熔喷非织造模头宽幅化和纤维纳米化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业的飞速发展及对环境保护的加强,熔喷非织造布市场需求不断增长,熔喷非织造技术得到了迅速发展。熔喷纤维细度一般为2-5个微米,在医用材料、精细过滤材料、吸油材料、保暖材料、电池隔板等各个领域得到了广泛应用。
     目前熔喷技术发展的两个最重要趋势是熔喷设备的宽幅化和熔喷纤维的纳米化。本文针对这两方面进行了相关研究,其主要内容包括熔喷衣架型模头的多目标优化、宽幅模头的设计、熔喷纳米纤维的制备、非织造布性能的测试、纳米纤维成形机理的研究等。
     本论文首先对熔喷衣架型模头内的聚合物熔体流动进行三维数值模拟,通过分析出口速度和滞留时间的分布特点,指出两者将会显著影响熔喷非织造最终产品的性能。在此基础上,以获得最小出口速度CV值和最短滞留时间为目标,对单衣架型模头的几何参数进行了正交设计优化,找出影响出口速度CV值和滞留时间的显著性因素,得到了优化的衣架型模头;基于此结果,采用遗传算法,在参数变量的全局定义域内进行了优化搜素,进一步对衣架型模头进行了多目标优化。为实现模头的宽幅化,我们提出了两种宽幅衣架型模头设计方法,第一种方法是双衣架型模头的拼接方法,采用解析法求出双衣架型模头歧管的拼接形状方程,并在成型面区内引入第二椭圆歧管,获得了幅宽为3.4m,出口速度CV值小于1%的双衣架型模头。第二种方法是设计了幅宽为4m的多歧管模头,同时分析和比较了多种聚合物在该宽幅模头内的分配状况,结果显示该模头具有耗能小,对多种聚合物适应性强等优点。另外,本文在熔喷工业生产条件下,采用多种工艺成功制备了微米纤维和纳米纤维,测试了微、纳米非织造纤网性能并对两者进行了比较,指出纳米熔喷纤网在孔径大小,透气率和静水压力等性能方面具有独特优点;最后,本文对熔喷纳米纤维制备过程中存在的Rayleigh不稳定现象建立了数学建模,并设计熔喷实验对其进行了验证,阐明了该模型的正确性。最后通过对比熔喷纳米纤维工艺和静电纳米纤维工艺的相同和不同点,初步探究了熔喷纤维纳米化存在的障碍和极限问题。
     全文共分六章。
     第1章对国内外关于熔喷技术领域的相关理论和实验研究方面的文献进行了综述,主要涉及衣架型模头优化和设计、熔喷气流场、纤维拉伸模型以及纤维制备工艺的研究。
     第2章对衣架型模头内聚合物流场进行了数学建模,以聚合物熔体出口速度CV值和滞留时间为目标函数,采用数值模拟方法对工业用衣架型模头的几何参数进行了多目标优化。
     通过正交设计方法,选取歧管角度、成型面高度和狭缝区宽度三个因子对目标函数的影响进行了研究。结果显示选取的三个因子对流体的出口速度影响显著,而只有歧管角度和狭缝区宽度两因子对滞留时间有影响,但影响作用较小;同时只有歧管角度和成型面高度之间的交互作用对出口速度有一定的影响,其显著性也较小。通过正交设计实验,确定了影响目标函数的显著性因子,得到了优化的衣架型模头几何参数,该优化模头的最终出口速度CV值为7.7%,滞留时间为292s。随后采用多目标遗传算法在变量参数全局定义域内进行优化搜索,进一步改善了模头中成型面高度和狭缝区宽度两因子在目标函数优化过程中的制约关系。通过并列遗传算法和目标规划统一函数法求得了目标函数的最优解,获得了衣架型模头的最优几何参数,使衣架型模头的出口速度CV值降低为5.1%,滞留时间下降为169s。
     第3章设计了宽幅模头,根据解析方程求得双衣架型模头拼接位置处的歧管形状曲线,通过插入第二歧管和多歧管模头设计等方法,获得了出品速度均匀的宽幅模头。
     在第2章单衣架型模头优化过程中发现,歧管对聚合物流体在出口横向均匀分配方面起着至关重要的作用。本章通过对歧管内聚合物流体进行数学建模,求解出双衣架型模头拼接处歧管的形状解析方程。模拟结果显示该拼接方法有效的解决了简单拼接模头中间位置处存在的凸状高速区域,获得了更均匀的出口速度,使幅宽为3.4m的双衣架型模头出口速度CV值降至10%以下。基于双衣架设计基础,在成型面里引入第二椭圆歧管,使其对聚合物进行了第二次微调分配,进一步降低了出口速度的CV值。另外经过第二歧管的调节,模头内的流体压力降减小,可以降低能耗。另外根据歧管的分配作用,提出了一种多歧管宽幅模头的设计方法。通过多级歧管对聚合物流体层层分配,有效地减小了出口处速度CV值和模头内的压力降;同时该模头避免了双衣架型模头在生产过程中需要两个计量泵为其供料的弊端,而且对多种物料流体具有较好的适应性,实现了熔喷非织造分配流道的宽幅化设计。
     第4章主要是在工业生产条件下,制备了微米和纳米熔喷纤维,并对其纤维直径及其分布,纤网性能特征进行了测试和比较。
     首先在熔喷工业生产条件下,采用多种工艺参数和不同喷丝板制备了微米和纳米熔喷非织造布,详细讨论了工艺参数对熔喷纤维直径及其分布的影响。结果显示热空气压力、热空气温度的增加有利于纤维牵伸细化;工业生产条件下采用多孔喷丝板制备的熔喷纤维直径分布为正态分布,不同于实验室条件下采用单孔制备的熔喷纤维直径的指数正态分布。纳米喷丝板制备的熔喷纤维平均直径可达600nm-800nm。其次,采用不同的实验仪器,对纤网的密度、孔径分布、空气透气率、静水压和断裂伸长率等性能进行了测试和比较。通过对比微米熔喷纤网和纳米熔喷纤网,发现纳米纤网密度较小,但其透气率和断裂伸长率与微米纤网相近。另外,两种熔喷纤网的平均孔径都随着纤维直径的减小而显著降低,分布也更均匀,但纳米纤维表现更突出。
     第5章主要是对在工业生产条件下,采用多孔喷丝板制备纳米熔喷过程中出现的Rayleigh不稳定现象进行了理论分析和实验验证,同时比较了熔喷纳米纤维和静电纳米纤维制备过程中的异同现象,初步探讨了熔喷纤维牵伸细化过程中存在的障碍和极限问题。
     本章对熔喷纺丝过程中纤维细度牵伸到纳米级后出现的Rayleigh不稳定现象进行了数学建模和分析,指出纤维直径,空气温度和聚合物粘度对此现象影响显著。当纤维直径牵伸至纳米级后,其表面张力激增,Rayleigh不稳定现象加剧而导致纤维断裂,从而形成圆形颗粒;通过熔喷实验,通过不同粘度的聚合物,不同生产工艺条件制备了纳米纤维,结果验证了理论模型的正确性。另外通过高速摄影仪抓拍纤维在熔喷和静电生产过程中的运动轨迹,指出熔喷纤维运动路径远小于静电纤维的运动路径,同时熔喷纤维所处的气流场比静电纤维所处的电场均匀性差。熔喷纤维所受的气流牵伸力衰减速度要比静电纤维所受的电场力衰减速度快,基于以上原因,在同样的接收距离条件下,熔喷纳米纤维最终直径要比静电纺纤维最终直径大,目前在工业生产条件下制备的熔喷纤维最终平均直径难以突破500nm。
     第6章是全文的结论和展望。
     对本文研究工作中所取得的成果进行了总结,对所存在的不足进行了阐述,并建设性地指出了下一步的研究方向。
In this thesis, multi-objective optimization of the coat-hanger die, the design of wide coat-hanger die, fabrication of melt blowing nanofiber, properties of melt blown web structure and mechanism of nanofiber formation in melt blowing were investigated. First, the polymeric fluid flow in coat-hanger die was simulated using the three-dimensional finite element method. The outlet velocity and the residence time distribution were analyzed, which could affect the quality of melt blown nonwoven fabric. A method combining the orthogonal array design and the numerical simulation is used to optimize the geometry parameters of the single coat-hanger die with uniform outlet velocity and minimal residence time. The significant factors were obtained and they were used for optimization of coat-hanger die with the multi-objective genetic algorithm method in the global domain. Then, two different methods were proposed for the design of wide coat-hanger die. A simple analytic method was developed for the double coat-hanger die and an ellipse cavity was inserted in the double coat-hanger die slot. The result showed that the outlet velocity CV value was less than1%for3.4meter width of double coat-hanger die. Meanwhile, multi-manifold width distribution was designed for different polymer melts. The uniform outlet velocity and samll pressure drop were obtained.Melt blowing micronfibers and nanofibers have been produced using different multi-holes dies from available polymers under commercial process conditions. The different properties between microfiber webs and nanofiber webs were compared.The results showed that the smaller pore size, the higher air permeability and the larger hydrohead were achieved for nanofiber webs, which fiber average diameter was less than one micron. Finally, the Rayleigh instability theory of melt blown nanofiber was established, which illustrated the reason of fiber breakup.Both theory and experimental evidenced that surface tension influenced the fiber breakup. Besides, by comparing similarities and differences of melt blowing and electrospinning, this research try to provide a general understanding of limit on barrier of nanofiber from melt blowing technology.
     This thesis contained6chapters.
     In chapter1, the research work refering to the theory and experimental of melt blowing technology at home and abroad was reviewed.They are mainly focused on design and optimization of coat-hanger die, airflow field of melt blowing, fiber drawing model of melt blowing and the research of melt blowing process.
     In chapter2, the multi-objective methods based on the numerical simulation of the polymer flow was proposed to optimize the geometry parameters of the coat-hanger die with uniform velocity and minimal residence time.
     A method combining the orthogonal array design and the numerical simulation was used and the effects of the manifold angle, the land height and the slot gap on the outlet velocity and the residence time were investigated.The results showed that the effects of all the three parameters were significant for the outlet velocity while manifold angle and slot gap were significant for the residence time.Besides, the interaction between manifold angle and slot gap influenced the outlet velocity. The significant factors were determined and the optimal geometry parameters of coat-hanger die were obtained using orthogonal array design. The CV value of outlet velocity and the residence time decreased to7.7%and292s respectively. Then, the vector evaluated GA (genetic algorithm) method was further used to find the parameter values for uniform outlet velocity and minimal residence time in global domain.The relationship between land height and slot gap was improved.The optimal geometry of coat-hanger die was obtained using goal programming function. The CV value of outlet velocity and the residence time of optimal coat-hanger die were5.1%and169s respectively.
     In chapter3,the wide coat-hanger die was designed based on the modification of manifold connected,the inserted second manifold and multi-manifold.The uniform outlet velocity was achieved. Based on the previous study, the simple connected manifold for the wide coat-hanger die was not able to satisfy the requirements of melt blowing practical production.In this chapter, a numerical approach was developed for optimal design of double coat-hanger die. The flow convection zone at the center of simple connected double coat-hanger die was improved. And then, the second manifold was inserted in the double coat-hanger die slot for the melt flow distribution. The result of outlet velocity CV value was under1%for3.4meter width of double coat-hanger die and the melt pressure drop was also decreased. In addition, a multi-manifold design method was proposed for the wide coat-hanger die. Both the CV value of outlet velocity and pressure dropt were decreased with the multi-manifold's distribution. At the same time, the multi-manifold coat-hanger die could reduce drawbacks which might be generated by two metering pump for feeding polymer melt. A variety of polymer distributions were adapted in the multi-manifold wide coat-hanger die.
     In chapter4, melt blown microfibers and nanofibers have been produced using different multi-holes dies under commercially processing conditions. Mean fiber diameter along with fiber diameters distribution were studied. The properties of melt blown web structure were tested and compared between microfiber webs and nanofiber webs.
     The results showed that the fiber diameter decreased with the air pressure, air temperature increasing. The fiber diameter distribution which produced by multi-hole dies was normal distribution, which was different from the one observed in a single hole melt blowing process. The average of melt blowing fiber diameter was from600to800nm. The properties of melt blown webs were tested and investigated using instruments, such as density of webs, pore distribution, air permeability, hydrohead and elongation at break. Nanofiber web's density was lower but the air permeability and elongation at break was similar with microfiber web's. The web's pore size decreased and became more uniform with the fiber diameter decreasing, especially for nanofiber webs. Meanwhile, more uniform nanofiber diameter was obtained using the new designed melt blowing die.
     In chapter5, the nanofiber breakup was observed which was produced by multi-holes dies with different commercially processing conditions.The Rayleigh instability theory of melt blowing was established and illustrated the reason of fiber breakup. The experimental results revealed that polymer viscosity, fiber diameter and the melt blowing process conditions, such as air pressure, air temperature, significantly influenced the fiber breakup.
     Besides, a high-speed camera was used to capture the fiber path below a single-hole melt blowing slot die and electrospinning process.The air flow field and electric field for fiber drawing were simulated and analyzed.The results showed that melt blowing fiber whipping amplitude was smaller than electrospinning's.The electric field for electrospining fiber was more uniform while the drawing force for melt blowing attenuated quickly in the same collect distance.Comparing with melt blowing, process and electrospinning process, a general understanding of limit on the nanofiber for commercial melt blowing was explored and the results showed that the fiber diameter of melt blowing was hard to reach500nm under the commercial melt blowing conditions.
     In chapter6, conclusions and outlooks were presented.
     Main research findings and insufficiencies of this thesis were summarized. Meanwhile, the further research points involved in this field was described.
引文
[1]郭秉臣.非织造材料与工程,纺织出版社,北京2010.
    [2]G. S. Bhat and R. Uppal, Nanofiber Nonwovens:Importance, Properties, Productions Technologies and Applications, Proceedings of the Beltwide Conference, New Orleans, LA, January 2010.
    [3]董家斌,陈廷.熔喷非织造技术的发展现状[J].纺织导报.2012(6):144
    [4]邹荣华,俞镇慌.国内外非织造装备与技术的发展现状与格局——纺粘、熔喷与后整理设备[J].纺织导报.2010(9):70
    [5]赵永霞.纺粘和熔喷技术的发展和应用.纺织导报,2008,10:48.
    [6]G. S. Bhat, P. Gulgunje, and K. Desai, Developments of Structure and Properties during Thermal Calendering of Polylactic Acid (PLA) Fiber Webs [J]. EXPRESS Polymer Letters,2008,2(1):49.
    [7]张迈建.纺粘和熔喷法非织造布行业年会召开[N].中国纺织报,2012,(3).
    [8]庸志玉.塑料挤塑模与注塑模优化设计[M].机械工业出版社,2000.
    [9]Ito K. Flow of melts in flat die-coat-hanger die [J]. High Polymer Chemistry. 1963(20):201
    [10]Matsubara Y. Residence time distribution of polymer melts in the linearly tapered coat-hanger die[J]. Polymer Engineering & Science.1983,23(1):17
    [11]Vergnes B, Saillard P, Plantamura B. Methods of calculating extrusion sheeting dies[J]. Kunststoffe-German Plastics.1980,70(11):11
    [12]Chung C I, Lohkamp D T. Designing coat-hanger dies by power-law approximation[J]. Modern Plastics.1976,53(3):52
    [13]Sun Q, Zhang D. Analysis and simulation of non-Newtonian flow in the coat-hanger die of a meltblown process[J]. Journal of Applied Polymer Science.1998, 67(2):193
    [14]Reid J D, Campanella O H, Corvalan C M, et al. The influence of power-law rheology on flow distribution in coathanger manifolds[J]. Polymer Engineering & Science.2003,43(3):693
    [15]Pearson J R. Nonnewtonian flow and die design[J]. Trans Plast Inst.1962,30: 234.
    [16]Schlafli D. Analsys of polymer flow through coat-hanger melt distributors [J]. Intern Ploymer Processing X,1995(3):195
    [17]Fenner R T. Principle of polymer processing. MacMillan Press, Ltd., London 1979
    [18]Gutfinger C, Broyer E, Tadmor Z. Analysis of a cross head die with the flow analysis network method.[J]. Polymer Engineering & Science.1974,20:339
    [19]Vergnes B, Saillard P, Agassant J F. Non-isothermal flow of a molten polymer in a coat-hanger die [J]. Polymer Engineering and Science.1984,24(12):980
    [20]Arpin B, Lafleur P G, Sanschagrin B. Personal computer software program for coathanger die simulation [J]. Polymer Engineering and Science.1994,34(8):657
    [21]Arpin B, Lafleur P G, Vergnes B. Simulation of polymer flow through a coat-hanger die:A comparison of two numerical approaches [J]. Polymer Engineering & Science.1992,32(3):206
    [22]Wu T, Jiang B, Xu S. Three-dimensional nonisothermal simulation of a coat hanger die[J]. Journal of Applied Polymer Science.2006,101(5):2911
    [23]Wang Y. The flow distribution of molten polymers in slit dies and coathanger dies through three-dimensional finite element analysis [J]. Polymer Engineering & Science.1991,31(3):204
    [24]Dooley J. Simulating the flow in a film die using finite element analysis [J]. SPE ANTEC Tech Papers,1990,36:168
    [25]Na S Y, Kim D H. Three-dimensional simulation of polymer melt flow in a coat-hanger die[J]. Journal of Chemical Engineering of Janpan,1996,29(1):1
    [26]Na S Y, Kim D H. Three-dimensional modelling of Non-Newtonian fluid flow in a coat-hanger die[J]. Korean Journal of Chemical Engineering.1995,12(2):236
    [27]Wen S H, Liu J D. Three-dimensional finite element analysis of polymeric fluid flow in an extrusion die. Part I:entrance effect [J]. Polymer Engineering & Science, 1994,34 (10):827
    [28]Yu Y W and Liu T J. A hybrid 3D/2D finite element technique for polymer processing operations[J]. Polymer Engineering & Science,1999,39 (1):44
    [29]Huang C C. Optimal design of a linearly tapered coat-hanger die [J]. Society of Plastic Engineering Technolgy Papers,1996,42:260.
    [30]Chen C, Jen P, Lai F S. Optimization of the coat-hanger manifold via Computer simulation and an orthogonal array method [J]. Polymer Engineering & Science,1997, 37(1):188
    [31]Smith D E, Tortorelli D A, Tucker C L. Optimal design for polymer extrusion. Part I:Sensitivity analysis for nonlinear steady-state systems[J]. Computer Methods in Applied Mechanics and Engineering.1998,167(3-4):283
    [32]Smith D E, Tortorelliavb D A, Tucker III C L. Optimal design for polymer extrusion. Part Ⅱ:Sensitivity analysis for weakly-coupled nonlinear steady-state systems [J]. Computer methods in applied mechanics and engineering,1998,167(3-4): 303
    [33]Smith D E, Wang Q. Optimization-based design of polymer sheeting dies using generalized newtonian fluid models. Polymer Engineering & Science,2005,45 (7): 953
    [34]Lebaal N, Schmidt F, Puissant S. Design and optimization of three-dimensional extrusion dies, using constraint optimization algorithm[J]. Finite Elements in Analysis and Design.2009,45(5):333
    [35]Lebaal N, Puissant S, Schmidt F. Application of a response surface method to the optimal design of the wall temperature profiles in extrusion die[J]. International Journal of Material Forming.2010,3(1):47
    [36]李吕志,申开智.衣架式板材与片材挤出机头优化设计软件的研制[J].中国塑料.1999,13(3):79
    [37]张冰,江波,许澍华.衣架机头的优化计算及压力分布模拟[J].塑料.2001, 30(2):33
    [38]刘玉军,王钧效.衣架式纺丝模头设计理论研究[J].纺织学报.2008,29(3):97
    [39]龚炫,吴宏武.衣架式模头设计理论及其流道数值模拟验证[J].塑料.2010,39(2):1
    [40]周文渊,熊传胜,杨宝红.不同角度内模填充衣架型机头的数值模拟[J].塑料科技.2010,(7):72
    [41]周文渊.熊传胜,孟雅新.内模填充衣架式机头内物料停留时间的数值模拟[J].中国塑料.2010(1):59
    [42]Wang X, Chen T, Huang X. Simulation of the polymeric fluid flow in the feed distributor of melt blowing process[J]. Journal of Applied Polymer Science.2006, 101(3):1570
    [43]Meng K, Wang X, Chen Q. Fluid flow in coat-hanger die of melt blowing process:comparison of numerical simulations and experimental measurements [J]. Textile Research Journal.2011,81(16):1686
    [44]Meng K, Wang X, Huang X. Optimal design of the coat-hanger die used for producing melt-blown fabrics by finite element method and evolution strategies [J]. Polymer Engineering & Science.2009,49(2):354
    [45]Liu T J, Hong C N, Chen K C. Computer-aided analysis of a linearly tapered coat-hanger die. Polymer Engineering & Science,1988,28(23):1517
    [45]Weinstein S J, Ruschak K J. One-dimensional equations governing single-cavity die design[J]. AIChE Journal.1996,42(9):2401
    [47]Huang Y, Gentle C R, Hull J B. A comprehensive 3-D analysis of polymer melt flow in slit extrusion dies[J]. Advances in Polymer Technology.2004,23(2):111
    [48]Meng K, Wang X, Huang X. Numerical analysis of the stagnation phenomenon in the coat-hanger die of melt blowing process[J]. Journal of Applied Polymer Science. 2008,108(4):2523
    [49]Shetty S, Ruschak K. J, Weinstein S J. Model for a two-cavity coating die with pressure and temperature deformation[J]. Polymer Engineering & Science.2012, 52(6):1173
    [50]Uyttendaele M.A.J.; Shambaugh R.L. The flow field of annular jets at moderate Reynolds numbers[J]. Industry & Engineering Chemistry Research,1989,28(11), 1735
    [51]Tollmien W. Berechnung Turbulenter Ausbreitungsvorgange[J]. Z. Angew. Math. Mech.,1926,6(6),468.
    [52]Majumdar B.; Shambaugh R.L. Velocity and Temperature fields of Annular Jets[J].Industry & Engineering Chemistry Research,1991,30(6),1300.
    [53]Harpham A.S.; Shambaugh R.L. Flow Field of Practical Dual Rectangular Jets[J]. Industry & Engineering Chemistry Research,1996,35(10),3776
    [54]Harpham A.S.; Shambaugh R.L. Velocity and Temperature Fields of Dual Rectangular Jets[J]. Industry & Engineering Chemistry Research,1997,36(9),3937.
    [55]Tate B.D.; Shambaugh R.L. Modified Dual Rectangular Jets for Fiber Production[J].Industry & Engineering Chemistry Research,1998,37(9),3772
    [56]陈廷.熔喷非织造气流拉伸工艺研究[D].上海:东华大学2003.
    [57]Wang X.M.; Ke Q.F. Empirical Formulas for Distributions of Air Velocity and Temperature Along the Spinline of a Dual Slot Die[J]. Polymer Engineering and Science,2005,45(8),1092.
    [58]Sun Y, Wang X. Optimization of air flow field of the melt blowing slot die via numerical simulation and genetic algorithm[J]. Journal of Applied Polymer Science. 2010,115(3):1540
    [50]Krutka H.M.; Shambaugh R.L. Analysis of a Melt-Blowing Die:Comparison of CFD and Experiments[J]. Industry & Engineering Chemistry Research,2002,41(20), 5125
    [60]Moore E.M.; Shambaugh R.L. Analysis of isothermal annular jets Comparison of Computational Fluid Dynamics and Experimental Data[J]. Journal of Applied Polymer Science,2004,94(3),909.
    [61]Krutka H.M.; Shambaugh R.L. Analysis of Multiple Jets in the Schwarz Melt-Blowing Die Using Computational Fluid Dynamics[J]. Industrial & Engineering Chemistry Research,2005,44(23),8922.
    [62]Krutka H.M.; Shambaugh R.L. Analysis of the Temperature Field from Multiple Jets in the Schwarz Melt Blowing Die Using Computational Fluid Dynamics[J]. Industrial & Engineering Chemistry Research,2006,45(14),5098.
    [63]Krutka H.M.; Shambaugh R.L. Effects of Fiber on the Air Flow from an Annular Melt Blowing Die[J]. Industrial & Engineering Chemistry Research,2007,46(2),655
    [64]Krutka H.M.; Shambaugh R.L. Effects of the polymer fiber on the flow field from a slot melt blowing die[J]. Industrial & Engineering Chemistry Research,2008, 47(3),935
    [65]Feldman L. Theoretical Trajectory Studies of Light Bodies in Non-Uniform Two-Dimensional Flows[J]. Textile Research Journal,1966,36(9),809.
    [66]Bangert L.H.; Sagdeo P.M. On Fiber Alignment Using Fluid-Dynamic Forces[J]. Textile Research Journal,1977,47(12),773
    [67]Yamamoto S; Matsuoka T. A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field[J]. J. Chem. Phys.,1993,98(1),644.
    [68]Mastui M. Air Drag on a Continuous Filament in Melt Spinning[J]. Transactions of the Society of Rheology,1976,20(3) 465.
    [69]Chung T.S.; Abdalla S. Mathematical modeling of air drag spinning for nonwoven fabrics[J]. Polyrmer Plastics Technology and Engineering,1985,24(2), 117.
    [70]Korovitsyn K.O.; Genis A.V.; Yankov V.I. et al. Isothermal stretching of the jet of polymer melt in aerodynamic fibre spinning[J]. Fiber Chemistry,1988,20(2),104.
    [71]Majumdar B.; Shambaugh R.L. Air drag on filaments in the melt blowing process[J]. Journal of Rheology,1990,34(4),591.
    [72]Ju YD.; Shambaugh R.L. Air Drag on Fine Filaments at Oblique and Normal Angles to the Air Stream[J]. Polymer Engineering and Science,1994,34(12),958.
    [73]Uyttendaele M.A.J.; Shambaugh R.L. Melt blowing:General Equation Development and Experiment Verification[J]. AIChE. Journal,1990,36(2),175.
    [74]Tyagi M.K.; Shambaugh R.L. Use of Oscillating Jets in Fiber Processing[J]. Industrial & Engineering Chemistry Research,1995,34(2),656.
    [75]Chen T.; Huang X.B. Modeling Polymer Air Drawing in the Melt Blowing Process[J]. Textile Research Journal,2003,73(7),651.
    [76]Zieininski K.F.; Spruiell J.E. A mathematical Model of Crystalline Fiber-forming Polymer[J]. Synthetic Fibers,1986,4,31.
    [77]Rao R.S.; Shambaugh R.L. Vibration and Stability in the Melt Blowing Process[J]. Industrial & Engineering Chemistry Research,1993,32(12),3100
    [78]Wu T.T.; Shambaugh R.L. Characterization of the Melt Blowing Process with Laser Doppler[J]. Industrial & Engineering Chemistry Research,1992,31(1),379.
    [79]Chhabra R.; Shambaugh R.L. Experimental Measurements of Fiber Threadline Vibrations in the Melt-Blowing Process[J]. Industrial & Engineering Chemistry Research,1996,35(11),4366.
    [80]Bansal V.; Shambaugh R.L. On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene[J]. Industrial & Engineering Chemistry Research,1998,37(5),1799.
    [81]Maria V. T.; Shambaugh R.L. Three-Dimensional Model of the Melt-Blowing Process[J]. Industrial & Engineering Chemistry Research,2003,42(26),6993.
    [82]Chen T.; Huang X.B. Air Drawing of Polymers in the Melt Blowing Nonwoven: Mathematical Modeling[J]. Modeling and Simulation in Materials Science and Engineering,2004,12(3),381.
    [83]Sun Y, Zeng Y, Wang X. Three-Dimensional Model of Whipping Motion in the Processing of Microfibers[J]. Industrial & Engineering Chemistry Research.2010, 50(2):1099
    [84]Choi K J, Spruiell J E, Fellers J F, et al. Strength properties of melt blown nonwoven webs[J]. Polymer Engineering & Science.1988,28(2):81
    [85]Lee Y, Wadsworth L C. Structure and filtration properties of melt blown polypropylene webs[J]. Polymer Engineering & Science.1990,30(22):1413
    [86]Milligan M W, Lu F, Buntin R R, et al. The use of crossflow to improve nonwoven melt-blown fibers[J]. Journal of Applied Polymer Science.1992,44(2): 279
    [87]Shambaugh R L. Polymer processing using pulsating fluidic flow[P]. US Patent US 5,523,033.1996.
    [88]Al T G T E. Nonwoven fabrics having improved fiber twisting and crimping[P]. US Patent US 5,695,377.1997.
    [89]王晓梅.熔喷工艺气流对纤维运动及热熔纤网质量影响的研究[D].上海:东华大学,2005.
    [90]Ellison C J, Phatak A, Giles D W, et al. Melt blown nanofibers:Fiber diameter distributions and onset of fiber breakup[J]. Polymer.2007,48(11):3306
    [91]Yao D, Wang Y. Ultra-Fine Filament Yarns Made by Supersonic Jet splitting[J]. National Textile Center Research Briefs.2008,6:1
    [92]R. Green, G. S. Bhat, P. Gulgunje, C. Eash, and J. French, Biodegradable Melt Blown Nonwoven Fabrics from Poly Lactic Acid, Proceedings of the INTC, Denver, CO,2009,9:21.
    [93]Meng K, Wang X. Numerical simulation and analysis of fluid flow in double melt-blown die[J]. Textile Research Journal.2013,83(3):249
    [1]章本照.流体力学中的有限元方法.机械工程出版社,北京1984.
    [2]Matsubara Y. Design of coat-hanger sheeting dies based on ratio of residence times in manifold and slot[J]. Polymer Engineering & Science.1980,20(11):716.
    [3]北京大学数学力学系统概率统计组.正交设计法,化学T业出版社,北京1979.
    [4]Chen C, Jen P, Lai F S. Optimization of the coathanger manifold via computer simulation and an orthogonal array method[J]. Polymer Engineering & Science.1997, 37(1):188.
    [5]Huang Y, Gentle C R, Hull J B. A comprehensive 3-D analysis of polymer melt flow in slit extrusion dies[J]. Advances in Polymer Technology.2004,23(2):111.
    [6]Matsubara Y. Geometry design of a coat-hanger die with uniform flow rate and residence time across the die width[J]. Polymer Engineering & Science.1979,19(3): 169.
    [7]庄楚强,何春雄.应用数理统计基础.广州:华南理工大学出版社,2005.
    [8]王小平,曹立明.遗传算法—理论、应用于软件实现.西安:西安交通大学出版社,2002.
    [9]郁崇文,汪军,王新厚.工程参数的最优化设计.上海:东华大学出版社,2003
    [10]雷英杰MATLAB遗传算法工具箱及应用,西安电子科技大学出版社2005.
    [11]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison Wesley Publishing Company,1989.
    [12]Huang, C. C.; Tang, T. T. Parameter Optimization in Melt Spinning by Neural Networks and Genetic Algorithms [J]. The International Journal of Advanced Manufacturing Technology.2006,27(11),1113
    [1]刘玉军,司徒元舜.我国熔喷非织造布的生产现状及新进展[J].纺织导报.2008(12):100.
    [2]刘玉军,廖用和,王巍,肖小雄,王钧效.丙纶纺粘非织造布双衣架型纺丝模头及纺丝组件[P],中国:ZL 200720305512.4.2008.
    [3]Allen M A. Apparatus for meltblowing multi-component liquid filaments [P].US: 6,491,507 B1.2002.
    [4]孟凯.熔喷非织造模头设计中几个问题的研究[D].东华大学2009.
    [5]唐志玉.塑料挤塑模与注塑模优化设计.机械工业出版社,北京2000
    [6]Matsubara Y. Residence time distribution of polymer melts in the linearly tapered coat-hanger die[J]. Polymer Engineering & Science.1983,23(1):17.
    [7]Weinstein S J, Ruschak K J. One-dimensional equations governing single-cavity die design[J]. AIChE Journal.1996,42(9):2401.
    [8]Shetty S, Ruschak K J, Weinstein S J. Model for a two-cavity coating die with pressure and temperature deformation[J]. Polymer Engineering & Science.2012, 52(6):1173.
    [1]Ward, GF. Meltblown nanofibres for nonwoven filtration applications [J], Filtr. Sep.2001,38(9):42.
    [2]马良海.聚丙烯在熔喷非织造布中应用[J].现代塑料加工应用,2007,19(4):59.
    [3]邢声远,张建春,岳素娟.非织造布[M].北京:化学工业出版社,2003.43
    [4]郭秉臣.非织造材料与工程,纺织出版社,北京2010.
    [5]Ellison CJ, Phatak A, Giles DW, Macosko CW and Bates FS. Melt blown nanofibers:Fiber diameter distributions and onset of fiber breakup [J]. Polymer, 2007,48(11):3306.
    [6]Shambaugh R L. A macroscopic view of the melt-blowing process for producing microfibers[J]. Industrials and Engineering Chemistry Research.1988,27(12):2363.
    [7]赫连晓伟.熔喷超细纤维非织造布制备的工艺研究[D].东华大学硕士论文2012
    [8]A. Jena, K. Gupta, Characterization of pore structure of filtration media, Fluid/part. Sep. J.2002,14(3):227
    [9]Li D, Frey M W, Joo Y L. Characterization of nanofibrous membranes with capillary flow porometry[J]. Journal of Membrane Science.2006,286(1-2):104.
    [10]Bresee, R.R. Qureshi U.A. Influence of processing conditions on melt blown web structure:Partl-DCD [J]. International Nonwovens Journal.2004,13(1):49.
    [11]Bresee, R.R. Influence of processing conditions on melt blown web structure: Part2-Primary Airflow Rate [J]. International Nonwovens Journal.2004,14(11):11.
    [1]Ellison CJ, Phatak A, Giles DW, Macosko CW and Bates FS. Melt blown nanofibers:Fiber diameter distributions and onset of fiber breakup [J]. Polymer,2007, 48(11):3306.
    [2]Rayleigh L. XVI. On the instability of a cylinder of viscous liquid under capillary force[J]. Philosophical Magazine Series 5.1892,34(207):145.
    [3]Bartle K D, Woolley C L, Markides K E, et al. Rayleigh instability of stationary phase films in capillary column chromatography[J]. Journal of High Resolution Chromatography.1987,10(3):128.
    [4]Elemans P H M, Janssen J M H, Meijer H E H. The measurement of interfacial tension in polymer/polymer systems:The breaking thread method [J]. Journal of RheologyJournal of RheologyJ. Rheol.1990,34(8):1311.
    [5]Oren Breslouer. Rayleigh-Plateau Instability:Falling jet analysis and applications. Project report.2010.8
    [6]Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics. 2000,87(9):4531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700