zn efficiency when grown inchelate-buffered nutrient solution.Ⅱ. Nutrient uptake. Plant and Soil,176:317~324
    Rengel Z.1995. Carbonic anhydrase activity in leaves of wheat genotypes differing in zinc efficiency.Plant Physiol,147:251~256
    Robson A D.1993. Zinc in soils and plants, chapter5zinc uptake from soils. Kluwer AcademicPublishers, The Netherlands.
    Ryan M H, Mclnerney J K, Record I R, Angus J F.2008. Zinc bioavailability in wheat grain inrelation to phosphorus fertilizer, crop sequence and mycorrhizal fungi. Journal of the Science of Food andAgriculture,88(7):1208~1216
    Schlege R, Cakmak I, Torun B, Eker S, Tolay I, Ekiz H, Kalayci M, Braun H J.1998. Screening forzinc efficiency among wheat relatives and their utilization for alien gene transfer. Euphytica,100(1-3):281~286
    Schwartz S M, Welch R M, Gnines D L, Cary E E, Norvel W A,Gilbert M D, Meredith M P,Sanchirico C A.1987. Effect of zinc, phosphorus and root-zone temperature on nutrient uptake by barley.Soil Science Society of America Journal,51:371~375
    Shi R L, Zhang Y Q, Chen X P, Sun Q P, Zhang F S, R mheld V, Zou C Q.2010. Influence oflong-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.).Journal of Cereal Science,51:165~170
    Shivay Y S, Kumar D, Prasad R.2008. Effect of zinc-enriched urea on productivity, zinc uptake andefficiency of an aromatic rice-wheat cropping system. Nutrient Cycling in Agroecosystems,81:229~234
    Shuman L M, Wang J.1997. Effect of VAM and zinc cadmium iron and manganese content inrhizosphere and non-rhizosphere soil fractions. Comm Soil Sci Plant Anal,28:23~36
    Shuman L M.1988. Effect of phosphorus level on extractable micronutrients and their distributionamong soil fractions. Soil Science Society of America Journal,52(1):136~141
    Singh K.1992. Critical soil level of zinc for wheat grown in alkaline soils. Fertilizer Research,31:253~256
    Srivastava P C, Singh A P, Kumar S, Ramachandran V, Shrivastava M, D’souza S F.2009.Comparative study of a Zn-enriched post-methanation bio-sludge and Zn sulfate as Zn sources for arice-wheat crop rotation. Nutrient Cycling in Agroecosystems,85:195~202
    Stoltzfus R J.2001. Defining iron-deficiency anemia in public health terms: a time for reflection1,2.Journal of Plant Nutrition,131:565S~567S
    Subramanian K S, Tenshia V, Jayalakshmi K, Ramachandran V.2009. Biochemical changes and zincfractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils underdifferential zinc fertilization. Applied Soil Ecology,43:32~39
    Tessier A, Campbell P G C, Blsson M.1979. Sequential extraction procedure for the speciation ofparticulate trace metals. Analytical Chemistry,51(7):844~851
    Thavarajah D, Thavarajah P, See C T, Vandenberg A.2010. Phytic acid and Fe and Zn concentration inlentil (Lens culinaris L.) seeds in influenced by temperature during seed filling period. Food Chemistry,122:254~259
    Torun B, Bozbay G, Gultekin I, Braun H J, Ekiz H, Cakmak I.2000. Differences in shoot growth andzinc concentration of164bread wheat genotypes in a zinc-deficient calcareous soil. Journal of PlantNutrition,23(9):1251~1265
    Wang J J, Harrell D L.2005. Effect of ammonium, potassium, and sodium cations and phosphate,nitrate, and chloride anions on zinc sorption and lability in selected acid and calcareous soils. Soil ScienceSociety of America Journal,69:1036~1046
    Webb M J, Loneragan J F.1988. Effect of zinc deficiency on growth, phosphorus concentration andphosphorus toxicity of wheat plants. Soil Science Society of America Journal,52:1676~1680
    Webb M J, Loneragan J F.1990. Zinc translocation to wheat roots and its implications for aphosphorus/zinc interaction in wheat plants. Journal of Plant Nutrition,13:1499~1512
    Welch R M, Combs Jr G F, Duxbury J M.1997. Toward a ‘Greener’ revolution. Issues in Science andTechnology,14,50~58
    Welch R M, Graham R D.2002. Breeding crops for enhanced micronutrient content. Pant and soil,245:205~214
    Welch R M, Graham R D.2004. Breeding for micronutrients in staple food crops from a humannutrition perspective. Journal of Experimental Botany,55(396):353~364
    Welch R M, Graham R D.2005. Agriculture: the real nexus for enhancing bioavailable micronutrientsin food crops. Trace Elem Med Biol,18:299~307
    Welch R M.1993. Zinc concentrations and forms in plants for humans and animals. In: A D Robson(Ed.), Zinc in Soil and Plants. Kluwer Academic Publishers, Dordrecht, the Netherlands.183~195
    White J G, Zasoski R J.1999. Mapping soil micronutrients. Field Crop Research,60:11~26
    Wissuwa M, Ismail A M, Graham R D.2008. Rice grain zinc concentrations as affected by genotype,native soil-zinc availability, and zinc fertilization. Plant and Soil,306:37~48
    Xu W H, Liu H, Ma Q F, Xiong Z T.2007. Root exudates, rhizosphere Zn fractions, and Znaccumulation of ryegrass at different soil Zn levels. Pedosphere,17(3):389~396
    Yang X, R mheld V, Marschner H.1993. Effect of bicarbonate and root zone temperature on theuptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil. Plantand Soil,155/156:441~445
    Yang X E, Chen W R, Feng Y.2007. Improving human micronutrient nutrition throughbiofortification in the soil-plant system: China as a case study. Environ Geochem Health,29:413~428
    Yang X W, Tian X H, Gale W J, Cao Y X, Lu X C, Zhao A Q.2011. Effect of soil and foliar zincapplication on zinc concentration and bioavailability in wheat grain grown on potentially zinc-deficient soil.Cereal Research Communications,39(4):535~543
    Yang X W, Tian X H, Lu X C, Gale W J, Cao Y X.2011. Foliar zinc fertilization improves the zincnutritionsl value of wheat (Triticum aestivum L.) grain. African Journal of Biotechnology,10(66):14778~14785
    Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci S A, Cakmak I.1997. Effect of differentzinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcareoussoils in Central Anatolia. Journal of Plant Nutrition,20:461~471
    Yuan G, Lvkulich L M.1997. Sorption behavior of copper, zinc, and cadmium in response tosimulated changes in soil properties. Commun Soil Sci Plant Anal,28:571~587
    Zhang Y, Song Q C, Yan J, Tang J W, Zhao R R, Zhang Y Q, He Z H, Zou C Q, Ortiz-Monasterio I.2010. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica,174:303~313
    Zuo Y, Zhang F.2009. Iron and zinc biofortification strategies in dicot plants by intercropping withgramineous species. A review. Agronmy for Sustainable Development,29:63~71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700