永磁偏置磁悬浮轴承的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁偏置磁悬浮轴承利用永磁体产生偏置磁通,降低了磁轴承的励磁功耗,且体积重量均有所减小,同时,每个自由度的功率放大器由两个减为一个,系统的可靠性得以提高,使其在储能飞轮、动量飞轮及航空航天等高速电机应用领域具有广阔的应用前景。鉴于永磁偏置磁轴承的诸多优点和广泛用途,本文对包括同极性径向、异极性径向、轴向径向及轴向等各类永磁偏置磁轴承,从拓扑结构、精确等效磁路、数学模型、参数设计、有限元仿真分析、实验验证等方面进行了较为系统的研究。
     同极性永磁偏置径向磁轴承磁滞损耗小、控制方便、应用广泛。本文对其多种拓扑结构进行了分析,提出了一种新结构同极性永磁偏置径向磁轴承,其中鉴于等效磁路对磁轴承的理论分析和参数设计的影响,在二维有限元仿真的基础上构建其精确等效磁路,推导出该型磁轴承的承载力、力/位移系数及力/电流系数的数学表达式。另外,还提出一种在充分考虑漏磁和软磁材料磁阻的影响下,以满足承载力所需的偏置磁场与控制磁场的磁通量为基本目标,通过降低转子铁心损耗、优化定子齿槽、考虑永磁材料实际加工误差等一系列措施,结合精确等效磁路对永磁材料和定转子结构参数进行优化设计的参数设计方法。最后,对以上设计结果进行了三维有限元仿真分析,并制作了一套五自由度实验平台,实现了转轴0~20000r/min的稳定悬浮。理论和实验结果表明:同极性永磁偏置径向磁轴承结构较紧凑,控制方便,悬浮性能优良,文中提出的参数设计方法合理。
     相比于同极性径向磁轴承,异极性永磁偏置径向磁轴承结构简单、轴向长度短。本文对该结构的多种拓扑进行了分析,其中重点研究了一种八磁极异极性永磁偏置径向磁轴承,对其进行理论分析,推导出数学模型,并对其进行了参数设计,研究了气隙偏置磁密的大小对结构和性能的影响。对设计结果进行了三维仿真分析,制作了一两自由度实验平台,实现了转轴0~7200r/min的稳定悬浮。理论和实验结果表明:异极性永磁偏置径向磁轴承结构简单,偏置磁场和控制磁场共面,轴向长度相对较短,悬浮性能较为优良,但未有主动控制的永磁磁极对悬浮性能有一定的影响。
     永磁偏置轴向径向磁轴承充分利用了永磁体磁能,其结构最为紧凑。本文在深入研究一种经典结构的永磁偏置轴向径向磁轴承的基础上,提出一种新型结构:其利用位于转子铁心两侧的两个环形永磁体提供偏置磁通,结构十分紧凑;且轴向定子位于径向定子外部,因而,轴向控制磁通和径向控制磁通彼此解耦。文中对其理论模型和参数设计进行了深入研究,完成了三维仿真分析和原理样机实验验证,结果表明:永磁偏置轴向径向磁轴承充分利用了永磁材料的磁能,结构最为紧凑,控制方便,但设计安装较为困难。
     永磁偏置轴向磁轴承结构简单,可独立控制。本文提出了一种新型永磁偏置轴向磁轴承以及非对称气隙下的低功耗悬浮策略,给出了详细的理论分析和参数设计过程。三维有限元仿真结果表明:新型永磁偏置轴向磁轴承结构紧凑、控制方便,且不对称气隙的低功耗悬浮策略相比于对称气隙,悬浮功耗大幅降低,使其与永磁磁力轴承构成的低功耗五自由度磁悬浮系统,能够满足飞轮储能电池等绿色能源装置中对轴承支撑功耗的严格要求。
     为更好地验证前述章节中对永磁偏置磁轴承的研究结果,并鉴于前两个实验平台在高速旋转方面所具有的局限性,本文提出并制作了利用两个结构相同永磁偏置轴向径向磁轴承实现转轴五自由度支撑、开关磁阻电机作驱动的磁轴承系统实验平台,对其进行了实验,实现了转轴0~36000r/min的稳定悬浮,实验结果验证了理论分析、系统结构选择及参数设计的合理性,为其工业化应用奠定了基础。
The bias magnetic field of permanent magnet biased magnetic bearings (PMB) is created bypermanent magnets so that the power consumption is reduced, the space and weight is minimized.Besides, the power amplifiers of each degree freedom reduce to1, which improves its reliability andmakes it well suited for flywheel storage applications. Due to the characteristics and applications ofPMB, in this paper the various PMB are researched, such as homopolar, heterpolar, axial-radial andaxial, their topological structures, parameters design and optimization, magnetic fields analysis,experiment are also studied.
     The homopolar permanent magnet biased radial magnetic bearings (PRMB) is of low hysteresisloss, convenient control method and wide application. In the paper several topological homopolarPRMB are analyzed, A novel homopolar PRMB is studied, it’s precise equivalent magnetic circuit isestablished based on2-D Finite Element simulation due to the influence from the equivalent magneticcircuit to the theoretical analysis and parameter design, and get the mathematical model of the radialmagnetic suspension force, the displacement stiffness and current stiffness. A parameter designmethod is presented, in which the relationship between both the bias and control magnetic flux andthe suspension bearing force is figured out, the parameters of stator and rotor are designed, theoptimization of permanent magnet based on engineering practicing is proposed, the affect of magneticreluctance coefficient and magnetic leakage coefficient are considered. The parameters of theproposed prototype are given, the3-D magnetic field simulation and experiment are accomplished,the rotor is suspended stably from0to20000r/min. The results show that the homopolar PRMB hassmaller volume and it’s control is easier, the levitation performance is well and the parameter designmethod is rational
     Comparing to the homopolar PRMB, the heterploar PRMB has more simple structure and shorteraxial length. In this paper several topological heterploar PRMB are analized, especially a kind ofheterpolar PRMB with8magnetic poles, of which the parameter designing method and the influenceby the value of air-gap’s bias flux density to it’s structure and performance are studied. The3-Dmagnetic field simulation of the designing consequence is done, while the experiment platform of aheterploar PRMB with2-D freedom is also completed, by which the stable suspension speeding from0to7200r/min is achieved. It shows in both theoretical and experimental consequence that theheterploar PRMB has smaller volume and shorter axial length, the bias and control magnetic field are in the same plane, but the permanent magnet poles without active control is more influential to thesuspension performance.
     Making full use of the permanent magnet’s magnetic energy, the structure becomes tight. In thispaper, by researching deeply on the permanent magnet biased axial radial magnetic bearings (PARMB)of classic structure, the paper puts out a PARMB with a novel structure. The biased magnetic field isproduced by the two permanent magnet rings located on both sides of rotor, the structure is very tightand the axial stator is out of the radial stator, so the axial control flux and the radial control flux aredecoupling. In the paper, the theoretical model and the parameter design are studied deeply, the3-Dsimulation analysis and experiment are done, the consequence shows that the PARMB makes full useof the permanent magnet’s magnetic energy, the structure is tight, the control is simple, but the designand install are difficult.
     The permanent magnet biased axial magnetic bearings (PAMB) is of simple structure andindependent control method. The paper puts out a novel PAMB and its low power dissipation controlstrategy with asymmetric air gap, detailed theoretical analysis and parameter design process. The3-Dfinite element analysis simulation shows that the novel PAMB is of tight structure and convenientcontrol method, and comparing to the symmetric air gap structure, the suspension power loss deducesacutely. Combining it to the permanent magnet bearings, the system can satisfy the strict requirementsof the green power equipments’ support component like flywheel storage system.
     To better verify the research consequence of PMB in former chapters and due to the speedlocalization of the former two experimental platforms, a5-degrees freedom PMB system with thesame PARMB is put out and manufactured, driven by the Switched Reluctance Motor, the shaft canreach a stable suspension at speed from0to36000r/min. The experimental consequence achieves abetter verification that the structure and the parameter design is reasonable, establishing a greatfoundation for industrial application.
引文
[1] Schweitzer G, Bleuler H, Traxler A. Active magnetic bearings-basics, properties andapplication of active magnetic bearing, Hochschulverlag AG,1994.
    [2] Earnshaw S. On the nature of the molecular forces which regulate the constitution of thelumiferous ether. Transaction of the Cambridge Philosophical Society, vol.7, no.3, pp.97-112,1842.
    [3] Kemper H. Overhead suspension railway with wheelless vehicles employing magneticsuspension from iron rails. Germ. Pat. Nos.6443316(1937) and644302(1937).
    [4] Kemper H. Suspension by electromagnetic forces: a possibility for a radically new method oftransportation, ETZ,1938,59:391-395.
    [5] Beams J W, et al. The production of high Centrifugal fields. J. Appl. Phys.1946:886-990.
    [6]虞烈.可控可控磁悬浮转子系统.北京:科学出版社,2003.
    [7] Younet J P. Passive magnetic bearings with permanent magnets. IEEE Transactions onMagnetics, vol.14, no.5, pp.803-805,1978.
    [8] Delamare J, Younet J P, Rulliere E. A compact magnetic suspension with only one axis control.IEEE Transactions on Magnetics, vol.30, no.6, pp.4746-4748,1994.
    [9] Silva I D, Horikawa O. An1-DOF controlled attraction type magnetic bearing. InternationalConference on Electric Machines and Drives, USA,1999:481-483.
    [10] Silva I D, Horikawa O. An attraction-type magnetic bearing with control in a single direction.IEEE Transactions on Industry Applications, vol.36, no.4, pp.1138-1142,2000.
    [11] Filatov A V, Maslen E H. Passive magnetic bearing for flywheel energy storage systems. IEEETransactions on Magnetics, vol.37, no.6, pp.3913-3924,2001.
    [12] Chen H M, Walter T, Wheeler S, et al. A passive magnet bearing system for energy storageflywheel.9thInternational Symposium on Magnetic Bearings, USA,2004.
    [13]廖启新,李立,邓智泉.无轴承永磁薄片电机磁悬浮机理研究.微特电机,2006(12):1-3.
    [14]陈姝,邓智泉,王晓琳,等.无轴承薄片电机系统被动悬浮特性的研究.电子机械工程,2007,23(5):1-5.
    [15]廖启新,邓智泉,王晓琳.无轴承薄片电机磁体形状优化设计及系统实现.中国电机工程学报,2007,27(12):28-32.
    [16]朱俊,邓智泉,王晓琳,等.单绕组无轴承薄片电机功率系统的设计.电机与控制学报,2008,12(1):5-9.
    [17]廖启新,王晓琳,邓智泉.无轴承薄片电机二维被动悬浮特性.电机与控制学报,2008,12(2):117-121.
    [18]李冰,邓智泉,严仰光.一种新颖的永磁偏置三自由度电磁轴承.南京航空航天大学学报,2003,35(9):81-85.
    [19]曾励,朱熀秋,曾学明,等.永磁偏置的混合磁悬浮轴承的研究.中国机械工程,1999,10(4):387-389.
    [20] Sortore C K, Allaire P E, Maslen E H, et al. Permanent magnet biased magnetic bearings-design,construction and testing.2ndInternational Symposium on Magnetic Bearings, Japan,1990:175-182.
    [21] LEE A C, Hsiao F Z, Dennil K. Analysis and testing of magnetic bearing with permanentmagnets for bias. JSME International Journal,1994,37(4):774-782.
    [22] LEE A C, Hsiao F Z, Dennil K. Performance limits of permanent-magnet-biased magneticbearings. JSME International Journal,1994,37(4):783-794.
    [23] Fukata Satoru, Yutani Kazuyuki. Analysis of magnetic systems of magnetic bearings biased withpermanent magnets. Memories of Fac. Engg, Kyushu University,1997,57(1):17-35.
    [24] Zhilichev Y. Analysis of a magnetic bearing pair with a permanent magnet excitation. IEEETransactions on Magnetics, vol.36, no.5, pp.3690-3692,2000.
    [25] Y Okada, H Koyanayi, K Kakihara. New Concept of Miracle Magnetic Bearings.9thInternational Symposium on Magnetic Bearings. Lexington, Kentucky,2004:89-95.
    [26] Y Okada, K Sagawa, E Suzuki, et al. Development and application of parallel PM type hybridmagnetic bearings.11thInternational Symposium on Magnetic Bearings. Nara, Japan,2008:18-24.
    [27] McMullen P T, Huynh C S. Magnetic bearing providing radial and axial load support for a shaft,USA, Patent, US005514924A, May7,1996.
    [28] Calnetix's Magnetic Power Drive-MPD100, Availabe from: www.calnetix.com.
    [29] Potgieter C, Hope W, Gregory E. Magnetic bearing controls for a high speed, high powerswitched reluctance machine (SRM) starter/generator. Proceedings of the SAE Power SystemsConference, USA,2000.
    [30] Studer P A. A practical magnetic bearing. IEEE Transactions on Magnetics, vol.13, no.5,pp.1155-1157,1977.
    [31] Downer J, Goldie J, Gondhalkar V, et al. Aerospace applications of magnetic bearings.2ndInternational Symposium on Magnetic Suspension Technology, USA,1993:3-26.
    [32] Atsushi Nakajima. Research and development of magnetic bearing flywheel for attitude controlof spacecraft.1stInternational Symposium on Magnetic Bearings, Switzerland,1988:3-12.
    [33] Pichot M A, Kajs J P, Murphy B R, et al. Active magnetic bearings for energy storage systemsfor combat vehicles. IEEE Transactions on Magnetics, vol.37, no.1, pp.318-323,2001.
    [34] Murphy B T, Ouroua H, Caprio M T, et al. Permanent magnet bias, homopolar magneticbearings for a130kW-hr composite flywheel.9thInternational Symposium on MagneticBearings, USA,2004.
    [35]曾励,朱熀秋,曾学明,等.单自由度混合磁悬浮轴承控制系统模型的研究.南京航空航天大学学报,1998,30(6):685-690.
    [36]曾励,汪通悦,徐龙祥等.永磁电磁轴承产生承载力的机理研究.航空学报,2000,21(3):219-221.
    [37]曾励,章婷,赵红兵.永磁电磁轴承的PDF控制系统性能研究.现代制造工程,2003,(4):69-71.
    [38]王冠,徐龙祥.永磁偏置五自由度磁轴承结构及磁路分析.机电产品开发与创新,2003,(6):16-23.
    [39]朱熀秋,邓智泉,袁寿其等.永磁偏置径向-轴向磁悬浮轴承工作原理和参数设计.中国电机工程学报,2002,22(9):54-58.
    [40]李冰,邓智泉,严仰光.一种新颖的永磁偏置三自由度电磁轴承.南京航空航天大学学报,2003,35(1):81-85.
    [41]李冰.电磁轴承系统集成化技术的研究,[博士学位论文].南京:南京航空航天大学,2003.
    [42]赵雪山,李冰,邓智泉等.永磁偏置径向轴向磁轴承的H∞控制研究.机电设备,2003,(5):12-16.
    [43]赵雪山.永磁偏置径向轴向磁轴承H∞控制系统的研究,[硕士学位论文].南京:南京航空航天大学,2003.
    [44]王晓琳,邓智泉,严仰光.一种新型的五自由度磁悬浮电机.南京航空航天大学学报,2004,36(2):210-214.
    [45]赵旭升,梅磊,邓智泉等.新型永磁偏置磁轴承的不平衡补偿研究.微特电机,2005,(11):12-36.
    [46]赵旭升,邓智泉,梅磊等.永磁偏置磁轴承在线监测系统的研制.微特电机,2006,(12):7-9.
    [47]王冠.永磁偏置磁悬浮轴承研究,[硕士学位论文].南京:南京航空航天大学,2005.
    [48]高素美.单自由度和两自由度永磁偏置磁悬浮轴承的研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [49]赵旭升.超高速磁悬浮电机转子非线性控制的研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [50]高素美,徐龙祥.径向两自由度永磁偏置磁轴承的研究.微特电机,2007,(11):11-14.
    [51]梅磊,邓智泉,王晓琳,赵旭升.永磁偏置径向磁轴承.中国,发明专利,200510040267.4.
    [52]梅磊,邓智泉,赵旭升等.新结构混合型径向磁悬浮轴承.电工技术学报,2009,24(5):13-18.
    [53]赵旭升,邓智泉,梅磊等.永磁偏置磁轴承的研究现状及其发展.电工技术学报,2009,24(9):9-20.
    [54]梅磊,邓智泉,赵旭升等.基于磁通量计算的混合型轴向-径向磁悬浮轴承参数设计.中国电机工程学报,2009,29(24):115-120.
    [55]梅磊,邓智泉,赵旭升等.新结构混合型轴向磁悬浮轴承原理分析与参数设计.机械科学与技术,2009,28(10):1370-1378.
    [56] Zhao Xusheng, Deng Zhiquan, Wang Bo and Hua Chun. Structure and Finite Element analysisfor a permanent magnet bias axial magnetic bearing.2ndIEEE Conference on ElectricalEngineering and Automatic Control, Zibo, China, Nov,2010,V6-327.
    [57]赵旭升,邓智泉,王晓琳,梅磊等.永磁偏置轴向径向磁轴承.中国,发明专利,200710135188.0.
    [58]赵旭升,邓智泉,王晓琳,梅磊等.三磁极的永磁偏置径向磁轴承.中国,发明专利,200710135183.8.
    [59]赵旭升,邓智泉,王晓琳,梅磊等.低损耗的永磁偏置径向磁轴承.中国,发明专利,200710135184.2.
    [60]梅磊,邓智泉,王晓琳,赵旭升.一种永磁偏置轴向磁悬浮轴承.中国,发明专利,200710025139.1.
    [61]王晓刚,邓智泉,赵旭升,梅磊.一种实现五自由度磁悬浮系统轴向磁轴承低功耗悬浮的方法.中国,发明专利,200810155228.2.
    [62]梅磊.混合磁悬浮轴承基础研究,[博士学位论文].南京:南京航空航天大学,2009.
    [63]吴刚,张育林,刘昆等.永磁电磁轴承的磁路设计方法.轴承,2003,(3):4-7.
    [64]吴刚,刘昆,张育林.磁悬浮飞轮技术及其应用研究.宇航学报,2005,26(3):313-318.
    [65]吴刚,张育林,刘昆.两轴型混合磁悬浮轴承变结构控制与仿真研究.系统仿真学报,2006,18(1):251-253.
    [66]吴刚.混合磁轴承飞轮设计与控制方法的研究,[博士学位论文].长沙:国防科技大学,2006.
    [67]李云钢,闫宇壮,程虎.混合EMS型磁浮列车的悬浮磁铁设计与分析.国防科技大学学报,2006,28(5):94-98.
    [68]闫宇壮,李云钢,程虎.电动电磁混合磁浮悬浮稳定性及技术特性分析.中国电机工程学报,2007,27(6):53-56.
    [69] Han B C, Fang J C. Design of magnetic bearing reaction wheel for high precision attitude controlof spacecraft,10thInternational Symposium on Magnetic Bearings, Switzerland,2006.
    [70]房建成,孙津济.一种磁悬浮飞轮用新型永磁偏置径向磁轴承.北京航空航天大学学报,2006,32(11):1304-1307.
    [71]孙津济,房建成,马善振.一种永磁偏置外转子径向磁轴承.中国,发明专利,200510011690.1.
    [72]房建成,杨磊,孙津济等.一种磁悬浮飞轮用永磁偏置径向磁轴承.光学精密工程,2008,16(3):444-451.
    [73]刘珠荣,房建成,韩邦成等.MSCMG永磁偏置磁轴承的低功耗控制方法研究.宇航学报,2008,29(3):1036-1041.
    [74]孙津济,房建成.磁悬浮飞轮用新型永磁偏置径向磁轴承的设计.轴承,2008(3):8-13.
    [75]杨磊,房建成,孙津济等.磁悬浮飞轮用永磁偏置磁轴承漏磁分析.轴承,2008(2):24-28.
    [76]徐衍亮,房建成.磁悬浮支承低功耗储能飞轮.电工技术学报,2008,23(12):12-16.
    [77]刘殊荣,房建成,韩邦成.MSCMG永磁偏置磁轴承的低功耗控制方法研究.宇航学报,2008,29(3):1036-1041.
    [78]孙津济,房建成,王曦等.一种新型结构的永磁偏置径向磁轴承.电工技术学报,2009,24(11):53-60.
    [79] Fang jiancheng, Sun jinji, Xu yanliang et al. A New Structure for Permanent Magnet BiasedAxial Hybrid Magnetic Bearings. IEEE Transactions on magnetics, vol45, no.12, pp.5319-5325,2009.
    [80]刘虎,房建成.新型永磁偏置轴向磁轴承的磁力特性.机械工程学报,2010,46(8):167-173.
    [81]韩辅君,房建成.一种永磁偏置磁轴承容错方法的研究.机械工程学报,2010,46(20):34-39.
    [82]王羲,房建成,樊亚洪等.磁悬浮飞轮用轴向力偏转永磁偏置轴向磁轴承磁路耦合特性.航空学报,2011,32(4):649-663.
    [83]顿月芹,徐衍亮.一种新型转子磁体永磁偏置混合磁轴承.山东大学学报,2004,34(5):46-50.
    [84]顿月芹,徐衍亮,孔宇.转子磁体永磁偏置混合磁轴承的三维有限元分析.山东大学学报,2005,35(1):47-63.
    [85] Xu Y L, Dun Y Q, Wang X H, et al. Analysis of hybrid magnetic bearing with a permanentmagnet in the rotor by FEM. IEEE Transactions on Magnetics, vol.42, no.4, pp.1363-1366,2006.
    [86]王莉,张昆仑,连级三.用高温超导线圈和常导线圈构成的混合式电磁悬浮系统.铁道学报,2003,25(2):30-33.
    [87]王莉,熊剑,张昆仑等.永磁和电磁构成的混合式悬浮系统研究.铁道学报,2003,27(3):50-54.
    [88]王莉,张昆仑.基于零功率控制策略的混合磁悬浮系统.西南交通大学学报,2005,40(5):667-672.
    [89] Wang L, Chen G H, Liao C X, et al. A research of suspension system with hybrid electromagnetsmade of HTS coils and normal conductor coils.1stIEEE Conference on Industrial Electronicsand Applications, Singapore,2006.
    [90]刘贤兴,朱熀秋,全力等.三自由度永磁偏置混合磁轴承数控系统研究.中国机械工程,2004,15(24):2225-2228.
    [91] Jia H Y, Zhu H Q. Research of digital control system for single freedom hybrid magnetic bearingin the axial direction.8thInternational Conference on Electrical Machines and Systems, China,2005,3:1816-1820.
    [92] Xie Z Y, Zhu H Q, Sun Y K. Structure and control of AC-DC three DOF hybrid magneticbearing.8thInternational Conference on Electrical Machines and Systems, China,2005,3:1801-1806.
    [93]孙玉坤,朱熀秋,蔡兰.三自由度混合磁悬浮轴承耦合特性.江苏大学学报,2006,27(4):342-346.
    [94]朱熀秋,张仲,诸德宏等.交直流三自由度混合磁轴承结构与有限分析.中国电机工程学报,2007,27(12):77-81.
    [95]黄峰,朱熀秋,谢志意等.径向二自由度混合磁轴承参数设计分析.中国机械工程,2007,18(10):1143-1146.
    [96]朱熀秋,吴熙,陆静等.一种三相交流混合磁轴承数学模型与性能分析.电机与控制学报,2009,13(2):245-249.
    [97]赵筱赫,刘贤兴,薛剑锋.一种新型三自由度交直流混合磁轴承原理与有限元分析.微电机,2009,42(10):29-32.
    [98]邬清海,朱熀秋.三自由度双磁极面混合磁轴承参数设计与性能分析.中国机械工程,2009,20(12):1477-1483.
    [99]朱熀秋,沈玉祥,邬清海等.交流混合磁轴承建模与控制系统.中国电机工程学报,2009,29(18):100-105.
    [100]朱熀秋,张仲,邬清海.一种锥形定转子交直流磁轴承建模与耦合特性分析.机械科学与技术,2008,27(12):1609-1614.
    [101]徐正国,徐绍辉,史黎明等.电磁型混合磁极直接自适应模糊悬浮控制方案的研究.中国电机工程学报,2005,25(18):157-161.
    [102]徐正国.电磁永磁混合悬浮磁悬浮模型车控制方案的研究,[博士学位论文].北京:中国科学院,2005.
    [103]徐正国,刘育红,王娟.基于模糊逻辑的磁悬浮混合悬浮磁极控制方案(英文).电工技术学报,2006,21(10):76-80.
    [104]徐绍辉,徐正国,金能强.混合悬浮系统的无加速度传感器控制.哈尔滨工业大学学报,2008,40(5):823-826.
    [105]杨静,虞烈,谢敬.永磁偏置磁轴承动特性研究.中国电机工程学报,2005,25(5):122-125.
    [106]高景毅.混合式磁悬浮轴承及其控制系统的研究,[硕士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [107] C Ehmann, Tilo Sielaff, Rainer Nordman. Comparison of Active Magnetic Bearings With andWithout Permanent Magnet Bias.9thInternational Symposium on Magnetic Bearings,Lexington, Kentucky,2004:105-110.
    [108] Yi-HUA FAN, AN-CHEN LEE. Design of Permanent/Electromagnetic Magnetic BearingControlled Rotor System. J. Franklin Inst,1997,334B(3):337-356.
    [109] S Fukata, K Yutani. Characteristics of Electromagnetic Systems of Magnetic Bearings Biasedwith Permanent Magnets.6thInternational Symposium on Magnetic Bearings, MIT: TechnomicPublishing Co.Inc.,1998:234-243.
    [110]王怀颖.永磁偏置的磁力轴承的研究.南京师范大学学报(工程技术版),2003,3(1):38-41.
    [111] L A. Hawkins, Brian T. Murphy, John Kajs. Application of Permanent Magnet Bias MagneticBearings to an Energy Storage Flywheel.5thSymposium on Magnetic Suspension Technology1999:1-15.
    [112] Uhn Joo Na. Fault Tolerance of Homopolar Magnetic Bearings. Journal of Sound andVibration,2004,(272):495-511.
    [113] Boris Grbesa. Low loss and Low cost Active Radial Homopolar Magnetic Bearing.6hInternational Symposium on Magnetic Bearings, MIT: Technomic Publishing Co.Inc,1998:286-295.
    [114] Satoru Fukata, Kazuyuki Yutani. Characteristics of the Magnetic System of Magnetic BearingBiased with Permanent Magnets Attached to a Rotor.5thInternational Symposium on MagneticBearings. Kanazawa: Kanazawa University,1996:395-400.
    [115] M Reisinger, Wolfgang Amrhein, Siegfried Silber, et.al. Development of a Low CostPermanent Magnet Biased Bearing.9thInternational Symposium on Magnetic Bearings,Lexington, Kentucky,2004:113-118.
    [116] K Blumenstock, C L.Brown. Novel Integrated Radial and Axial Magnetic Bearing.7thInternational Symposium on Magnetic Bearings. ETH Zu rich,2000:467-471.
    [117] C Oberbeck, H Ulbrich. Active Compensation of the Elgen-Dynamics of ElectromagneticActuators by Ecu-Based Non-linear Feedback Control.7thInternational Symposium onMagnetic Bearings, ETH Zu rich,2000:425-430.
    [118]贾红云,朱熀秋.轴向混合磁轴承工作原理和参数设计.应用科学学报,2006(1):94-98.
    [119]陈小元,邓智泉,彭晶晶等.永磁偏置轴向磁悬浮轴承.中国,发明专利,101581336B
    [120] H F.Steffani, W. Hofmann. Design and Comparison of Different Kinds of Radial MagneticBearings.7thInternational Symposium on Magnetic Bearings. ETH Zu rich,2000:461-466.
    [121] N Kurita, Y Okada, K Matsuda. Development of lossless magnetic bearing.8thInternationalSymposium on Magnetic Bearings. Mito, Japan,2002:91-96.
    [122] Ha-Yong Kim, Chong-Won Lee. Design and control of active magnetic bearing system withLorentz force-type axial actuator. IEEE Transactions on Mechatronics,2006(16):13-20.
    [123] Nobuyuki Kurita, Ryou Kondo and Yohji Okada. Low loss Homoploar Induction Bearing.9thInternational Symposium on Magnetic Bearings. Lexington, Kentucky,2004:63-69.
    [124] M Ahsan Hossain, High Temperature, Permanent Magnet Biased, Homoploar MagneticBearing Actuator. Doctor of philosophy, US: Texas A&M University,2006.
    [125] Michael Scharfe, Thomas Roschke, Eurico Bindl,et al. Design and Development of A CompactMagnetic Bearing Momentum Wheel for Micro and Small Satellites.15thAnnual/USUconference on small satellites,2001:1-9.
    [126] Eric Maslen.Magnetic Bearings. USA: University of Virginia,2000.
    [127]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [128]林其壬,赵佑民.磁路设计原理.北京:机械工业出版社,1987.
    [129] Andrew Kenny, Nonlinear electromagnetic effects on magnetic bearing performance andpowerless, Doctor of philosophy. US: Texas A&M University,2001.
    [130] Uhn Joo Na, Hyun ok Kang, Dong Dae lee, etc. Design and Analysis of new permanent magnetbiased hetropolar magnetic bearings.11thInternational Symposium on Magnetic Bearings. Nara,Japan,2008:594-597.
    [131] Sang Hyan Park, Chong-Won Lee. Decoupled control using redundant coordinates for threepole hybrid active magnetic bearings system.11thInternational Symposium on MagneticBearings. Nara, Japan,2008:287-294.
    [132] Patrick T.McMullen, Huynh Co S, et al. Combination Radial-Axial Magnetic Bearing.7thInternational Symposium on Magnetic Bearings. ETH, Zu rich,2000:473-478.
    [133] Kenneth.Blumenstock. Combination Axial and Trust Magnetic Bearing. US,6359357,2002.
    [134]戴兴建,唐长亮,张剀.先进飞轮储能电源工程应用研究进展.电源技术,2009(11):1026-1028.
    [135]刘迪吉,张焕春,傅丰礼等.开关磁阻调速电动机.北京:机械工业出版社,1994.
    [136]王宏华.开关磁阻电动机调速控制技术.北京:机械工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700