玉米发芽至苗期耐冷性资源鉴定及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米低温冷害是我国东北及某些省份高寒山区严重的自然灾害,也是不少国家和地区普遍性的严重灾害。冷胁迫已经成为限制东北地区玉米生产主要的非生物胁迫因素之一。选育和创造耐冷玉米种质,是减少此种危害最经济有效的途径。开展耐冷性鉴定及遗传理论研究是选育耐冷玉米品种的基础,开展玉米耐冷种质的发掘及耐冷相关性状QTL定位具有重要的现实意义。本研究以36份玉米自交系为试验材料,通过对玉米自交系低温下发芽能力、幼芽存活率、苗期若干形态学性状、生理指标的测定,综合大量指标的分析比较而筛选建立耐冷性鉴定的指标体系;利用本试验建立的玉米耐冷性鉴定体系,对来自黑龙江寒带植物资源研究中心的276份玉米自交系分别进行发芽期、芽期和苗期耐冷性评价及其相关分析;选用黑龙江省耐冷自交系甸骨11A与冷敏感自交系T935构建的DH群体为试验材料,采用P1、P2与DH群体3世代主基因+多基因联合分离分析模型来研究玉米发芽期、芽期及苗期耐冷性的遗传规律;通过构建遗传连锁图谱初步定位玉米发芽至苗期耐冷性QTL位点。旨在建立玉米发芽至苗期耐冷性的鉴定体系和量化指标;筛选耐冷玉米种质资源,为耐冷育种提供特异种质;揭示耐冷性遗传规律;并检测控制耐冷性的QTL,获得与耐冷基因紧密连锁的分子标记,为玉米耐冷分子标记辅助育种提供理论依据。主要研究结果如下:
     1.10℃低温与25℃常温下种子相对发芽率与田间相对出苗率极显著正相关(R=0.620),并且供试自交系间存在极显著差异,用该指标可进行玉米自交系发芽期耐冷性的鉴定;在2℃C/6d低温胁迫下,供试自交系平均存活率的标准差及变异系数均表现最大,能够比较客观地区分玉米自交系间耐冷性遗传差异,该胁迫条件可用于芽期耐冷种质的筛选;以玉米三叶一心期3℃低温处理5d的存活率作为苗期耐冷性鉴定指标是可行的。相关分析表明,幼苗总干重、苗干重、根干重、丙二醛、叶绿素、电导率、SOD、CAT等8项指标的相对值与苗期耐冷性关系非常密切,以这些指标的平均隶属函数值能够综合评价玉米自交系苗期耐冷性。同时,这些性状的选择可为育种工作者选育强耐冷玉米品种提供形态学以及生理学水平的理论基础。
     2.PFM32、吉4112、ZYM237、EY20、ZYM264、甸骨11A、垦自167-1等共计50份自交系表现为极强的发芽期耐冷性;T123、HR10、HB14、KLM17、ZYM249、ZYM264共计6份自交系表现为极强的芽期耐冷性;PFM32、ZYM249、HR10、吉818、龙系53、H050、意牛、扎917、宾自901共计9份自交系表现为极强的苗期耐冷性。PFM32、 ZYM264.甸骨11A、ZYM249、KLM17、T123、吉63、HR10等自交系在三个不同时期的耐冷性均较强,可作为耐冷基因源应用于耐冷育种。在低温条件下,不同地区间自交系相对发芽率、幼芽存活率、幼苗存活率平均值均以俄罗斯自交系最大,显著或极显著高于中国和法国自交系。来自俄罗斯的自交系在三个时期耐冷1级自交系所占比例也均为最高,明显高于中国和法国自交系,说明俄罗斯自交系中有较多的耐冷基因,在俄罗斯玉米种质中挖掘强耐冷种质资源的潜力较大。
     3.发芽期相对发芽率的遗传为2对加性-上位性主基因+多基因模型,主基因遗传率为91.57%,多基因遗传率为7.86%。芽期存活率符合3对加性-上位性主基因+多基因的混合遗传模型,主基因遗传率为95.48%,多基因遗传率为4.46%。苗期存活率符合2对隐性上位主基因+多基因的混合遗传模型,主基因遗传率为86.50%,多基因遗传率为12.91%。玉米耐冷性的遗传涉及到主基因和多基因,其主基因遗传率较高,且存在多基因的修饰。因此,改善玉米耐冷性在基于研究主基因利用的同时,也要注重多基因的积累。
     4.共检测到18个控制玉米生长早期耐冷性的QTL,分布在玉米的第1,2,3,4,5,6,9和10染色体上,贡献率介于3.16%到15.71%之间。控制发芽期、芽期和苗期耐冷性的QTL数目分别为5、7和6个。对发芽期、芽期和苗期在第6染色体的短臂上均检测到效应值大于10%的主效QTL,这可能是控制玉米生长早期耐冷相关性状的热点区域。在所有检测到的QTL中,只有位于第6染色体bnlg1641-bnlg1422区域内的1个QTL分别控制芽期和发芽期的耐冷性,其余QTL只能控制某单个时期的耐冷性,说明玉米不同时期的耐冷性遗传机制可能不同。
Maize chilling damage cause a huge production loss in Northeast China and some provinces alpine mountains and also was a disasters for many countries and regions. Chilling stress has become a major factor limiting production of maize in Northeast abiotic stress. It is a most cost-effective way to breed and select chilling maize germplasm. It is important to identify chilling tolerance for germplasm and conduct genetic research. Moreover, it has practical significance to select chilling tolerance germplasm and conduct quantitative trait loci (QTL) mapping for chilling tolerance. In our study,36maize inbred lines were measured by germinate at low temperatures, budding survival rate, seedling morphological traits and physiological indicators to establish chilling tolerance indicator system. Based on the chilling tolerance indicator system,276maize inbred lines from Plant Resources Research Center of Heilongjiang boreal were evaluated by chilling tolerance indicator such as germination, budding and seedling. Chilling-resistant inbred Diangull and chilling intolerance inbred T935were constructed a Double haploid (DH) population for QTL mapping of chilling tolerance traits from germination to seedling. We also analyzed the data from P1, P2and DH population by a major gene polygene joint segregation analysis model to find the genetic architecture. The obeject of our study were to:(1) establish maize chilling tolerance identification systems and quantitative indicators;(2) select chilling tolerance germplasm;(3) reveal the genetic architecture of chilling tolerance;(4) QTL mapping for chilling tolerance;(5) find closely linkage markers for chilling tolerance which was benefit for maker assisted selection (MAS) to select chilling tolerance maize inbred lines. The mainly results were as follows:
     1. It showed significant positive correlation (R=0.620) between relative germination rate of seed germination and field relatively germination at10℃and25℃temperature. This indicator can be used maize germination identification chilling tolerance because there was significant difference among tested inbred lines. The standard deviation and coefficient of variation was largest among different inbred lines at2℃under6days, which can distinguish genetic differences for maize chilling tolerance. So this stress conditions can be used for chilling tolerance germplasm screening. It is feasible that the survival rate when maize leaf stage at3℃low temperature under5days as indicate for chilling tolerance. The maize chilling tolerance closely related with that total dry weight of seedlings, seedling dry weight, root dry weight, MDA, chlorophyll, conductivity, SOD, CAT and other eight indicators. The average value of membership function of these indicators can comprehensively evaluate maize seedling chilling tolerance. Meanwhile, the choice of these traits can provide theoretical basis on morphological and physiological level for breeders to develop strong chilling-resistant maize varieties
     2. Fifty inbred lines showed strong chilling tolerance at germination stage such as PFM32, Ji4112, ZYM237. EY20. ZYM264, DiangullA, Kenzi167-1. Six inbred lines showed strong chilling resistance at budding stage such as T123, HR10, HB14, KLM17. ZYM249, ZYM264. Nine inbred lines showed strong seedling chilling tolerance such as PFM32, ZYM249, HR10, Ji818, Long53, H050, Yiniu, Zha917, Binzi901. The inbred lines such as PFM32, ZYM264, DiangullA, ZYM249, KLM17, T123, Ji63, HR10showed strong chilling tolerance at three different periods which can be used for maize breeding for chilling resistance. At low temperatures, Russian inbred lines showed largest average relative germination rate, budding survival and seedling survival rate among different regions of inbred lines, significantly higher than China and France inbred lines. The proportion of first class inbred lines among all inbred lines for Russian inbred lines was highest, significantly higher than China and France inbred lines. Russian inbred lines have more chilling tolerance genes in maize germplasm and it is effective way to develop strong chilling-resistant germplasm in Russian.
     3. The genetic for maize chilling tolerance genes involved in major and multiple genes whose major gene heritability is high, and there are multiple genetic modification. The trait on germination based on germination rate controlled by2genes based on additive-epistatic major genes plus multi-gene models. The heritability for major gene was91.57%and polygene was7.86%. The trait on budding survival rate controlled by3genes based on additive-epistatic major genes plus multi-gene models. The heritability for major gene was95.48%and polygene was4.46%. The trait on seedling survival rate controlled by2genes based on additive-epistatic major genes plus multi-gene models. The heritability for major gene was86.50%and polygene was12.91%. Therefore, to improve chilling tolerance in maize research, we should also pay attention to the accumulation of multiple genes in spite of utilization of major gene.
     4. Eighteen QTL were detected for maize chilling tolerance from germination to seedling distrubited among chromosome1,2,3,4,5,6,9,10, which explaining3.16%to15.71%phenotypic variance. The number of QTL controlling germination, budding and seedling chilling tolerance were5,7and6respectively. The phenotypic variance for QTL on chromosome6was over10%and this QTL was detected in these three periods, which may be a hotspot for early growth of maize resistant to chilling related traits. Among all the QTLs, the QTL on chromosome6between markers bnlg1641and bnlgl422was related to chilling tolerance during budding and seedling. However other QTL explained for chilling tolerance only a single period. So the genetic mechanisms may be different for different periods of chilling tolerance.
引文
1. 包和平,王晓丽,李春成等.2007.玉米抗螟性主基因-多基因混合遗传分析.吉林农业大学报,29(3):253-255.
    2. 曹宁,符力,张玉斌等.2008.低温对玉米苗期根系生长及磷养分吸收的影响.玉米科学,16(4): 58-60.
    3. 陈龙,吴诗光,李淑梅等.2001.低温胁迫下冬小麦拔节期生化反应及抗性分析.华北农学报,16(4):42-46.
    4. 陈绍江,黎亮,李浩川.2009.玉米单倍体育种技术.北京:中国农业大学出版社.
    5. 方华,马中义,吕学文等.1993.我国玉米抗冷性研究与抗冷杂种优势利用.北京农业大学学报,19(增刊):37-43.
    6. 盖钧镒,钱虎君,吉东风等.2000.大豆豆腐产量的遗传研究.遗传学报,27(5):434-439.
    7. 盖钧镒,章元明,王建康.2003.植物数量性状遗传体系.北京:科学出版社.
    8. 高灿红,胡晋,郑昀晔等.2006.玉米幼苗抗氧化酶活性、脯氨酸含量变化及与其耐寒性的关系.应用生态学报,17(6):1045-1050.
    9. 高文瑞,陈晨,王红铃等.2007.大豆籽粒大小的遗传及SSR标记分析.中国油料作物学报,29(2):1-8.
    10.龚文娟,邹恒荣,杨玉梅.1980.高粱、玉米等几种作物种子萌发阶段的抗寒性鉴定.黑龙江农业科学,(4):14-18.
    11.龚文娟,赵洪凯,杨英良等.1984.玉米耐冷性筛选鉴定的研究.黑龙江农业科学,(5):22-25.
    12.郭发华,李碧秋,李美茹.1998.6个玉米品种幼苗耐冷力鉴定.广东农业科学,(6):8-9.
    13.顾慧,戚存扣.2009.甘蓝型油菜(Brassica napus L.)抗倒伏性状的QTL分析.江苏农业学报,25(3):484-489.
    14.顾丽香.2007.玉米DH系的一般配合力分析及其QTL定位.硕士学位论文,河北农业大学.
    15.郭建平,马树庆.2009.农作物低温冷害监测预测理论和实践.北京:气象出版社.
    16.何风华.2004.水稻QTL分析的研究进展.西北植物学报,24(11):2163-2169.
    17.贺正华,黄益勤,万正煌.2008.特用玉米苗期耐冷种质的鉴定与筛选.湖北农业科学,47(11):1257-1260.
    18.扈光辉.2008.耐冷玉米种质资源的筛选与鉴定.杂粮作物,28(6):370-373.
    19.扈光辉,王天宇,苏俊等.2009.玉米种质苗期耐冷性状的遗传分析.中国农学通报,25(06):101-106.
    20.胡海军,王志斌,陈凤玉等.2009.S6M对玉米发芽率及幼苗抗冷效果的影响.玉米科学,17(1):102-104.
    21.胡荣海,赵玉田,高吉寅.1981.利用质膜透性鉴定玉米抗冷性.植物生理学报,(6):35-37.
    22.胡中立,张志红,张学富.1998.双单倍体群体中区间分子标记定位(QTL)的相关方法.生物数学学报,13(3):366-371.
    23.黄国存,崔四平,张寒霜等.1994.对冀承单3号玉米品种抗冷性生理基础的研究初探.中国农学通报,10(6):6-8.
    24.简令成,卢存福,李积宏等.2005.适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础.作物学报,31(8):971-976.
    25.姜明玉,高宪章.1983.玉米自交系和杂交种耐低温性的初步研究.黑龙江农业科学,(6):18-21.
    26.姜亦巍,干光洁.1996.Ca2、BR对玉米呼吸器官耐冷性的影响.华北农学报,1](3):73-76.
    27.李海燕.2003.冷激诱导玉米幼苗耐冷性的生理机制及Ca2-CaM的调控作用.硕士学位论文,云南师范大学.
    28.兰海,余月,于凤格等.2007.玉米种子休眠性数量遗传体系的判别.玉米科学,15(2):5-8.
    29.李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社.
    30.李俊明.1988.玉米自交系苗期耐冷性鉴定.华北农学报,3(1):7-12.
    31.李俊明,耿庆汉.1989a.玉米种子的低温发芽临界温度.种子,43(5):5-7.
    32.李俊明,耿庆汉.1989b.低温下玉米不同耐冷类型自交系的生理生化变化.华北农学报,4(2):15-19.
    33.李俊明.1990.玉米耐冷性的数值分类研究.生物数学学报,5(1):58-61.
    34.李太贵,Visperas R, Vergara B.1981水稻抗冷性与不同生长阶段的关系.植物学报,23(3):203-207.
    35.李霞,李连禄,王美云等.2008.玉米不同基因型对低温吸胀的响应及幼苗生长分析.玉米科学,16(2):60-65,70.
    36.刘娥娥,宗会,郭振飞等.2000.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响.热带亚热带植物学报,8(3):235-238.
    37.刘海英.2012.玉米种子活力相关性状的QTL定位及遗传效应分析.硕士学位论文,河南农业大学.
    38.刘仁虎,孟金陵.2003.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,25(3):317-321.
    39.刘彦丹,英生,张登峰等.2011.玉米逆境胁迫响应基因ZmbZIP71的克隆与表达分析.植物遗传资源学报,12(5):775-781.
    40.路芳,殷华,曹文钟等.2002.玉米幼苗冷袭敏感性的初步研究.植物研究,22(4):463-466.
    41.卢为国,盖钧镒,郑永战等,2006.大豆遗传图谱的构建和抗胞囊线虫(Heterodera glycines Ichinohe)的QTL分析.作物学报,32(9):1272-1279.
    42.马树庆,袭祝香,王琪.2003.中国东北地区玉米低温冷害风险评估研究.自然灾害学报,12(3):137-141.
    43.马树庆,王琪,王春乙等.2008.东北地区玉米低温冷害气候和经济损失风险分区.地理研究,27(5):1169-1177.
    44.裴玉贺,王小丽,张恩盈等.2011.玉米抗寒生理指标的遗传效应分析.植物生理学报,47(3):293-297.
    45.坪井八十二,根本顺吉.1980.水稻冷害的生态与生理.作物冷害译丛,(10):1-8.
    46.宋广树,孙忠富,孙蕾等.2011.东北中部地区水稻不同生育时期低温处理下生理变化及耐冷性比较.生态学报,31(13):3788-3795.
    47.苏俊.2011.黑龙江玉米.北京:中国农业出版社.
    48.苏正淑,张毅,郑波等.1990.低温对玉米光合作用及叶面积和子实产量的影响.辽宁农业科学,(5):22-24
    49.谭振波,刘昕,曹鸣庆.2002.玉米抗寒性的研究进展.玉米科学,10(2):56-60.
    50.王春乙.2008.东北地区农作物低温冷害研究.北京:气象出版社.
    51.王光洁,何若韫,陈艳茹等.1992.油莱素内醋对玉米种苗耐冷性的生理效应.沈阳农业大学学报,23(3):215-217.
    52.王连敏,王立志,张国民等.1999.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响.中国农业气象,20(2):28-30.
    53.王琦,王伟,申腾飞等.2011.玉米中3个CIPK同源基因在干旱和低温胁迫下的表达分析.华中农业大学学报,30(5):545-551.
    54.王庆祥,吕桂兰.1999.GA和Kinetin在低温下对玉米和大豆种子萌发及幼苗发育影响的研究.作物学报,25(3):363-372.
    55.王瑞.2007.春玉米苗期抗冷性鉴定及其生理生化基础研究.硕士学位论文,东北农业大学.
    56.王迎春,褚金翔,孙忠富等.2006.玉米对低温胁迫的生理响应及不同品种间耐低温能力比较.中国农学通报,22(9):210-212.
    57.王竹林,刘曙东,王辉等.2006. ‘百农64’慢白粉性的遗传分析.西北植物学报,26(2):332-336.
    58.文科.2005.玉米生物诱导孤雌生殖DH系遗传分析与青枯病抗性研究.硕士学位论文,中国农业大学.
    59.吴为人,李维明,卢浩然.1997.建立一个重组自交系群体所需的自交代数.福建农业大学学报,26(2):129-132.
    60.席章营,朱芬菊,台国琴等.2005.作物QTL分析的原理与方法.中国农学通报,21(1):88-92.
    61.肖静,胡治球,汤在祥等.2005.多个相关数量性状主基因的联合分析方法.中国农业科学,38(9):1717-1724.
    62.谢忠玉.1992.玉米自交系与杂交种耐低温发芽的关系.作物品种资源,(3):27-28.
    63.徐田军,董志强,兰宏亮等.2012.低温胁迫下聚糠萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响.作物学报,38(2):352-359.
    64.严长杰,顾铭洪.2000.高代回交QTL分析与水稻育种.遗传,22(6):419-422.
    65.严建兵,汤华,黄益勤等.2003.玉米F2群体分子标记偏分离的遗传分析.遗传学报,30(10):913-918
    66.闫立英.2009.黄瓜单性结实性生理和遗传分析及分子标记研究.博士学位论文,南京农业大学.
    67.杨津艳,高山,任志华等.2011.温度对黑龙江玉米生长发育的影响.安徽农业科学,39(27):16499-16502
    68.杨猛,魏玲,庄文锋等.2012a.低温胁迫对玉米幼苗电导率和叶绿素荧光参数的影响.玉米科学,20(1):90-94.
    69.杨猛,魏玲,胡萌等.2012b.低温胁迫对玉米幼苗光合特性的影响.东北农业大学学报,43(1):66-70.
    70.杨光,刘宏魁,李世鹏等.2012.玉米抗冷种质资源的筛选与鉴定.玉米科学,20(1):57-60,66.
    71.应存山.1993.中国稻种资源.北京,中国农业科技出版社.
    72.榆林地区农科所玉米育种组.1981.王米幼苗耐冷性鉴定试验初报.陕西农业科学,(3):30-33,8.
    73.张德荣.1993.玉米低温冷害试验报告.中国农业气象,14(5):32-34.
    74.张海明,耿庆汉.1987.玉米苗期的耐冷性状及其遗传力的研究.华北农学报,2(4):44-51.
    75.张敬贤,李俊明,张海明等.1993.低温对玉米幼苗细胞保护酶活性及胞质质量参数的影响.华北农学报,8(3):9-12.
    76.张立平,赵昌平,单福华等.2007.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析.作物学报,33(9):1553-1557.
    77.张宪政.1990.作物生理研究法.北京,农业出版社.
    78.张旭,赵明,李连禄等.2002.温度对玉米生理生化特性的影响.玉米科学,10(3):60-62.
    79.张雪峰,胡滨,金丹.2011a.不同外源药剂预处理对低温胁迫下玉米种子萌发的影响.黑龙江农业科学,(4):69-73.
    80.张雪峰.2011b.低温胁迫对玉米种子萌发过程中内源激素含量变化的影响.沈阳农业大学学报,42(2):147-151.
    81.张毅,顾蔚连,戴俊英等.1992a.低温对玉米幼苗超氧物歧化酶活性和膜酯过氧化作用的影响.沈阳农业大学学报,23(2):140-142.
    82.张毅,顾慰连,戴俊英.1992b.低温对玉米光合作用、超氧物歧化酶活性和籽粒产量的影响.作物学报,18(5):397-400.
    83.张毅,戴俊英,苏正淑等.1995a.孕穗期低温对玉米雌穗的伤害作用.作物学报,21(2):235-239.
    84.张毅,戴俊英,苏正淑.1995b.灌浆期低温对玉米籽粒的伤害作用.作物学报,21(1):71-76.
    85.章元明,盖钧镒.2000.利用DH或RIL群体检测QTL体系并估计其遗传效应.遗传学报,27(7):634-640.
    86.章元明,盖钧镒,王永军.2001.利用P1、P2、和DH或RIL群体联合分离分析的拓展.遗传,23(5):467-470.
    87.赵俊芳,杨晓光,刘志娟.2009.气候变暖对东北三省春玉米严重低温冷害及种植布局的影响.生态学报,29(12):6544-6551.
    88.赵玉田,陶淑芝,裴英杰等.1983.玉米抗冷性鉴定方法及指标的研究.作物品种资源,(3):31-33.
    89.赵玉田,胡荣海.1986.玉米抗冷性鉴定II-筛选方法和指标.中国农业科学,(2)18-22.
    90.赵玉田,梁博文,张晓玲等.1993.我国寒冷地区玉米品种(系)抗冷性筛选原理与技术体系的应用研究.中国农学通报,9(2):23-27.
    91.郑昀晔,胡晋,张胜等.2006.玉米自交系发芽期和苗期耐寒性的鉴定.浙江大学学报(农业与生命科学版),32(1):41-45.
    92.郑昀哗,曹栋栋,张胜等.2008.多胺对玉米种子吸胀期间耐冷性和种子发芽能力的影响.作物学报,34(2):261-267.
    93.中国农业大学编.1984.农业气象学.北京:科学出版社.
    94.周天,周晓梅,胡勇军等.2004.油菜素内酯对玉米幼苗抗冷性的影响.吉林师范大学学报,(1):6-8.
    95.朱军.1998.复合数量性状基因定位的混合线性模型方法.全国作物育种学术讨论会论文集.北京:中国农业科技出版社.
    96.佐竹彻夫.1978.水稻障碍型冷害.国外农业科技资料,(4):41-50.
    97. Abalo G, Pangirayi Tongoona, John Derera, Richard Edema.2009. A comparative analysis of conventional and marker-assisted selection methods in breeding maize streak virus resistance in Maize. Crop Sci.,49:509-520.
    98. Abdelabagi M, Hall A E, Close T J.1999. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seeding emergence. Pro Natl Acad Sci USA,96(23):13566-13570.
    99. Al-Abed D, Madasamy P, Talla R, et al.2007. Genetic engineering of maize with the Arabidopsis DREB1 A/CBF3 gene using split-seed explants. Crop Sci.,47(6):2390-2402.
    100. Berberich T, Kusano T.1997. Cycloheximide induces a subset of low temperature inducible genes in maize.Molecular and General Genetics,254:275-283.
    101. Beaumont V H.1995, Mapping the anther culture response genes in maize(Zea mays L). Genome, 38:96-975.
    102. Berberich T, Harada M, Sugawara K, et al.1998. Two maize genes encoding ω-3 fatty acid desaturases and their differential expression to temperature. Plant Mol.Biol.,36(2):297-306.
    103. Blondon F, Clabault G, Rainguez M.1980. Effect of low temperatures applied to young plants on growth and photosynthetic activity in two early varieties of maize. Annales de l'Amelioration des Plantes,30(4):399-410.
    104. Bouchez A, Frederic Hospital, Mathilde Causse, et al.2002. Marker-Assisted Introgression of Favorable Alleles at Quantitative Trait Loci Between Maize Elite Lines. Genetics,162:1945-1959.
    105. Brandolini A, Landi P, M onfredini G, et al.2000. Variation among Andean races of maize for cold tolerance during heterotrophic and early autotrophic growth. Euphytica,111(1):33-41.
    106. Breusegem F V, Slooten L, Stassart J M, et al.1999. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell,40(5):515-523.
    107. Burr B, Burr F A, Thompson K H, et al.1988. Gene mapping with recombinant inbreds in maize. Genetics,18:519-526.
    108. Cardinal A J, Lee M, Sharopova N, et al.2001. Genetic mapping and anylysis of quantitative trait loci for resistance to stalk tunneling by the European corn borer in maize. Crop Sci.,4]:835-845.
    109. Chang M T.1992. Stock6 induced double haploidy is random. Maize Genet Coop News Lett., 67:98-99.
    110. Chen W P., Li P H.2001. Chilling-induced Ca2+ overload enhences production of active oxygen species in maize cultured cells:the effect of abscisic acid treatment. Plant Cell Environ,24(8):791-800.
    111. Chen W P, Li P H.2002. Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells. Plant Cell Environ,25(8):955-962.
    112. Choo T M, Reinbergs E.1982. Analysis of skeweness and kurtosis for detecting gene interaction in a doubled haploid population. Crop Scien,22:231-235.
    113. Churchill G.A, Doerge R.W.1994. Empirical threshold values for quantitative trait mapping. Genetics,138:963-971.
    114. Crosbie T M, Mock J J, Smith O S.1982. Comparison of gains predicted by several selection methods for cold tolerance traits of two maize populations. Crop Science,20(5):649-655.
    115. Cutforth H W, Shaykewich C F, Cho C M.1986. Effect of soil water and temperature on corn (Zea mays L.) root growth during emergence. Canadian Journal of Soil Science,66(1):51-58.
    116. Duncan D R, Widholm J M.1987. Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiol,83(3):703-708.
    117. Dwyer L M, Ma B L. Ying J.2005. A field method for screening maize cold tolerance. Canadian Journal of Plant Science,85(2):343-350.
    118. Feierabend J, Schaan C. Hertwig B.1992. Photoinactivation of catalase occurs under both High-and low-temperature stress conditions and accompanies photoinhibition of photosystem Ⅱ. Plant physiology,100(3):1554-1561.
    119. Fracheboud Y, Haldimann P, Leipner J, et al.1999.Chlorophy Ⅱ fluorescence as a selection tool for cold tolerance of photosynthesis in maize(Zea mays L). Journal of Experimental Botany, 50(338):1533-1540
    120. Fracheboud Y, Ribaut J M, Vargas M, et al.2002. Identification of quantitative trait loci for cold tolerance of photosynthesis in maize. J.Exp.Bot,53:1967-1977.
    121. Fracheboud Y, Jompuk C, Ribaut J M, et al.2004. Genetic analysis of cold tolerance of photosynthesis in maize. Plant Mol.Biol.,56:241-253.
    122. Gray G R, Hope B J, Qin X, et al.2003. The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlorophyll fluorescence imaging. Physiologia Plantarum,119(3)365-375.
    123. Haanatra J P W.1999. An integrated high-ensity RFLP-AFLP map of tomato based on two LycoPersicon esculentum X L. X Pennellii F Z populations. Theor. APP1. Genet.,99:254-271.
    124. Haskell G, Singleton W R.1949. Use of controlled low temperature in evaluating the cold hardiness of inbred and hybrid maize. J. Am. Soc. Agron.41:34-40.
    125. Helentjaris T, Slocum M, Wright S, et al.1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theoretical and Aapplied Genetics, 72:761-769.
    126. Hodges D M, Andrews C J, Johnson D A, et al.1995a. Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids.Crop Science, 37(3):857-863.
    127. Hodges D M, Hamilton R I, Charest C.1995b. A chilling response test for early growth phase maize. Agronomy Journal,87(5):970-974.
    128. Hodges D M, Andrews C J, Johnson D A, et al.1997. Sensitivity of maize hybrids to chilling and their combining abilities at two developmental stages. Crop Science, (37):850-856.
    129. Hund A, Fracheboud Y, Soldati A, et al.2004. QTL controlling root and shoot traits of maize seedlings under cold stress. Theor.Appl.Genet.,109:618-629.
    130. Hund A, Frascaroli E. Leipner J, et al.2005. Cold tolerance of the photosynthetic apparatus:pleiotropic relationship between photosynthetic performance and specific leaf area of maize seedlings. Molecular Breeding,16(4):321-331.
    131. Hund A, Fracheboud Y, Soldati Al, et al.2008. Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. European Journal of Agronomy,28(3):178-185.
    132. Hyne V, Kersey M J, Pike D J.1995. QTL analysis:unreliability and bias in estimation procedures. Molecular Breeding,1:273-282.
    133. Janowiak F, Maas B, Dorffling K.2002. Importance of abscisic acid for chilling tolerance of maize seedlings. J.Plant Physiol,159(6):635-643.
    134. Janowiak F, Luck E, Dorffling K.2003. Chilling tolerance of maize seedlings in the field during cold periods in spring is related to chilling-induced increase in abscisic acid level. J.Agron.Crop Sci, 189(3):156-161.
    135. Jansen R C.1993. Interval mapping of multiple quantitative trait loci. Genetics,135:205-211.
    136. Jian L C, LiJH, Chen W P, et al.1999. Cytochemical localization of calcium and Ca2+-ATPase activity in plant cells under chilling stress:a comparative study between the chilling-sensitive maize and the chilling-insensitive winter wheat. Plant and Cell Physiology,40:1061-1071.
    137. Jian L C, Sun L H, LiJH, et al.2000. Ca2+ homeostasis differs between plant species with different cold-tolerance at 4C chilling, Acta Botanica Sinica,42:358-366.
    138. Jompuk C, Fracheboud Y, Stamp P, et al.2005. Mapping of QTL associated with chilling tolerance in maize seedlings grown under field conditions. J.Exp.Bot.,56:1153-1163.
    139. Kang H M, Saltveit M E.2002. Chilling tolerance of maize,cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum,115(4):571-576.
    140. Kaniuga Z, Saezynska V, Miskiewicz E.1999. The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylgcerol of Zea mays genotypes differing in chilling susceptibility. Plant Physiology,154(2):256-263.
    141. Kemodle S P, Scandalios J G.2001. Structural organization,regulation,and expression of the chloroplastic superoxide dismutase Sodl gene in maize. Arch Biochem Biophys,391(1):137-147.
    142. Kingston-Smith A H, Harbinson J, Williams J, et al.1997. Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiology,114(3):1039-1046.
    143. Konish T., Yano Y., Abe K.1992. Geographic distribution of alleles at the Ga2 locus for segregation distortion in barley. Theor. Appl. Genet.,85:419-422.
    144. Lander E S, Botstein S.1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,121:185-199.
    145. Landi P, Frascaroli E, Lovato A.1992. Divergent full-sib recurrent selection for germination at low temperature in a maize population. Euphytica,64(1-2):21-29.
    146. Lee E A, Staebler M A, Tollenar M.2002. Genetic variation in physiological discriminators for cold tolerance-early autotrophic phase of maize development. Crop Sci..42(6):1919-1929.
    147. Leipner J, Fracheboud Y, Stamp P.1999. Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chillingtolerance. Environmental and Experimental Botany,42(2):129-139.
    148. Leipner J, Mayer E.2008. QTL mapping in maize seedlings reveals little relevance of C4 cycle enzymes and antioxidants for genotypic differences in chilling tolerance of photosynthesis. Maydica. 53:269-277.
    149. Lincoln S., Daly M., Lander E.S.1992. Construction genetic maps with MAPMAKER/EXP3.0. In: Whitehead Institute Technical Report,2nd ed. Whitehead Institute, Cambridge.,49-97
    150. Long S P, East T M, Baker N R.1983. Chilling damage to photosynthesis in young Zea mays. Journal of Experimental Botany,34(2),177-188.
    151. Lu H., Romero-Severson J. Bernardo R.2002. Chromosomal regions associated with segregation distortion in maize. Theor APP1 Genet,105:622-628.
    152. Mangelsdorf P.C., Jones D.F.1926. The expression of Mendel ian factors in the gametophyte of maize. Genetics,11:423-455.
    153. Marocco A, Lorenzoni C, Fracheboud Y.2005. Chilling stress in maize. Maydica,50(3-4):571-580.
    154. Maryam B, Jones D A.1983. The genetics of maize (Zea mays L.)growing at low temperatures.Ⅱ. Germination of inbred lines, Fi and further generations at fluctuating temperatures. Euphytica, 32(3):791-798.
    155. McConnell R L, Gardner C O.1979. Inheritance of several cold tolerance traits in corn. Crop Science. 19(6):847-852.
    156. McCouch S.R., Cho Y.G., Yano M., et al.1997. Report on QTL nomenclature. Rice Genet. Newsllett,14:11-13
    157. Miedema P.1982. The effects of low temperature on Zea mays L. Advances in Agronomy,35:93-128.
    158. Mock J J, Bakri A A.1976. Recurrent selection for cold tolerance in maize, crop sci.,16(2):230-233.
    159. Ohta S, Ishida Y, Usami S.2006. High-level expression of cold-tolerant pyruvate, orthophosphate dikinase from a genomic clone with site-directed mutations in transgenic maize. Mol.Breeding, 18(1)29-38.
    160. Padilla J M, Otegui M E.2005. Co-ordination between leaf initiation and leaf appearance in field-grown maize(Zea mays):genotypic differences in response of rates to temperature. Annals of Botany,96(6):997-1007.
    161. Pereira M.G, Lee M., Bramel Cox P., et al.1994. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome,37:236-243
    162. Peter R, Eschholz T W, Stamp P, et al.2006. Swiss maize landraces-Early vigour adaptation to cool conditions. Acta Agronomica Hungarica,54(3):329-336.
    163. Pimentel C, Davey P A, Juvik J A, et al.2005. Gene Loci in Maize Influencing Susceptibility to Chilling Dependent Photoinhibition of Photosynthesis. Photosynthesis Research,85(3):319-326.
    164. Prasad T K, Anderson M D, Martin B A, et al.1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. The Plant Cell,6(1):65-74.
    165. Reena G P, Mulpuri V R, Copinadhan P, et al.1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazolhnduced chilling tolerance of maize seedlings. Plant Physiol,114(2):695-704.
    166. Revilla P, Malvar R A,Cartea M E, et al.2000. Inheritance of cold tolerance at emergence and during early season growth in maiz. Crop Science> 40(6):1579-1585.
    167. Revilla P, Hotchkiss J R, Tracy W F.2003. Cold tolerance evaluation in a diallel among open-pollinated sweet corn cultivars. HortScience,38(1):88-91.
    168. Rodriguez V M, Malvar R A, Butron A, et al.2007. Maize populations as sources of favorable alleles to improve cold-tolerant hybrids. Crop Science,47(5):1779-1786.
    169. Rodriguez V M, Butron A, Malvar R A, et al.2008. Quantitative trait loci for cold tolerance in the maize IBM population. International Journal of Plant Sciences,169(4):551-556.
    170. Rodriguez V M, Romay M C, Ordas A. et al.2010. Evaluation of European maize germplasm under cold conditions. Genet Resour Crop Evol,57:329-335.
    171. Saczynska V, Kargul J, Kaniuga.1993. Discrimination between chilling-sensitive and chilling-resistant plants based on measurements of free fatty acid accumulation and inactivation of oxygen evolution in aged chloroplasts. Acta Biochimica Polonica,40(4):507-513.
    172. Singh I, Kumar U, Singh S K, et al.2012. Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiology and Molecular Biology of Plants,18(3):229-236.
    173. Soller M, Beckman J S.1990. Marker-based mapping of quantitative traits loci using replicated progenies. Theoretical and Applied Genetics,80(2):205-208.
    174. Songstad D D, Duncan D R, Widholm J M.1990. Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J.Exp.Bot,41(3):289-294.
    175. Sowinski P, Rudzinska-Langwald A, Dalbiak A, et al.2001. Assimilate export from leaves of chilling-treated seedlings of maize. Plant Physiology and Biochemistry,39(10):881-889.
    176. Stamp P.1984. Chilling tolerance of young plants demonstrated on the example of maize. Journal of Agronomy and Crop Science,7:1-83.
    177. Stewart C R, Martin B A, Linda R, et al.1990. Seeding growth,mitochondrial characteristics and alternative respiratory capacity of corn genotypes differing in cold tolerance. Plant Physiology, 92:761-766.
    178. Sukumaran N P, Weiser C J.1972. An excised leaflet test for evaluating potato frost tolerance. Hort Science,7:467-468.
    179. Suzan EH, Jie H, Robert M S.1989. Photoinhibition at low temperature in chilling-sensitive and resistant plants. Plant Physiol,90(4):1609-1615
    180. Xiong L M, Schumaker K S, Zhu J K.2002. Cell signaling during cold,drought,and salt stress. The Plant Cell,14:S165-S183.
    181.Xin Z, LiPH.1993. Relationship between proline and ABA in the induction of chilling tolerance in maize suspension cultured cells. Plant Physiol,103(2):607-613.
    182. Xu Y.1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred population in rice (Oryza sativa L.). Mol. Gen. Genet.,253:535-545
    183.Zaffar G, Shikari A B, Rather M A, et al.2005. Comparison of selection indices for screening maize (Zea mays L.)germplasm for cold tolerance. Cereal Research Communications.23(2-3):525-531.
    184. Zeng Z B.1993. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proc Natl Acad Sci USA,90:10972-10976
    185. Zeng Z.B.1994. Precision mapping of quantitative trait loci. Genetics,136:1457-1468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700