几种外加离子对铝阳极氧化膜电化学性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了几种外加离子对铝合金阳极氧化膜电化学性质的影响,利用动电位极化和电化学阻抗谱(EIS)研究了铝合金阳极氧化膜的腐蚀行为,利用扫描电子显微镜(SEM)和原子力显微镜(AFM)观察了铝合金阳极氧化膜的表面形貌,用X射线光电子能谱仪(XPS)分析了铝合金阳极氧化膜层的表面成分。
     利用离子注入技术在铝合金表面注入钛,再进一步进行阳极氧化,获得了铝钛复合阳极氧化膜层,使阳极氧化膜表面形貌更加平整均匀,提高了铝合金阳极氧化膜的致密度;钛离子注入可以使铝合金阳极氧化膜在酸性和碱性NaCl溶液中的耐蚀性明显提高,但是并不影响铝合金阳极氧化膜的非晶态结构。
     研究了镍离子和铬离子注入对铝合金阳极氧化膜电化学性能的影响,通过分析铝合金阳极氧化膜表面成分和显微结构,结合电化学测试结果,讨论了离子注入提高铝合金阳极氧化膜耐蚀性能的微观机制。镍离子注入使得铝阳极氧化膜表面结构和形态更加致密均匀,注入的镍在铝合金阳极氧化膜层中以金属镍和氧化镍的形式存在。经过镍离子注入的阳极氧化膜在-1.0V到-0.5V的电位范围内呈现p型半导体性质。经镍离子注入的阳极氧化膜在NaCl溶液中有相对较高的耐蚀性。特别是在碱性NaCl溶液中,镍离子注入可以很大地提高阳极氧化膜的耐蚀性,增强了铝阳极氧化膜在溶液中的自封闭作用。
     经过铬离子注入的阳极氧化膜电化学阻抗谱的高频段阻抗值变大。R_p值增加,而C_p值减小。铬离子注入加速了铝阳极氧化膜在溶液中的自封闭作用。在浸泡的初期,铬离子注入使得阳极氧化膜多孔层电阻R_p增加,而电容C_p减小。随着浸泡时间的进一步延长,未经铬离子注入的阳极氧化膜的C_p和R_p变化相对较慢,而经过离子注入
Commercial pure aluminum L3 was implanted by Ti ions and then anodic oxidation was carried out. XPS analysis revealed that Ti is present in the anodic film as TiO_2. The XRD investigations proved that Ti ions implantation does not lead to the formation of a crystal state. The EIS results show that anodic oxide films implanted by Ti ions provide relatively higher corrosion resistance both in acidic and in basic solutions. After implantation of Ti ions, the R values increased and the C values decreased, which showed a more difficult penetration of the aggressive electrolyte into the anodic oxide film on the L3 aluminum and its less porosity.
    The influence of Ni ions implantation on corrosion resistance of anodic films on aluminum was studied. Atomic force microscope (AFM) observations show that the implantation of Ni ions makes the surface structure and morphology of anodic films more uniform. XPS analysis reveals that Ni is present in the states of metallic Ni and NiO on the surface of the anodic film. Electrochemical results show that anodic films with Ni ions implantation provide relatively higher corrosion resistance both in acidic and in basic solutions. Ni ions implantation mainly affects the property of porous layer, which is characterized by the capacitance C_p and the resistance R_p After Ni ions implantation, R_p values increased and C_p values decreased, which shows a more difficult penetration of the aggressive electrolyte into the anodic film. The concentration of Ni and formation of NiO on the surface of anodic film, which block the pores in the film, should be the main reason for better corrosion resistance of the implanted samples. The semi conductive property of anodic films in basic NaCl
引文
[1] 孙宝德,李克.铝及铝合金防腐蚀表面处理技术的研究现状与发展,腐蚀与防护,1998,19(5):195-198
    [2] 暨调和.我国铝型材的着色现状与发展趋势,电镀与精饰,1999,21 (4):1-4
    [3] 郭鹤桐,王为.铝阳极氧化膜的回顾与展望,材料保护,2000,33(1):43-45
    [4] 阎康平,涂铭旌.纳米微孔铝阳极氧化膜的制备及性能,功能材料,2000,31(3):294-295
    [5] 孙伯勤.铝阳极氧化膜的多功能应用.轻金属,1995,(6):60-63[6] F.D.Quarto, C.Gentile, S.Piazzo. Photoelectrochemical study on anodic aluminum oxide films. J. Electrochem. Soc., 1991, 138(6): 1356-1361
    [7] 张承忠.金属腐蚀与防护,北京:冶金出版社,1985
    [8] 黄齐松.铝的阳极氧化和染色,香港:香港万里出版社,1981
    [9] V.Moutarlier, M.P.Gigandet, J.Pagetti, B.Normand. Influence of oxalic acid addition to chromic acid on the anodising of AI 2024 alloy. Surface and Coatings Technology, 2004,182(1):117-123
    [10] E.Palibroda. Aluminum porous oxide growth-Ⅱ on the rate determining step. Electrochemica Acta. 1995,40(8): 1051 - 1055
    [11] G.Patermarakis, N.Papandreadis. Effect of the structure of porous anodic Al_2O_3 films on the mechanism of their hydrothermal treatment. Electrochemica Acta, 1993,38(10):1413-1420
    [12] 徐源,G.E.Thompson,B.B.Bethune.壁垒型铝阳极氧化膜的成分及电解质离子在膜中的漂移.中国腐蚀与防护学报,1987,7(3):161-16
    [13] 徐源,G.E.Thompson,G.C.Wood.多孔型铝阳极氧化膜孔洞形成过程的研究.中国腐蚀与防护学报,1989,9(1):19
    [14] Y.Xu, G.E.Thompson, G.C.Wood. Mechanism of Anodic Film Growth on Aluminum. Trans. Inst. Met. Fin., 1985, (63):
    [15] K.Shimizu, K.Kobayashi, G.E.Thompson. Development of porous anodic films on aluminium. Philosophical Magazine, 1992,66(4): 643~652
    [16] C.Daskf, H.Caterry. Anion incorporation and migration during barrier film formation on aluminum. Corrosion Science, 1987, 27(1): 83-102
    [17] T.Dimogerontakis, L.Kompotiatis, I.Kaplanoglou. Oxygen evolution during the formation of barrier type anodic film on 2024-T3 aluminium alloy. Corrosion Science, 1998,40(11): 1939-1951
    [18] G.Patermaks, H.S. Karayamis. Effect of the CI and SO_4~(2-) ions on the selective orientation and structure of Ni electrodeposits. Electrochemical Acta, 1995, 40(9): 1079-1092
    [19] G.Alcala, S.Mato, P.Skeldon, G.E.Thompson, A.B.Mann, H.Habazaki, K.Shimizu. Mechanical properties of barrier-type anodic alumina films using nanoindentation. Surface and Coatings Technology, 2003, 173(2-3):293-298[20]G.Patermaks, K.Moussoutzanis. Electrochemical kinetic study on the growth of porous anodic oxide films on aluminum. Electrochemical Acta, 1995, 40(6):699-708
    [21]G.Patermaks, K.Moussoutzanis. Mathematical models for the anodization condition and structural features of porous anodic Al_2O_3 films on aluminum. J. Electrochemical Soc., 1995,142(3):737-743
    [22]H.Habazaki, K.Shimizu, P.Skeldon. Effects of alloying elements in anodizing of aluminum. Trans IMF., 1997, 75(1): 18-23
    [23]K.Shimizu, G.M.Broron, H.H.abazaki. Impurity distribution in barrier anodic films on Aluminum: a GDOES depth profiling Study, Electrochemical Acta., 1999, 44(13): 2297-2306
    [24]易立志,官少林.LD31铝合金在常规硫酸体系中阳极氧化膜的研究.电镀与环保,1991,11(1):31
    [25]F.Snogan, C.Blanc, G.Mankowski, N.Pebere. Characterisation of sealed anodic films on 7050 T74 and 2214 T6 aluminium alloys. Surface and Coatings Technology. 2002(154): 94-103
    [26]马胜利,徐可为.多孔型铝阳极氧化膜显微形貌与结构.材料保护,1999,32(8):6-7
    [27]刘复兴,夏正才.铝阳极氧化膜膜孔微观结构研究.材料保护,1994,27(1):19-22
    [28]刘磊,吴建生.铝合金阳极氧化膜的微观结构分析.上海交通大学学报.2001,35(3):394-396
    [29]巩运兰,王为,王惠,郭鹤桐.铝阳极氧化膜纳米孔阵列结构的自组织过程分析.物理化学学报.2004,20(2):199-201
    [30]姚士冰,张智良,周绍民.用正电子淹没技术研究铝阳极氧化膜.物理化学学报,1989,5(4):427-431
    [31]S.维而利克,R.皮聂耳吉著.铝及铝合金的化学与电解处理.北京:国防工业出版社,1965
    [32]巩运兰,王为,高俊丽.铬酸浓度对阳极氧化多孔膜阻挡层形成过程的影响.电镀与环保,1999,19(2):20-22
    [33]曾华梁,杨加昌译.电解和化学转化膜.北京:轻工业出版社,1987[34]曹经倩,史少欣,曾为民。铸铝合金上弱酸阳极氧化。材料保护,2000,33(7):22~26
    [35]张延松,张九渊,郑国渠。铝表面的白色化精饰[J]表面技术,1999,28(5):16-18
    [36]于幼玲,袁战恒.高压铝阳极氧化膜形成技术.电子元器件应用.2000,2(7):15-18
    [37]周建军,蒋忠锦,施东娥等铸造铝合会硬质阳极氧化工艺研究[J]材料保护,1998,31(9):15
    [38]曾凌三,粱东.难溶性粉体对硫酸阳极氧化膜交流电解着色的影响[J]材料保护,1997,30(3):13
    [39]曾祥勇,旷亚非,曾凌三.难溶性粉体对硫酸阳极氧化膜性能的影响[J]材料保护.1998,31(12):6
    [40]刘宜汉,于晓中,苑洁明.铝合金换向电流法氧化着色工艺的研究[J]电镀与精饰.2000,22(2):16-18
    [41]张祥生,张文辉,张宏祥.铝及铝合金换向脉冲阳极氧化染色工艺[J]材料保护,1999,32(20):15-16
    [42]E.Strazzi,F.Yincenzi,S.Bellei.Multicolour Electrolytic Colours[J].Aluminium Finishing,1997,17(1):20
    [43]阎康平,涂铭旌.纳米微孔铝阳极氧化膜的制备及性能.功能材料. 2000,31(3):294-295
    [44]王为,高俊丽,郭鹤桐.铝在磷酸中恒压阳极氧化的研究.电镀与精饰. 1999,21(3):3-5
    [45]暨调和,曾凌三,张国之.建筑铝型材的阳极氧化和电解着色.长沙:湖南科学出版社,1994
    [46]巩运兰,董向红.铝在铬酸中高电压阳极氧化的研究,电镀与精饰,1999,21(1):5-7
    [47]钱应平,陈洪,李尧,LD5铝合金阳极氧化工艺条件对氧化膜质量的影响,表面技术,2000,29(2):12-14
    [48]周国华.铬酸阳极氧化工艺的改进.材料保护,1993,26(9):22-24
    [49]王贤,胡丙群.铝合金阳极氧化的改进及应用,表面技术,1999,28(5):25-26
    [50]杨蔺孝,杨岑.铝材耐磨耐烧蚀特种氧化膜机理的研究与应用.电镀与环保,1992,12(2):13
    [51]徐瑞东,王军丽,薛方勤,郭忠诚.铝合金常温脉冲硬质阳极氧化膜性能的研究.材??料保护.2003,36(9):34-35
    [52]阮阳屏.铸铝合金脉冲硬质阳极氧化.电镀与环保,1994,14(4):22-25
    [53]曾凌三,程玉峰,曾建红.铝合会交流电氧化工艺的研究.电镀与精饰,1995,16(1):4-9
    [54]X.Y.Liu, R.S.Alwitt, K.Shimizu. Cellular porous anodic aluminum grown in neutral organic electrolyte. J. Electrochemical Soc., 2000, 147(4): 1328-1337
    [55]刘珍,李素琴,刘燕萍.直流叠加脉冲法在铝合金阳极氧化中的应用.新技术新工艺.1997,(2):43-44
    [56]周金保.铝铜合金阳极氧化发展概况.电镀与涂饰.2001,20(1):50
    [57]许岩,旷亚非,刘淑坤.铝在磷酸体系中复合阳极氧化研究.电镀与环保,2000,20(2):35-37
    [58]G.P.Wirtz, S.D.Brown, W.M.Kriven. Ceramic coatings by anodic spark deposition. Materials and manufacturing processes. 1991, 6(1):87
    [59]J.Beauvier.铝的微弧阳极氧化.Product Fin,1999,52(2):23
    [60]肖友军.铝阳极氧化膜低温封闭剂.材料保护,2000,33(2):21
    [61]李宜,朱祖芳.铝阳极氧化膜冷封孔机理研究—冷封孔氧化膜的组成与结构. 中国腐蚀与防护学报,1999,12(4):315-320
    [62]暨调和.铝阳极氧化膜常温封孔机理与时效特性,电镀与涂饰,1995,4(4):21-25
    [63]李明.提高阳极氧化膜封孔质量的几点认识,材料保护,1994,27(1):29-32
    [64]李珍芳.铝及其合金染色氧化膜的封闭技术.材料保护,1999,32(9):17-18
    [65]刘文亮,贝红斌,铝合金阳极氧化膜有机酸封闭技术,电镀与精饰,1998,20(2):42-44
    [66]G.P.Shulman, A.J.Bauman. Organic acid sealants for anodized aluminum—a new method for corrosion protection. Metal Finishing, 1995,93(7): 16-19
    [67]T.Westre. Corrosion Testing Results of MLT-Ⅱ Anodized Aluminum, Interim Technical Report, METALAST International Inc., Minden, Nev. April 1999
    [68]Sealing Quality, (Versionl), METALAST International Inc.,Minden,Nev. July 1999
    [69]世界产权组织专利. WO9910567(1999-03-04)
    [70]F.Mansfeld, C.Chen, C.B.Breslin. Sealing of anodized aluminum alloys with rare earth matal salt solutions. J. Electrochem. Soc., 1998,145(8):2792-2798
    [71]李凌杰,李荻,张胜涛.稀土元素在铝合金阳极氧化阿及其后处理工序中的应??用.表面技术,2001,30(2):40-43
    [72]于兴文,严川伟,曹楚南.LY12铝合金阳极氧化稀土封孔工艺及性能的研究. 电镀与涂饰,2001,20(5):1-4
    [73]X.W.Yu, C.W.Yan, C.N.Cao.Study on the rare earth sealing procedure of the porous film ofanodizen Al606/SiC_p.Materials Chemistry and Physics. 2002 (76):228-235
    [74]曲敬信,汪泓宏主编.表面工程手册.北京:化学工业出版社.1998
    [75]卢燕平,方百友,金艳明.6063铝型材表面点腐蚀缺陷分析.表面技术,1998,28(4):5-7
    [76]G.C.Wood. A model for the incorporation 0felectrolyte species into anodic alumina. J.Electrochem.Soc. 1996,143(1):74-83
    [77]F.Echeverria. Formation of anodic oxides on Al_(0.2)Ga_(0.8)As and Al_(0.8)Ga_(0.2)As in tungstate electrolytes, Corrosion Science,2000(42): 1839-1851
    [78]B.M.Baizuldin. Thin anodic aluminum oxide films with unusual morphology. Metal Finishing, 1993,91 (12):27-29
    [79]H.Q. Wu, X.Zhang, K.R.Hebert. Atomic force microscopy study of the initial stages of anodic oxidation of aluminum in phosphoric acid solution. Journal of the Electrochemical Society, 2000, 147(6): 2126-2132
    [80]X.Zhou, G.E.Thompson. Anodic oxidation of an Al-2wt%Cu alloy effect of grain orientation. Corrosion Science, 1999, 41 (6): 1089-1094
    [81]M.Saito, Y.Shign, M.Miyagi. Unoxidized aluminum particles in anodic aluminum films. J. Electrochem. Soc., 1993, 140(7): 1907-1911
    [82]S.Ono, H.Lchinose. Defects in porous anodic films formed on high purity aluminum. J. Electrochem. Soc., 1991, 138(12): 3705-3710
    [83]X.Zhou, G.E.Thompson, H.Habazaki. Morphological development of oxygen bubbles anodic aluminum. Journal of the electrochemical Society, 2000, 147(5): 1747-1750
    [84]D.D.Macdonald. On the information of voids in anodic oxide films on aluminum. J. Electrochem. Soc., 1993, 140(3):27-30
    [85]H.Habazaki, K.Shimizu. The incorporation of metal ions into anodic films on aluminum alloys. Philosophical magazine B, 1996,73(3):445-460
    [86]K.C.Emregul, A.A.Aksut. The behavior of aluminum in alkaline media. Corrosion??science, 2000,42(12):2051-2067
    [87]M.L.Doche, J.J.Rameau, R.Durand, F.Novel-Cattin. Electrochemical behavior of aluminum in concentrated NaOH solutions. Corrosion science, 1999,41 (4):805-826
    [88]A.Bjergum, H.Sigurdsson, K.Nisanciogl. Effect of hydrogen sulfide on aqueous corrosion commercially Al 99.5. Corrosion, 1995, 51 (8):631-638
    [89]M.R.Tabrizi, S.B.Lyon, G.E.Thompson. The long-term corrosion of aluminum in alkaline media. Corrosion Science, 1991, 32(7):733-742
    [90]A.G.Munoz, J.B.Bessone. Pitting of aluminum in non-aqueous chloride media. Corrosion science. 1999, 41 (7): 1447-1463
    [91]Z.Szklarska-Smialowska. Pitting corrosion of aluminum. Corrosion Science, 1999, 41 (9): 1743-1767
    [92]K.Wong, R.C.Alkire. Growth of corrosion pits on pure aluminum in 1M NaCl. J. Electrochem. Soc., 1995, 142(4): 1104-1111
    [93]T.C.Tan, D.T.Chin. Effect of alternating voltage on the pitting of aluminum in nitrate, sulfate and chloride solutions. Corrosion, 1989, 45(12):984-989
    [94]X.Zhang, S.L.Russo, S.Zandolin, A.Miotello. The pitting behavior of Al-3103 implanted with molybdenum. Corrosion science, 2001, 43(1):85-97
    [95]J.L.Ortiz, J.J.Carpio, V.Amigo, M.D.Salvador. Pitting corrosion of an AI-Mg-Si-Cu alloy reinforced with nitride particles, P/M processed. Journal of materials science letters, 2001, 20(2): 197-199
    [96]A.Bautista.无保护的铝和阳极氧化铝在各种污染的大气环境中的腐蚀行为. Rev.Metal,1998,34:32
    [97]李家柱,马颐军,祁凤玉.铝合金阳极氧化和化学氧化试样大气暴露试验研究. 材料保护,2001,34(5):7-8,14
    [98]李淑英,王华.微孔阳极氧化膜的制备及膜的耐蚀性能研究.表面技术,2000,29(4)
    [99]J.Hitzig, K.Juttner, W.J.Lorenz. AC-Impedance measurements on corroded porous aluminum oxide films. Electrochemical science and technology, 1986, 133(5):887-892
    [100]旷亚非,王玲,曾凌三.铝阳极氧化多孔膜的离子导电性与封孔性能.电镀与精饰,1999,21(3):20-23[101]冯斌,旷亚非,曾凌三.铝阳极氧化膜在氯化钠溶液中的孔蚀行为(Ⅰ)—氧化膜双层结构与耐孔蚀性能.表面技术,1999,28(6):20-22
    [102]冯斌,曾凌三,旷亚非.铝阳极氧化膜在氯化钠溶液中的孔蚀行为(Ⅱ)—膜层的极化行为与孔蚀形貌.表面技术,2000,29(1):25-28
    [103]K.Shimizu, G.M.Brown, H.Habazaki. Incorporation and migration of Cr~(3+) and PO_4~(3-) species in anodic alumina. Corrosion Science, 1999, 41(7): 1971-1976
    [104]P.Skeldon, G.E.Thompson, G.C.Wood. Interactions of alloying elements during anodizing of dilute AI-Au-Cu and Al-W-Zn alloys and consequences for film growth. Corrosion Science, 1999, 41 (1):291-304
    [105]代明江,陈鹤鸣,白新德.铝阳极氧化机理研究.广东有色金属学报.1996,6(1):51-56
    [106]D.Y. Zhang, Q.Y. Fei, H.M. Zhao, M. Geng, X.C Zeng, P.K. Chu. Low vacuum MEVVA titanium and nitrogen co-ion implantation into D2 steel substrates. Surface and Coatings Technology, 2004,185(2-3):264-267
    [107]吴瑜光,张通和,刘安东,张荟星,溅射效应对离子注入聚合物表面形貌的影响,北京师范大学学报(自然科学版),2002,38(6):755-758
    [108]张通和,吴瑜光,王晓妍,钨和碳双注入H13钢抗磨损和抗腐蚀特性,2001(5):475-477
    [109]邵力为,惠文华,徐爱群,铝合余硬质阳极氧化的能谱分析,1996(2):29-33[1]朱祖芳 主编,铝合金阳极氧化与表面处理技术,化学工业出版社,2004:117-120
    [2]薛文彬 邓志威 来永春 陈如意,铝合金微弧氧化陶瓷膜的相分布及其形成,材料研究学报,1997,11(2):169-173
    [3]安茂忠,Al-Mg-Si合金表面电解刻蚀图纹工艺过程与机制。哈尔滨工业大学工学博士论学位文,1999,10:1-20
    [4]马胜利,井晓天.铝及铝合金氧化膜结构与应用.兵器材料科学与工程.1998,21(4):54-58
    [5]Skeldon P., Habazaki H., Thompson G.E., Wood G.C., Shimizu K. Formation of amorphous anodic oxide films of controlled composition on aluminium alloys. Thin Solid Films 1997(300): 131-137
    [6]赵旭辉,左禹,赵景茂,铝阳极氧化膜在NaCl溶液中的电化学性能[J],中国有色金属学报,2004.14(4):562-567
    [7]Zuo Yu, Zhao Penghui, Zhao Jingmao. The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solution [J]. Surface and Coating Technology. 2003.166:237-242
    [8]Hao L., Cheng B.R. Sealing processes ofanodic coatings-past, present, and future [J]. Metal Finish. 2000.12(8):8-18
    [9]Karimi M.V., Sinha S.K., Kothari D.C., Khanna A.K., Tyagi A.K. Effect of ion implantation on corrosion resistance and high temperature oxidation resistance of Ti deposited 316 stainless steel [J]. Surface and Coatings Technology, 2002(158-159): 609-614
    [10]封向东,祖小涛,王治国,林理彬,李燕伶,黄新泉,钛合余氧化膜的AES和XPS研究,核动力工程,2001,22(6):501-50
    [11]马芙蓉,张通和,梁宏,张荟星,张孝吉,碳、钨离子共注入H13钢表面改性的研究,北京师范大学学报(自然科学版),2002,38(1):45-47
    [12]J.Hitzig, K.Juttner, W.J.Lorenz. AC- impedance measurements on porous aluminium oxide films [J]. Corrosion Science. 1984.24(11/12): 945-952
    [13]K.Juttner, Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochimica Acta. 1990, 35(10): 1501-1508
    [14]V. Moutarlier, M.P. Gigandet, B. Normand, J. Pagetti. EIS characterisation of??anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species. Corrosion Science. 47 (2005) 937-951
    [15]F.Snogan, C. Blanc, G.Mankowski, N. Pebere. Characterisation of sealed anodic films on 7050 T74 and 2214 T6 aluminium alloys. Surface and Coating Technology. 154(2002):94-103
    [16]Bockris J. O. On the mechanism of the passivity of aluminum and aluminum alloys, Journal of Electrochemical Society, 1993,349(1-2):375-414
    [17]赵鹏辉,左禹,赵景茂,几种Al合金阳极氧化膜的孔蚀行为,腐蚀科学与防护技术,2003,15(2):82-85
    [18]赵鹏辉,左禹,白志君,工艺参数对Al合金阳极氧化膜腐蚀行为的影响,腐蚀科学与防护技术,2002,14(5):288-291
    [19]G.Patermarakis, K.Moussoutzanic. Mathamatical Models for the Anodization Conditions and Structural Features of Porous Anodic Al_2O_3 Films on Aluminum. J.Electrochem.Soc., 1995, 142(3): 737—743[1]Patermarakis G, Papandreadis N. Effect of the structure of porous anodic Al2O_3 films on the mechanism of their hydrothermal treatment [J]. Electrochemica Acta, 1993, 38 (10): 1413-1420
    [2]Karimi M V, Sinha S K, Kothari D C, Khanna A K, Tyagi A K. Effect of ion implantation on corrosion resistance and high temperature oxidation resistance of Ti deposited 316 stainless steel[J]. Surface and Coatings Technology, 2002,158-159:609-614
    [3]Feng X D, Zu X T, Wang Z G, Lin L B, Li Y L, Huang X Q. Study of Oxide Scale on Ti-base Alloys by XPS and In-situ AES Techniques[J]. Nuclear Power Engineering, 2001,22(6): 501-503(封向东,祖小涛,王治国,林理彬,李燕伶,黄新泉,钛合金氧化膜的AES和XPS研究,核动力工程,2001,22(6):501-50)
    [4]Ma F R, Zhang T H, Liang H, Zhang H X, Zhang X J. Properties of C+W co-implanted H13 steel by MEVVA ion source, Journal of Beijing Normal University (Natural Science), 2002,38(1): 43-47(马芙蓉,张通和,梁宏,张荟星,张孝吉,碳、钨离子共注入H13钢表面改性的研究,北京师范大学学报(自然科学版),2002,38(1):43-47)
    [5]Cherenda N N, Uglov V V, Litvinovich G V, Danilyuk A L.The effect of Ti ions implantation on the structure of anodic alumina films.Nuclear Instruments and Methods in Physics Research B 2003(211):219-226
    [6]Knight S T, Evans P J, Samandi M,. Titanium aluminide formation in Ti implanted aluminium alloy. Nuclear Instruments and Methods in Physics Research B,1996, 119:501-504
    [7]Lee H, M.Lee S M, Ada E T, Kim B, Weiss M,S. Perry S S, Rabalais J W. Shallow implantation of Ti~+ ions in sapphire [α-Al_2O_3(0001)], Nuclear Instruments and Methods in Physics Research B, 1999,157:226-232
    [8]Hitzig J, Juttner K, Lorenz W J. AC- impedance measurements on porous aluminium oxide films [J]. Corrosion Science. 1984. 24(11/12): 943-952
    [9]Suay J J, Gimenez E. Characterization of anodized and sealed aluminium by EIS[J]. Corrosion Science. 2003.45:611-624[10]Zhao X H, Zuo Y, Zhao J M. Electrochemical properties of anodized aluminum films in sodium chloride solution[J].The Chinese Journal of Nonferrous Metals. 2004.14(4): 562-567(赵旭辉,左禹,赵景茂,铝阳极氧化膜在NaCl溶液中的电化学性能[J],中国有色金属学报,2004.14(4):562-567)
    [11]Thompson G E. Porous anodic alumina: fabrication, characterization and application [J]. Thin Solid Films,1997,297:192-201
    [12]Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson G E. Crystallization of anodic titania on titanium and its alloys. Corrosion Science, 2003, 45:2063-2073[1]G.K.Wolf, An historical perspective of ion bombardment research for corrosion studies,Surface and Coatings Technology, 83(1996) 1-9
    [2]A.H. Alsaffar, V. Ashworth, W.A. Grant, P.M. Procter, Corrs.Sci. 18 (1978) 687
    [3]C.J. McHargue, J.D. Hunn, D.L. Joslin, F. Alves, M.F. da,Silva, J.C. Soares, Nucl. Instr. and Meth. B 127-128 (1997)596
    [4]Karimi M V, Sinha S K, Kothari D C, Khanna A K, Tyagi A K, Surface and Coatings Technology, 158-159(2002)609
    [5]Cherenda N N, Uglov V V, Litvinovich G V, Danilyuk A L, Nucl. Instr. and Meth. B 211(2003)219
    [6]Lee H, M.Lee S M, Ada E T, Kim B, Weiss M,S. Perry S S, Rabalais J W, Nucl. Instr. and Meth. B, 157(1999)226
    [7]K.Y.Gao, B.X.Liu, Nucl. Instr. and Meth. B, 132(1997)68
    [8]A. Cuenat, R. SchaKublin, A. Hessler-Wyser, R. Gotthardt, Ultramicroscopy 83??(2000)179
    
    [9]Hitzig J, Juttner K, Lorenz W J, Corrosion Science,24(l 1/12)( 1984)945
    [10]Hitzig J, Juttner K, Lorenz W J,W.Ptsch, J.Electrochem.Soc. 133(1986)887
    [11]L.Leroy, P,Girault, J.L. Grosseau-Poussard, J.F.Dinhut, Nucl. Instr. and Meth. B, 198(2002)49
    [12]Macdonald, J.R., Impedance Spectroscopy-Emphasizing Solid Materials and Systems, Wiley, New York, (1987)
    [13JZhao X H, Zuo Y, Zhao J M, The Chinese Journal of Nonferrous Metals, 14(4) (2004)562
    [14]D.Costa, P.Marcus, in:P.Marcus,B.Baroux,M.Keddam(Eds.), Modification of Passive films,EFC, 1993,p. 17
    [15]Girault, P.; Grosseau-Poussard, J.L.; Dinhut, J.F.; Marechal, L. Nucl. Instr. and Meth. B, 174,4(2001)439
    
    [16]F.A.Smidt and GK.Hubler, Nucl.Instru.Meth.B,80/81(1993)207
    [17]A.G.Duffy, L.Clapham, M.C.Ridgway, J.L.Whitton, Surface and Coatings Technology, 83(1996)189
    
    [18]X.W.Yu, GQ.Li, Journal of Alloys and Compounds 364(2004)193
    [19]Cherenda N N, Uglov V V, Litvinovich G V, Danilyuk A L, Nucl. Instr. and Meth. B 216 (2004)340
    
    [20]N.Sato, J.Electrochem.Soc, 129,2(1982)255
    [21]J.O'M.Bockris, Lj.V.Minevski, J.Electrochem.Soc, 349(1993)375
    [22]J. J. Suay, E. Gimenez, T. Rodriguez, K. Habbib, J. J. Saura, Corr. Sci. 45(2003) 611.
    [23] B. Van Der Linden, H. Terryn, J. Vereecken, J. Appl. Electrochem. 20 (1990) 798-803.
    
    [24]H.W.Hoppe, H.H.Strehblow, Corr. Sci. 31 (1990) 167
    [25]P.Druska, H.H.Strehblow, Corr. Sci, 38 (1996) 1369-1383
    [26]N,N.Cherenda, V.V.Uglov, GV.Litvinovich, A.L.Danilyuk, Nucl. Instr. and Meth. B 216 (2004)340
    
    [27]E. Sikora, D.D. Macdonald, Solid State Ionics'94 (1997) 141
    [28]P.C. Searson, R.M. Latanison, U. Stimming, J. Electrochem. Soc.135 (1988) 1358.[29]P.Singh, K.L.Bhatia, N.Kishore, M.Singh, S.K.Malik, D.Kanjilal. Journal of Non-Crystalline Solids 191 (1995) 146
    [30]S.R. Morrison, Electrochemistry at Semiconductors and Oxidized Metal Electrodes, Plenum Press, New York, 1980.
    [31]J.C.S.Fernandes, R.Picciochi, M.Da Cunha Belo, T.Moura e Silva, M.GS.Ferreira, I.T.E.Fonseca. Electrochimica Acta. 49(2004)4701[1]G.K.Wolf, An historical perspective of ion bombardment research for corrosion studies. Surface and Coatings Technology. 83(1996)1-9
    [2]A.D.Liu, H.X.Zhang, T.H.Zhang, MEVVA ion source development and its industrial applications at Beijing Normal University, Surface and Coatings Technology. 193(2005)65-68
    [3]A.H. Alsaffar, V. Ashworth, W.A. Grant, P.M. Procter, Corrosion Science. 18 (1978) 687
    [4]C.J. McHargue, J.D. Hunn, D.L. Joslin, F. Alves, M.F. Silva, J.C. Soares, Etching of amorphous Al_2O_3 produced by ion implantation, Nuclear Inst. and Methods in Physics??Research, B. 127-128 (1997)596
    
    [5]L.Hao, B.R.Cheng, Sealing Processes of Anodic Coatings-Past, Present, and Future. Metal Finish 12(8)(2000)8
    
    [6]Y.Zuo, P.H.Zhao, J.M.Zhao, The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions, Surface and Coating Technology 166(2003)237
    
    [7]J.K.Hirvonen, Ion implantation, in: Treatise on Material Science and Technology, vol. 18, Academic Press, New York, 1980
    
    [8]M.V.Karimi, S.K.Sinha, D.C.Kothari, A.K.Khanna, A.K.Tyagi, Effect of ion implantation on corrosion resistance and high temperature oxidation resistance of Ti deposited 316 stainless steel, Surface and Coatings Technology, 158-159(2002) 609-614
    
    [9] K.Y.Gao, B.X.Liu, High current Ni-ion implantation into Al films, Nuclear Inst. and Methods in Physics Research, B.132(1997)68-72
    
    [10]P.Girault, J.L.Grosseau-Poussard, J.F.Dinhut, L.Marechal. Influence of a chromium ion implantation on the passive behaviour of nickel in artificial sea-water, An EIS and XPS study. Nuclear Instruments and Methods in Physics Research B 174(2001)439-452
    
    [11] F.Noli, P.Misaelides, GGiorginis, H.Baumannn, A.Hatzidimitriou, The effect of Zr-implantation on the thermal oxidation and aqueous corrosion of AISI 321 stainless steel, Nuclear Inst. and Methods in Physics Research, B.95( 1995) 195-207
    
    [12]A.G.Duffy,L.Clapham,M.C.Ridgway,J.L.Whitton, Mixing and corrosion in Ni implanted with Pt through a sacrificial layer of alumina, Surface and Coatings Technology,83( 1996) 189-193
    
    [13]L.Clapham,J.L.Whitton,M.C.Ridgway,N.Hauser,M.Petravic,J.Appl.Phys.72(1992)4 014
    
    [14]X.W.Yu, GQ.Li, XPS study of cerium conversion coating on the anodized 2024 aluminum alloy, Journal of Alloys and Compounds. 364(2004)193
    
    [15]Hitzig J, Juttner K, Lorenz W J, Corrosion Science,24(11/12)(1984)945
    
    [16]Hitzig J, Juttner K, Lorenz W J,W.Ptsch, AC-Impedance Measurements on Corroded Porous Aluminum Oxide Films, J.Electrochem.Soc. 133(5)(1986)885-892
    
    [17]J. J. Suay, E. Gimenez, T. Rodriguez, K. Habbib, J. J. Saura, Characterization of anodized and sealed aluminium by EIS, Corrosion Science. 45(2003) 611.[1]N.Celati, M.C.S.Catherine, M.Keddam. Electrochemical impedance spectroscopy characterization of the protection by anodized layers on aluminium alloys [J]. Materials Science Forum, 1995, 192-194:225-344
    [2]G.Patermarakis and N.Papadreadis. Effect of the structure of porous anodic Al_2O_3 films on the mechanism of their hydrothermal treatment[J]. Electrochemica Acta, 1993.38(10):1413-1420
    [3]G.E.Thompson. Porous anodic alumina: fabrication, characterization and applications [J].Thin Solid Films 1996.297:192-201
    [4]P.Skeldon, H.Habazaki, G.E.Thompson, G.C.Wood, K.Shimizu. Formation of amorphous anodic oxide films of controlled composition on aluminium alloys, Thin Solid Films 1996.300:131-137
    [5]J.J.Suay, E.Gimenez, Characterization of anodized and sealed aluminium by EIS[J]. Corrosion Science. 2003.45:611-624
    [6]Z.F.ZHU, Technique status and development trends of surface treatment on aluminum alloys for architectural applications, Electroplating & Finishing, 2005,24(4):16-17(朱祖芳.建筑铝型材的表面处理技术现况及发展趋势,电镀与涂饰,Vol.24(4):16-17)[7]L.Hao, B.R.Cheng. Sealing processes of anodic coatings-past, present, and future [J]. Metal Finish. 2000.12(8):8-18
    [8]Zhao Xuhui, Zuo Yu, Zhao Jingmao. Electrochemical properties of anodized aluminum films in sodium chloride solution[J].The Chinese Journal of Nonferrous Metals.2006.14(4):562-567(赵旭辉,左禹,赵景茂,铝阳极氧化膜在NaCl溶液中的电化学性能[J],中国有色金属学报,2006.14(4):562-567)
    [9]Yu Zuo, Penghui Zhao, Jingmao Zhao. The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCI solution[J].Surface and Coating Technology. 2003.166:236-242
    [10]B.R.W.Hinton, Corrosion Prevention and Chromates, the End of an Era?, Metal finishing, 1991, 89(9):55-61
    [11]F.Mansfeld, Y.Wang, Development of "stainless" aluminum alloys by surface modification, Materials Science and Engineering A 198(1995)51-61
    [12]R.G.Buchheit, A compilation of corrosion potentials reported for inter-metallic phases in aluminum alloys, Journal of Electrochemical Society. 1995, 142(11):3996-3996
    [13]Z.Szklarska-Smialowska, Pitting corrosion of aluminum, Corrosion Science, 1999, 41(9): 1743-1760
    [14]E.H.Hollingsworth, H.Hunsicker, Metals Hanbook, V.13, ASM International, 1987: 583-590
    [15]Hitzig J, Juttner K, Lorenz W J, et al. AC- impedance measurements on porous aluminium oxide films[J]. Corrosion Science. 1986. 24(11/12): 945-952
    [16]Juttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces[J]. Electrochimica Acta. 1990,35(10): 1501-1508
    [17]T.P. Hoar, G.C. Wood, Electrochim. Acta 1962, 7 (1): 333-350
    [18]J.A. Gonzalez, V.Lopez, E. Otero, J.A. Bautista, Postsealing changes in porous aluminum oxide films obtained in sulfuric acid solutions, Journal of Electrochemical Society, 2000, 147(3): 986-990
    [19]J.A. Gonzalez, M.Morcillo, E.Escudero, V.Lopez and E. Otero, Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental??conditions. Part I: Visual observations and gravimetric results. Surface and Coatings Technology, 2002, 153(2-3): 225-234
    [20]J.A. Gonzalez, S. Feliu, J.A. Bautista, E. Otero, Changes in cold sealed aluminum oxide films during ageing, Journal of Applied Electrochemistry, 1999, 29 (7): 845-854
    [21]F. Mansfeld, M.W. Kendig, Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopy, Journal of Electrochemical Society, 1988, 135 (4): 828-833.
    [22]A. Bautista, E. Otero, V. Lopez, J.A. Gonzalez, Effect of temperature & triethanolamine addition on the kinetics of sealing anodized aluminum, Plating and Surface Finishing, 1998, 85 (5): 110-113.
    [23]J.A.Gonzalez, V. Lopez, A. Bautista, E. Otero, Characterization of porous aluminum oxide films from a.c. impedance measurements, Journal Applied Electrochemistry, 1999,29(2): 229-238
    [24] V. Moutarlier, M.P. Gigandet, B. Normand, J. Pagetti, EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species. Corrosion Science. 47 (2005) 937-951
    
    [25] F.Snogan, C.Blanc, GMankowski, N. Pebere, Characterisation of sealed anodic films on 7050 T74 and 2214 T6 aluminium alloys, Surface and Coatings Technology 154(2002)96-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700