高温磁悬浮轴承若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为21世纪先进航空发动机关键新技术之一的多电发动机具有普通发动机无法比拟的优点,而它的一个核心关键技术就是高温磁悬浮轴承技术。文中主要对高温磁悬浮轴承中的高温位移传感器和数字化电控系统这两项关键技术进行了研究。
     文中成功地研制了能工作在550℃环境下的差动变压器式位移传感器,对工作温度升高影响差动变压器式位移传感器性能的机理和特征以及所采用的温度补偿技术进行了研究,解决了由于温度升高带来的位移传感器灵敏度升高、温漂和时漂的技术难题,通过在高温下对差动变压器式位移传感器进行标定得到高温下位移传感器的各项性能,研究结果表明:环境温度从常温22℃升高到550℃时,降低初级线圈激励频率可使位移传感器灵敏度随温度的增幅降低,激励频率在10kHz时,位移传感器灵敏度的增幅为4.2%;当位移传感器灵敏度为20mV/μm时,不采用温度补偿技术时,位移传感器的最大温漂和时漂分别为344mV,17mV,采用温度补偿技术后,位移传感器的最大温漂和时漂分别为150mV,10mV,相当于被测物体只有7.5μm和0.5μm的位移;在550℃时,测量范围在-0.35mm~+0.35mm时,位移传感器的灵敏度为19.62mV/μm,线性度为0.74%,重复性为±0.97%,迟滞性±0.40%,截止频率为800Hz;将研制的高温位移传感器应用到单自由度高温磁悬浮轴承试验台上实现了被悬浮物体的稳定悬浮。
     针对高温磁悬浮轴承中被测物体被一层金属隔层完全封闭的应用场合,文中建立了带有金属隔层的差动变压器式位移传感器的数学模型,推导了金属隔层材料的磁性能与电性能对传感器性能影响的理论计算公式,采用MATLAB和ANSOFT分别对无和有金属隔层这两种情况下传感器的性能进行了仿真研究,并将有金属隔层的差动变压器式位移传感器应用到一个五自由度磁悬浮轴承试验台上进行了试验研究,研究结果表明:当传感器初级线圈激励频率为10kHz,在离差动变压器式位移传感器铁芯0.15mm处加入0.15mm厚的黄铜,位移传感器灵敏度下降了8.18%,但线性度提高了38.7%,同时位移传感器的截止频率降低了5%;在差动变压器式位移传感器与转子之间加入0.15mm厚的黄铜,五自由度磁悬浮轴承试验台仍然能实现磁悬浮转子的稳定悬浮和高速旋转,转速为30 000r/min。
     文中分析了用于磁悬浮轴承的位移传感器所产生的测量误差对磁悬浮轴承工作性能的影响机理及特征,推导了差动变压器式位移传感器和电涡流传感器的测量误差与传感器的结构参数,安装方式和安装位置之间的理论关系,该研究为高温磁悬浮轴承用位移传感器的设计和安装奠定了一定理论基础。
     针对磁悬浮轴承电控系统中的位移传感器处理电路,提出了用数字同步解调、Costas环和FFT变换法的思想,采用FPGA芯片以软件的形式实现了处理电路的硬件功能,运用MATLAB对三种信号处理方法进行了仿真研究并在位移传感器静态标定专用装置上进行了试验研究,得到三种处理方法下的差动变压器式位移传感器的各项性能,研究结果表明:在位移传感器性能、所占硬件资源和延时时间上,三种处理方法各有优缺点,可根据不同情况选择合适的处理方法。
     文中针对磁悬浮轴承电控系统中的控制器和功率放大器,研究了基于FPGA的数字控制器和功率放大器,采用MATLAB对控制器的PID算法和三电平开关功率放大器驱动信号产生部分进行了仿真研究,并对基于FPGA的功率放大器的各项性能进行了试验研究,最后将基于FPGA的控制器和三电平开关功率放大器应用到磁悬浮球系统中,实现了磁悬浮球的稳定悬浮。
As one of the new critical technology of aero engine in the21stcentury, more-electric enginewith high temperature active magnetic bearings (HTAMB) as the key technology has incomparableadvantages over traditional engine. The high temperature displacement sensor and digital electroniccontrol system of HTAMB are mainly studied in this paper.
     A differential transformer displacement sensor (DTDS) which can works under550oC ismanufactured, and the influence of high operating temperature on the DTDS mechanism andcharacteristics and the following temperature compensation technology are mainly analyzed. Thetechnical problems of sensor sensitivity increase, temperature and time drift caused by thetemperature rise are solved, and the various performances of DTDS under high temperature can beobtained through detailed calibration. The results show that reducing incentive frequency helps todecrease the sensitivity growth of DTDS when the work temperature rise from environmentaltemperature to550oC, and the sensitivity growth is about4.2%when the excitation frequency is10kHz. With the sensor sensitivity20mV/μm, the sensor maximum temperature drift is344mV andtime drift is17mV without temperature compensation, while the temperature drift becomes150mVand time drift becomes10mV after adopting temperature compensation technology. When themeasurement range is-0.35~+0.35mm with the work temperature550oC, the DTDS has the followingcharacteristics: sensitivity19.62mV/μm, linearity0.74%, repeatability±0.40%, hysteresis±0.40%andcutoff frequency800Hz. Finally, this DTDS is successfully used in a single degree-of-freedom (DOF)HTAMB test bed.
     For some special HTAMB application occasions that demand the rotor isolated from externalenvironment, the mathematical model of DTDS with metal layers are established. And the theoreticalcalculation formulas concerning the impacts of metal layer magnetic and electric characteristics on theDTDS performances are deduced. The DTDS performance with and without metal layers areseparately simulated on the platform of MATLAB and ANSOFT. And then the DTDS with metallayers are applied to a five-DOF AMB test bed. The research results show that the sensor sensitivityhas decreased8.18%and cutoff frequency decreased5%, while the linearity increased38.7%. Despiteof those changes, the rotor can also be stably suspended and rotated at30000r/min in the five-DOFAMB system.
     The impacts of displacement sensor measurement errors on the AMB work performance arestudied in detail. The measurement errors for different sensor types, installation methods andassembly locations are theoretically deducted. This research provides a certain theoretical basis for theHTAMB displacement sensor design and installation.
     Aimed at the displacement sensor processing circuits in AMB electronic-controlled system, theDTDS processing circuits based on FPGA are studied. The digital synchronous demodulation, Costasring and FFT transform algorithm are separately applied to the processing circuits. Then the followingsimulations and experiments are carried out in MATLAB and special static calibration devicerespectively to obtain the various performance of DTDS adopting the above three processing methods.The results show that the different processing method has its own advantages and disadvantages onthe displacement sensor performance, occupied hardware resources and delay time. So it is advisableto choose appropriate treatment methods according to different situations.
     The controller and power amplifier based on FPGA in AMB system are also studied. Both thePID algorithm and drive signal of tri-level switch power amplifier are simulated using MATLAB.Then the relevant experiments are carried out to study the various performance of power amplifierbased on FPGA. Finally, they are applied to a magnetic levitation ball system. The experiment resultsshow that the new type controller and power amplifier can achieve ball stable levitation.
引文
[1]林国斌,连级三.德国磁浮铁路技术.国外铁道车辆,1998,(2):1-4.
    [2]李黎川,丁玉成,卢秉恒.超精密磁悬浮平台的一种低功耗磁悬浮设计.微细加工技术,2003,(4):45~50.
    [3]李云钢.EMS型磁浮列车悬浮控制技术研究,[博士学位论文].长沙:国防科技大学,1997.
    [4] Shen J Y,Fabien B C.Optimal Control of A Flywheel Energy Storage System with A Radial FluxHybrid Magnetic Bearing.Journal of the Franklin Institute,2002,339(2):189-210.
    [5] Noh M D,Cho Seong-Rak,Kyung Jin-Ho,et al.Design and Implementation of A Fault-tolerantMagnetic Bearing System for Turbo-molecular Vacuum Pump.IEEE/ASME Transactions onMechatronics,2005,10(6):626-631.
    [6] Schmied J L,Pradetto J C.Rotor Dynamic Behaviour of A High-speed Oil-free Motor Compressorwith A Rigid Coupling Supported on Four Radial Magnetic Bearings.Proceeding of The FourthInternational Symposium on Magnetic Bearings,Zürich:Vdf Hochschulverlag AG an der ETH,1994:441-447.
    [7] Pang Y, Zhu Z Q, Howe D. Optimal Split Ratio for Permanent Magnet BrushlessMachines.ICEMS,Beijing,China,2003:128-131.
    [8] Wang F X,Zong M,Zheng W P,et al.Design Features of High Speed PM Machine.ICEMS,Beijing,China,2003:66-70.
    [9]王继强,王风翔,孔晓光.高速永磁发电机的设计与电磁性能分析.中国电机工程学报,2008,28(20):105-110.
    [10]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报,2003,23(3):108-111.
    [11]王晓琳,邓智泉,严仰光.一种新型的五自由度磁悬浮电机.南京航空航天大学学报,2004,36(2):210-214.
    [12]刘贤兴,孙宇新,朱熀秋,等.无轴承永磁同步电机的发展、应用和前景.中国机械工程,2004,17(15):1594-1597.
    [13]刘晓军,刘小英,胡业发,等.人工心脏泵磁悬浮转子非线性特性及控制方法研究.中国机械工程,2006,20(17):2091-2094.
    [14]梁春华.欧美积极开展多电发动机研究.国际航空,2009,(5).
    [15]徐龙祥,周波.磁浮多电航空发动机的研究现状及关键技术.航空动力学报,2002,18(1):51-59.
    [16] Clark D J, Jansen M J, Montague G T.An Overview of Magnetic Bearing Technology for GasTurbine Engines.NASA/TM-2004-213177.
    [17]王继强,王风翔,宗鸣.高速电机磁力轴承–转子系统临界转速的计算.中国电机工程学报,2007,27(27):94-98.
    [18]王凤翔.微型燃机驱动高速发动技术.北京:电子工业出版社,2010.
    [19]陈宇.微型燃气轮机—高速发电机转子动态特性分析,[硕士学位论文].沈阳:沈阳工业大学,2007.
    [20] Meeks C,McMullen P,Hibner D,et al.Lightweight Magnetic Bearing System for Aircraft GasTurbine Engines.Proceeding of The Fourth International Symposium on Magnetic Bearings,Zürich:Vdf Hochschulverlag AG an der ETH,1994:429-434.
    [21] Iannello V.Magnetic Bearing Systems for Gas Turbine Engines,Proceedings of MAG’95,Washington,1995:77-86.
    [22] Kelleher W P,Kondoleon A S.A Magnetic Bearing Suspension System for High TemperatureGas Turbine Application.Part3-Magnetic Actuator Development.Orlando,Florida:Presentedat the International Gas Turbine&Aeroengine Congress&Exhibition,June2-5,1997:78-83.
    [23] Scholten J R.A Magnetic Bearing suspension System for High Temperature Gas TurbineApplication-Control System Design,ASME Turbo Expo’97Orlando,Florida:USA,1997.
    [24] Ohsawa M,Yoshida K,Ninomiya H,et al.High-Temperature Blower for Molten Carbonate FuelCell Supported by Magnetic Bearings.Proceeding of The Sixth International Symposium onMagnetic Bearings, USA: The University of Virginia, The Massachusetts Institute ofTechnology,1998:32-41.
    [25] Field R. J,lannello V.A Reliable Magnetic Bearing System for Turbomachinery.Proceeding ofThe Sixth International Symposium on Magnetic Bearings,USA:The University of Virginia,The Massachusetts Institute of Technology,1998:42-51.
    [26] Kondoleon A S,Kelleher W P.Soft Magnetic Alloys for High Temperature Radial MagneticBearings.Proceeding of The Seventh International Symposium on Magnetic Bearings,Zürich:International Center of Magnetic Bearings,2000:111-116.
    [27] Mekhiche M,Nichols S,Oleksy J,et al.50krpm,1100℉Magnetic Bearings for Jet TurbineEngines.Proceeding of The Seventh International Symposium on Magnetic Bearings,Zürich:International Center of Magnetic Bearings,2000:123-128.
    [28] Montague G T,Jansen M J,Ebihara B,et al.Design and Fabrication of High-Temperature RadialMagnetic Bearing for Turbomachinery.NASA/TM-2003-212300.
    [29] Montague G T,Jansen M J,Jansen R,et al.Experimental High Temperature Characterizationof a Magnetic Bearing for Turbmachinery.The American Helicopter Society59thAnnual Forum,Phoenix,Arizona,May6-8,2003.
    [30] Provenza A J,Montague G T,Jansen M J,et al.High Temperature Characterization of a RadialMagnetic Bearing for Turbomachinery.Journal of Engineering for Gas Turbines and Power,2005,127(2):437-444.
    [31] Jansen,M J,Montague,G T,Proventa A J,et al.High Speed,High Temperature,Fault TolerantOperation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System forTurbomachinery.Proc.ASME Turbo Expo,Vienna,Austria,June14-17,2004.
    [32] Burdet L,Aeschlimann B,Siegwart R.Thermal Model for a High Temperature Active MagneticBearing.Proceeding of The Ninth International Symposium on Magnetic Bearings,Kentucky,USA:University of Kentucky Bearing and Seals Laboratory,2004:6-11.
    [33] Burdet L,Maeder T,Siegwart R,et al.Thick-Film Radial Position Sensor for High TemperatureActive Magnetic Bearings.Proceeding of the Tenth International Symposium on MagneticBearings,Martigny,Switzerland:EPFL Lausanne and Politecnico diTorino,2006:36-41.
    [34] Xu L X,Wang L T,Schweitzer G.Development of Magnetic Bearings for High TemperatureSuspension.Proceeding of The Seventh International Symposium on Magnetic Bearings,Zürich:International Center of Magnetic Bearings,2000:117-122.
    [35] Xu L X,Zhang J Y,Schweitzer G.High Temperature Displacement Sensor.Chinese Journal ofMechanical Engineering,2005,3(18):449-452.
    [36]明平美.UV-LIGA—微细电火花加工组合制造技术基础研究,[博士学位论文].南京:南京航空航天大学,2006.
    [37]王戈一.磁悬浮多电发动机的研究.燃气涡轮试验与研究,2007,20(4):15-18.
    [38]王继强,王凤翔.高速电机磁力轴承-转子系统临界转速计算.中国电机工程学报,2007,27(27):94-98.
    [39]王继强,王凤翔.高速电机电磁轴承的支承刚度研究.长春工业大学学报(自然科学版),2008,29(2):208-211.
    [40] Williams R D,Wayner P M,Ebert J A.Reliable,High-speed Digital Control For MagneticBearing.Proceeding of The Fourth International Symposium on Magnetic Bearings,Zürich:Vdf Hochschulverlag AG an der ETH,1994:1-6.
    [41]余宇翔,胡业发.磁悬浮主轴数字功率放大器的设计研究.武汉理工大学学报(信息与管理工程版),2005,27(5):230-233.
    [42]徐龙祥,朱熀秋,曾学明,等.基于DSP的混合磁悬浮轴承数字控制器的设计与实现.数据采集与处理,2000,15(2):213-216.
    [43] Gu H D,Zhao L,Zhao H B.A LQG Controller Design for An AMB-flexible Rotorsystem.Proceeding of The Ninth International Symposium on Magnetic Bearings,Kentucky,USA:University of Kentucky Bearing and Seals Laboratory,2004:31-34.
    [44]尹国华.基于VC33DSP的磁悬浮轴承系统数字控制器的研究,[硕士学位论文].南京:南京航空航天大学,2007.
    [45]常肖,徐龙祥,董继勇.磁悬浮轴承数字功率放大器.机械工程学报,2010,46(20):9-14.
    [46]吴国庆,张钢,张建生,等.基于DSP的主动磁轴承电主轴控制系统研究.电机与控制学报,2006,10(2):118-120.
    [47]臧晓敏.磁悬浮轴承数字功率放大器的研究.[硕士学位论文].南京:南京航空航天大学,2004.
    [48]余宇翔.磁悬浮主轴全数字功率放大器的研究,[硕士学位论文].武汉:武汉理工大学,2006.
    [49]王涛.磁悬浮轴承数字功率放大器的研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [50] Bi C, Wu D Z, Jiang Q.Automatic Learning Control for Unbalance Compensation in ActiveMagnetic Bearings.IEEE Transactions on Magnetics,2005,41(7):2270-2280.
    [51] Crescini D,Flammini A,Marioli D,et al.Application of an FFT-Based Algorithm to SignalProcessing of LVDT Position Sensors.IEEE Transactions on Instrumentation and Measurement,1998,47(5):1119-1123.
    [52] Ford R M,Weissbach R S,Loker D R.A novel DSP-Based LVDT Signal Conditioner.IEEETransactions on Instrumentation and Measurement,2001,50(3):768-773.
    [53] Flammini A,Marioli D,Sisinni E,et al.Least Mean Square Method for LVDT SignalProcessing. Instrumentation and Measurement Technology Conference,2004,18(20):1015-1020.
    [54] Mishra S K,Panda G,Das D P.A Novel Method of Designing LVDT using Artificial NeuralNetwork.Proceedings of ICISIP,2005:223-227.
    [55]王选择,赵新泽,谢铁邦.电感式测微仪的直接数字化处理研究.仪器仪表学报,2005,26(12):1248-1252.
    [56]田兆垒,孙玉坤.磁悬浮开关磁阻电机控制系统的FPGA实现.电测与仪表,2008,12:51-55.
    [57] Krach F,Frackelton B,Carletta J,et al.FPGA-based Implementation of Digital Control forMagnetic Bearings. IEEE Proc. of the American Control Conference,Denver,Colorado,June4-6,2003:1080-1085.
    [58] Jastrzebski R,P ll nen R,Pyrh nen O.Analysis of System Architecture of FPGA-basedEmbedded Controller for Magnetically Suspended Rotor.IEEE Proceedings of the InternationalSymposium on System-on-chip,Tampere,Finland,Nov15-17,2005:128-132.
    [59] Fang Z W, Carletta J E, Veillette R J. A Methodology for FPGA-based ControlImplementation.IEEE Transactions on Control Systems Technology,2005,13(6):977-987.
    [60]王君.磁悬浮轴承开关功率放大器的研究,[硕士学位论文].济南:山东大学,2008.
    [61] Zhang L,Liu K,Chen X F.FPGA-Based Implementation for Unbalance Compensation in ActiveMagnetic Bearings.The Twelfth International Symposium on Magnetic Bearing,Wuhan,China,Wuhan University of Technology Press,2010:447-452.
    [62]单成祥.传感器的理论与设计基础及其应用.北京:国防工业出版社,1999.
    [63] Moriyama S,Watanabe K,Haga T.Inductive Sensing System for Active Magnetic SuspensionControl.Proceeding of The Sixth International Symposium on Magnetic Bearings,USA:Theuniversity of Virginia,the Massachusetts institute of technology.1998:529-537.
    [64]金超武,徐龙祥.差动变压器式位移传感器及其在磁悬浮轴承中的应用.机械工程学报,2009,145(11):78-84.
    [65] Li L C.New Displacement-Sensing Techniques for Magnetic Bearings.Proceeding of TheTwelfth International Symposium on Magnetic Bearings, China, Wuhan University ofTechnology Press,2010:ⅹⅲ-ⅹⅸ.
    [66]谭祖根,汪乐宇.电涡流检测技术.北京:原子能出版社,1986.
    [67]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005.
    [68] Schramm M,Hofmann W,Werner R.Low-Cost Magnetic Displacement Sensor for ActiveMagnetic Bearings.Proceeding of the Tenth International Symposium on Magnetic Bearings,Martigny,Switzerland:EPFL Lausanne and Politecnico diTorino,2006:1-5.
    [69] Larsonneur R,Bühler P.New Radial Sensor for Active Magnetic Bearing.Proceeding of TheNinth International Symposium on Magnetic Bearings,Kentucky,USA:University of KentuckyBearing and Seals Laboratory,2004:86-90.
    [70]张冈,周祖德,陈幼平.有源磁悬浮中的位移传感器研究.机械与电子,2003,(2):6-8.
    [71]曹洁.电磁轴承系统位移传感器的分析与研究.仪表技术与传感器,2001,(12):9-11.
    [72]王春麟,陈维,胡业发.磁悬浮转子位移测量传感器的研究.武汉理工大学学报(信息与管理工程版),2007,29(7):63-66.
    [73]蒋启龙,姚卫丰,连级三.差动变压器式电磁轴承位置检测传感器研究.传感器技术,2005,24(5):8-12.
    [74]曹阳,丁俊军,宗鸣.轴向磁悬浮轴承位置检测方法的研究.沈阳航空工业学院学报,2001,18(1):62-65.
    [75]边忠国,刘淑琴.位移传感器在磁悬浮电主轴中安装结构的改进.数控机床功能部件,2007,(6):29-31.
    [76]胡业发,周祖德,江征风.磁力轴承的基础理论与应用.北京:机械工业出版社,2006.
    [77] Gahler C.Rotor Dynamic Testing and Control with Active Magnetic Bearing.Swiss FederalInstitute of Technology,ETH,Zurich,1998:29-34.
    [78]刘刚,潘明健.基于FPGA的磁悬浮飞轮用自修复磁轴承控制器的设计.光学精密工程,2009,17(11):2762-2770.
    [79]邵东向,郭华.电感式位移传感器线性补偿技术.传感器技术,1999,18(2):38-40.
    [80]李玉长.集成运放相敏整流电路.电子技术,1992,(1):37-38.
    [81]强锡富.传感器.北京:机械工业出版社,2001.
    [82] Hwang J K,Chu C H.FPGA Implementation of an All-Digital T/2-Spaced QPSK Receiver withFarrow Interpolation Timing Synchronizer and Recursive Costas Loop.IEEE Asia-PacificConference on Advanced System Integrated Circuits,Fukuoka,Japan:Fukuoka ConventionCenter,2004:248-251.
    [83] Shoari A,Kamarei M,Radmand A.Implementation of Costas Loop using CORDIC Algorithmfor Software Radio Applications.IEE Proc.-Commun.,2005,152(1):113-118.
    [84]林海都,高强.基于FPGA的全数字Costas环的设计与实现.电子技术应用,2007,(10):34-36.
    [85]刘志,吴利民,邹晓清,等.一种用于实现载波同步的改进Costas环研究.空军雷达学院学报,2007,21(2):132-134.
    [86]张安安,杜勇,韩方景.全数字Costas环在FPGA上的设计与实现.电子工程师,2006,32(1):18-20.
    [87] Couch L.Digital and Analog Communication Systems.5thed. Englewood Cliffs.NJ:Prentice-Hall,1997.
    [88]胡广书.数据信号处理—理论、算法与实现.北京:清华大学出版社,1997.
    [89]吕辉榜,刘小静,卢长明.基于MATLAB的磁悬浮球实时控制设计及实验研究.仪表技术与传感器,2009,(5):50-52.
    [90]朱熀秋.数控磁轴承的研究与实现,[博士学位论文].南京:南京航空航天大学,2000.
    [91]刘淑琴,虞烈,谢友柏.电磁轴承驱动级电压与电流对转速和控制精度影响的研究.机械工程学报,1999,35(3):101-104.
    [92]张德魁,赵雷,赵鸿宾.电流响应速度及力响应速度对磁轴承系统性能的影响.清华大学学报(自然科学版),2001,41(6):23-26.
    [93]苏义鑫,周祖德,胡业发.磁悬浮轴承功率放大器的研究.武汉理工大学学报(信息与管理工程版),2003,25(6):43-45.
    [94]王军.磁悬浮轴承功率放大器建模及其软开关技术研究,[博士学位论文].南京:南京航空航天大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700