压力振荡管流动及引射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气波引射器是一种利用压力振荡管内运动的压力波实现高低压气体间压力能交换的直接接触式能量交换装置。气波引射器与涡轮机械相比,结构简单、转速低、可带液操作;与静态引射器相比,等熵效率高。压力振荡管是气波引射器的核心部件,振荡管内气体流动及引射性能的研究,对丰富气波机械理论和实现工业中气体压力能的高效回收利用具有理论意义和实用价值。
     目前,对气波压力能交换技术的研究具有非常强的针对性,主要集中在用于提高内燃机综合性能的四端口气波增压器上。国外仅有少数机构对气波引射器进行研究,尤其在高压缩比下的性能研究报道更少,而国内在该领域的学术研究和技术开发尚未见报道。鉴于此,本文采用了理论分析、数值计算和实验研究相结合的技术路线,从探讨能量传递机理的理论分析入手,建立数值模型和实验平台,研究了压力振荡管内非稳态流动和气波引射器性能的变化规律,并在此基础上探索了气波引射器的设计方法及高压缩比和大膨胀比下的改进策略。本论文的研究工作及所形成的主要结果和结论如下:
     (1)构建了在压力振荡管内引射的波过程,进行了波过程中参数状态的计算,确定了气波引射器性能范围的边界条件,得到了端口尺寸的估算值,为气波引射器的研究奠定了理论基础。
     (2)建立了压力振荡管数值模型及气波引射器实验平台,基于数值分析和实验研究,掌握了压力振荡管内激波、膨胀波以及接触面的产生及运行规律,确定了气波引射器的最优工作波图,据此研制出了三端口气波引射器。该气波引射器在膨胀比为1.5时,最高等熵效率为57.5%,膨胀比为2.0时,最高等熵效率为45.6%。与等熵效率不足20%的静态引射器相比,气波引射器性能优势明显。
     (3)通过端口尺寸的优化分析和性能影响研究,得到了端口尺寸的匹配关系,获得了膨胀比为1.5和2.0时,不同压缩比下各端口尺寸的最优数值,据此给出了端口尺寸的设计方法。利用该方法可获得任意振荡管长度、转鼓直径或转速下的最优端口尺寸,对气波引射器的设计具有指导意义。
     (4)振荡管与中压端口接通时产生的额外压缩波,是高压缩比下性能恶化的原因。提出的预压缩方法及结构可有效消除该压缩波,使高压缩比下等熵效率提高了9.1%,引射率增加了约21.3%,此时回流气量为6.5%。回流气量由预压口的宽度控制;最优预压口位置是振荡管将要与中压端口接通时,预压口开启时产生的预压缩波在振荡管左端的固壁反射波恰好到达振荡管右端。
     (5)对振荡管与端口逐渐接通过程的研究结果表明,渐开过程中压力波在振荡管上下壁面间的多次反射以及由此引起的管内速度紊乱、接触面扭曲和接触面两侧气流掺混是产生包括漩涡损失、掺混损失和激波强度损失在内的渐开损失的根本原因,随着相对开启时间τt值的减小,渐开损失逐渐减小,但减小的趋势越来越平缓,τt<0.4时渐开损失可得到有效控制,τt=0.6时渐开损失和流动损失的总和最小,据此可确定最优振荡管宽度。
     (6)中压端口排气速度达到超音速是大膨胀比下应用受限的原因。反馈式多级串联方案可保证各级膨胀比均较小,且系统仅有一股高压入流气体和一股低压入流气体,是实现大膨胀比下应用的有效途径。基于建立的热力学模型,给出了级间分配方案。
Energy transfer between fluids could be accomplished in pressure oscillating tube by imposing periodic boundary conditions. Gas wave ejector consisting of many pressure oscillating tubes is a direct fluid-fluid contact energy transfer device. Comparing with the traditional turbo machinery, it has many advantages, such as simple structure, low rotation speed, good performance with liquid entrainment, while comparing with the steady flow ejector, it has the advantage of high isentropic efficiency. The research on gas wave ejector is valuable for wave machine development and pressure energy recovery in practice.
     However, the research of pressure exchange technology has mainly been focused on four-port wave rotor which can enhance the performance of internal combustion engines. The studies on gas wave ejector are far from enough to be dealt with especially at high compression ratio condition, and the research on gas wave ejector has not yet been reported in our country. The aim of this research is to investigate the mechanism of energy transfer, study the unsteady flow behavior inside the pressure oscillating tube, develop the optimal method for structure design and explore the strategies for application of this device in high compression ratio and big expansion ratio conditions. This dissertation presents a detailed account of the theoretical analysis, the numerical simulation and experiments conducted to validate the results, including:
     (1) The optimal principle wave process to achieve suction was proposed. The theory calculation of the whole energy transfer process was conducted. The theory analysis was used for fast predicting the port size and seeking the limiting conditions for operation.
     (2) A numerical model was established to investigate the complex flow in pressure oscillating tube and a test rig was set up. The running rules of shock wave, expansion wave and contact surface were obtained and the optimal wave diagram was determined. A three-port gas wave ejector was manufactured. The maximum efficiency of this ejector was about57.5%when the expansion ratio was1.5, while for expansion ratio of2.0, the maximum efficiency was45.6%, which was also much higher than that of the steady flow ejector. Therefore, the performance of gas wave ejector is excellent.
     (3) The matching relations for optimal port width and position determination were obtained by numerical simulation and experiment. The optimal width and position of each port under different operating conditions were acquired and a design method was proposed. With this method, the optimal port size at any channel length L, drum diameter D and rotation speed n could be gotten. The design method is valuable for gas wave ejector design.
     (4) The reason for performance deterioration at high compression ratio was revealed after founding the characteristic that the average pressure and temperature of the channel at the pressure equalization region reduced as pm0rising. The improvement strategy, using part of the middle pressure outflow as recirculation flow to pre-compress the low pressure gas inside the channel, was implemented. The isentropic efficiency raised by9.1%and the enthalpy ratio increased by about21.3%.The optimal pre-compression port width and position were obtained.
     (5) The sliding-mesh method was adopted to describe the gradual open process of the channel to the port. The results indicated that the gradual open loss included vortex loss, mixing loss and shock loss. The gradual open loss reduced as the opening time decreasing and when r,<0.4the gradual open loss could be neglected. The sum of gradual open loss and flow loss was minimal when τt=0.6, thus the optimal width of the channel could be obtained.
     (6) Supersonic velocity of the outflow was the reason for poor performance at big expansion ratio. Feedback multi-stage series which is simple for engineering and has a small expansion ratio in each stage could solve this problem. The series stage and inter-stage matching scheme was determined according to the thermodynamic model.
引文
[1]胡大鹏.天然气地层压力能综合利用新技术[J].中国科技成果,2010, (10): 23-25.
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [3]陈会年,张卫东,谢麟元等.世界非常规天然气的储量及开采现状[J].断块油气田,2010,17(4):439-442.
    [4]胡辉,洛带气田蓬莱镇组气藏增压开采方案设计[J].钻采工艺,2007, 30(1): 141-142.
    [5]丁志飞,徐庆磊,王立华等.低压天然气回收再利用与有能环保[J].油气田环境保护,2011, 21(5):62-63.
    [6]张明.洛带气田整体增压开采项目可行性研究[D].哈尔滨:哈尔滨工程大学,2010.
    [7]乔兴宏,谭福太,郑桂兴.利用文丘里引射装置回收利用高压天然气压力能[J].节能,2010,(5):63-65.
    [8]江庆梅,樊耀南,杨东东.文丘里引射器回收天然气管网压力能的应用[J].煤气与热力,2009,29(7):28-31.
    [9]陈秋雄,徐文东.天然气管网压力能利用与水合物联合调峰研究[J].煤气与热力,2010,30(8):27-30.
    [10]王艳梅.增压透平机的设计与增压端的数值模拟[D].哈尔滨:哈尔滨工业大学,2007.
    [11]陈克平,钟丽娜,蔡国成.中高压增压透平膨胀机在大型空分设备中的应用[J].深冷技术,2010,(S1):24-28.
    [12]高原.增压透平膨胀机[J].低温工程,1996,(3):13-17.
    [13]童立志,李少军,刘洪杰等.轻烃回收膨胀机制冷工艺、编程计算方法及计算分析[J].内蒙古石油化工,2009,(20):65-69.
    [14]王强.使用天然气膨胀机合理利用高压气层能量研究[J].石油天然气学报,2005,27(3):574-575.
    [15]Busby R L,王大锐(译).天然气概论[M].北京:石油工业出版社,2009.
    [16]李俊山.天然气压缩机可靠性分析[D].四川:西南石油学院,2005.
    [17]戴云飞,寇可新,孙红等.天然气增压站配套与选型研究[J].燃气轮机技术,2002,15(1):37-40.
    [18]赵静野,孙厚钧,高军.引射器基本工作原理及其应用[J].北京建筑工程学院学报,2000,16(4):12-15.
    [19]索利洛夫,津格尔,黄秋云(译).喷射器[M].北京:科学出版社,1977.
    [20]胡述明.喷射泵在低压天然气采输中的应用[J].石油矿厂机械,2011,40(8):62-64.
    [21]杨德伟,林日亿,王弥康等.利用喷射器技术输送低压气层天然气[J].油气田地面工程,2005,24(4):10-12.
    [22]张书平,刘双全,陈德见.天然气喷射引流技术在靖边气田的应用试验[J].新疆石油天然气,2008,4:113-119.
    [23]王晓荣,王惠,宋汉华等.实现低压气井增压开采的喷射引流技术[J].石油化工应用,2009,28(6):25-27.
    [24]Bulusu K V, Gould D M, Garris Jr C A. Evaluation of efficiency in compressible flow ejector[C]. Proceedings of IMECE2008, Boston, Massachusetts, USA,2008:1-24.
    [25]Perry R H.化学工程手册上卷(第六版)[M].北京:化学工业出版社,1992.
    [26]Zhang H F, Garris Jr C A. A comparative study of flow induction by pressure exchange[C]. AIAA Paper 2004-2343,2004.
    [27]Azoury P H. Engineering applications of unsteady fluid flow[M]. Chichester:John Wiley & Sons, 1992.
    [28]Kentfield J A C. Nonsteady, one-dimensional, internal, compressible flows[M]. Oxford:Oxford university press,1993.
    [29]Hiereth H. Car tests with a free-running pressure-wave charger-a study for an advanced supercharging system[C]. SAE Paper 890453,1989.
    [30]代玉强.外循环耗散式气波制冷机理分析与实验研究[D].大连:大连理工大学,2010.
    [31]Akbari P, Nalim R, Muller N. A review of wave rotor technology and its application[J]. Journal of Engineering for gas turbines and power,2006,128:717-735.
    [32]Knauff R. Improved process of and apparatus for converting the pressure or gas energy liberated by the heating or cooling of gases or vapours or by the explosion of gases or vapours into mechanical work:British,2818[P].1906,02,05.
    [33]Burghard H. Verfahren zur verdichtung von gasen:German,485386[P],1928,07,22.
    [34]Seippel C. Pressure Exchanger:US,2399394[P],1946,04,30.
    [35]Akbari P, Nalim M R. Review of recent developments in wave rotor combustion technology [J]. Journal of propulsion and power,2009,25(4):833-844.
    [36]Muller N, Dempsey E. Performance optimization of gas turbines utilizing four-port wave rotors[C]. AIAA Paper 2006-4152,2006.
    [37]Eric M B, Frank K L, Donald R W, et al. Airbreathing rotating detonation wave engine cycle analysis [C]. AIAA Paper 2010-7039,2010.
    [38]Zauner E, Chyou Y P, Walraven F, et al. Gas turbine topping stage based on energy exchangers: process and performance[C]. ASME Paper 93-GT-58,1993.
    [39]Jendrassik G. Jet reaction propulsion units utilizing a pressure exchanger:US 2757-509[P],1956,07, 07.
    [40]Kentfield J A C. Wave rotors and highlights of their development. AIAA Paper 98-3248,1998.
    [41]Baronia D, Nalim M R. Numerical study of wave rotor ignition and flame propagation in a single-channel rig[C]. AIAA Paper 2007-5054,2007.
    [42]Taussig R T, Hertzberg A. Wave rotors for turbomachinery[C]. Winter Annual Meeting of the ASME, Machinery for Direct Fluid-Fluid Energy Exchange, AD-07,1984:1-7.
    [43]Rose P H. Potential applications of wave machinery to energy and chemical processes[C]. Proceedings of the 12th International Symposium on shock tubes and waves,1979:3-30.
    [44]Hendricks J R. Wave rotor diffusers[D]. Ithaca:Cornell University,1991.
    [45]Mathis G P. Wave enhanced gas turbine engine cycles[D]. Ithaca:Cornell University,1991.
    [46]Resler E L, Moscari J C, Nalim M R. Analytic design methods for wave cycles[J], Journal of Propulsion and Power,1994,10(5):683-689.
    [47]Resler E L. Shock wave propulsion[J]. International Journal of Chemical Kinetics,2001,33:846-852.
    [48]Wilson J, Welch G E, Paxson D E. Experimental results of performance tests on a four-port wave rotor[C]. AIAA Paper 2007-1250,2007.
    [49]Paxson D E, Wilson J, Welch G E. Comparison between simulated and experimentally measured performance of a four port wave rotor[C]. AIAA Paper 2007-5049,2007.
    [50]Paxson D E, Nalim M R. Modified through-flow wave-rotor cycle with combustor bypass ducts[J]. Journal of Propulsion and Power,1999,15(3):462-467.
    [51]Akbari P, Nalim M R. Leakage assessment of pressure-exchange wave rotors[C]. AIAA Paper 2006-4449,2006.
    [52]Welch G E, Slater J W, Wilson J. Wave-rotor transition duct experiment[C]. AIAA Paper 2007-1249, 2007.
    [53]Paxson D E. A simplified model for detonation based pressure-gain combustors[C]. AIAA Paper 2010-6717,2010.
    [54]Nalim M R. Assessment of combustion modes for internal combustion wave rotors[J]. Journal of Engineering for gas turbines and power,1999,121(2):265-271.
    [55]Li H, Akbari P, Nalim M R. Air-standard thermodynamic analysis gas turbine engines using wave rotor combustion[C]. AIAA Paper 2007-5050,2007.
    [56]Nalim M R, Jules K. Pulse combustion and wave rotor for high-speed propulsion engines[C]. AIAA Paper 98-1614,1998.
    [57]Nalim M R. Longitudinally stratified combustion in wave rotors[J]. Journal of Propulsion and Power, 2000,16(6):1060-1068.
    [58]Elharis T M, Wijeyakulasuriya S D, Nalim M R. A two-step reaction model for stratified-charge combustion in wave-rotors[C]. AIAA Paper 2011-5748,2011.
    [59]Elharis T M, Wijeyakulasuriya S D, Nalim M R. Waverotor combustor aerothermodynamic design and model validation based on initial testing[C]. AIAA Paper 2010-7041,2010.
    [60]Matsutomi Y, Heister S D. Entropy considerations on integration of pressure gain combustors[C]. AIAA Paper 2010-6707,2010.
    [61]Frank K L, Braun E M, Snyder P, et al. Wave rotor combustor test rig preliminary design[C]. International Mechanical Engineering Conference, ASME Paper IMECE 2004-61795,2004.
    [62]Matsutomi Y, Meyer S E, Wijeyakulasuriya S D. Experimental investigation on the wave rotor constant volume combustor[C]. AIAA Paper 2010-7043,2010.
    [63]Elharis T M, Wijeyakulasuriya S D, Nalim M R, et al. Analysis of deflagrative combustion in a wave-rotor constant-volume combustor[C]. AIAA Paper 2011-583,2011.
    [64]Snyder P, Elharis T M, Wijeyakulasuriya S D, et al. Pressure gain combustor component viability assessment based on initial testing[C].AIAA Paper 2011-5749,2011.
    [65]Heffer J H, Miller R J. A transonic vane for use downstream of a pressure gain combustor[C]. AIAA Paper 2010-580,2010.
    [66]Okamoto K, Nagashima T. Visualization of wave rotor inner flow dynamics[J]. Journal of Propulsion and Power,2007,23(2):292-300.
    [67]lancu F, Akbari P, Muller N. Feasibility Study of Integrating Four-Port Wave Rotors into Ultra-Micro Gas Turbines[C]. AIAA Paper 2004-3581,2004.
    [68]Piechna J, Akbari P, Lancu F, et al. Radial-flow wave rotor concepts, unconventional design and applications[C]. ASME International Mechanical Engineering Congress, Anaheim, California, USA, 2004. IMECE2004-59022.
    [69]Akbari P, Nalim M R, Wijeyakulasuriya S D, et al. Wave disk engine for micro-scale power generation[C]. AIAA Paper 2008-4879,2008.
    [70]雷艳.车用发动机气波增压器性能研究[D].北京:北京工业大学,2008.
    [71]Zehnder G, Mayer A. Comprex(?) pressure-wave supercharging for automotive diesels-state-of-the-art [C]. SAE Paper,840132,1984.
    [72]Mayer A, Oda J, Kato K, et al. Extruded Ceramic-a new technology for the Comprex rotor[C]. SAE Paper,890453,1989.
    [73]Oguri Y,Suzuki T,Yoshida M, et al. Research on adaptation of pressure wave supercharger(PWS) to gasoline engine[C]. SAE Paper 010368,2001.
    [74]Spring P, Guzzella L, Onder C. Optimal control strategy for a pressure-wave supercharged SI engine[C]. ASME Spring Technical Conference, Austria,2003. ASME Paper ICES2003-645.
    [75]Akbari P, Muller N. Wave rotor research program at Michigan State University[C].41st AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona,2005.
    [76]Spalding D B. Improvements in or relating to pressure exchanger apparatus:British,799143[P].1958, 08,06.
    [77]Kentfield J A C. The performance of pressure-exchange dividers and equalizers[J]. Journal of Basic Engineering,1969,91(3):361-370.
    [78]吴文,陈铭铮.研制气波增压器的一些理论分析计算和实验研究结果[J].工程热物理学报,1982,3(1):30-38.
    [79]吴中亮,佟至贞,周大民.水冷却气波机的实验结果(二)[J].工程热物理学报,1983,4(3):265-267.
    [80]吴文,黄晓,卓文渝.气波增压器的研究[J].内燃机学报,1995,13(2):]63-172.
    [81]卓文渝,巫宝华.新型增压装置—气波增压器的试制[J].江苏机械制造与自动化,1996(4):9-11.
    [82]张均华,朱达,周贵今等.CB-200型气波增压器的试验研究[J].内燃机工程,1982,(2):36-48.
    [83]冯德生.柴油机气波增压器的设计与研究(1-4)[J].汽车技术,1983.
    [84]周锦生,冯德生.气波增压器进气压力的波动对转子流场的影响[J].江苏工学院学报,1993,14(4):19-23.
    [85]雷艳,周大森,张红光.基于CFD的车用气波增压器三维仿真[J].北京工业大学学报,2010,36(7):990-994.
    [86]胡大鹏.压力振荡管流动和热效应的研究[D].大连:大连理工大学,2009.
    [87]Jonsson V K, Matthews L, Spalding D B. Numerical Solution Procedure for Calculating the Unsteady, One-Dimensional Flow of Compressible Fluid[C]. ASME Paper 73-FE-30,1973.
    [88]Taussig R T. Wave rotor turbofan engines for aircraft[C]. Winter Annual Meeting of the ASME, Machinery for Direct Fluid-Fluid Energy Exchange, AD-07,1984:9-45.
    [89]Eidelman S. Gradual opening of Skewed passages in wave rotors[J]. Journal of Propulsion and Power, 1986,2(4),379-381.
    [90]Mathur A, Shreeve R P. Calculation of unsteady flow processes in wave rotors[C]. AIAA Paper 87-0011,1987.
    [91]Oberhem H, Nour Eldin H A. Fast and distributed algorithm for simulation and animation of pressure wave machines[C]. Porceeding of the 1MACS International Symposium on Mathematical and Intelligent Models in System Simulation, Belgium,1990:807-815.
    [92]Piechna J. Comparison of different methods of solution of Euler equations in application of simulation of the unsteady process in wave supercharger[J]. The Archive of Mechanical Engineering,1998,45(2): 87-106.
    [93]Piechna J, Lisewski P. Numerical analysis of unsteady two-dimensional flow effects in the Comprex supercharger[J]. The Archive of Mechanical Engineering,1998,45(4):341-351.
    [94]Paxson D E. A general numerical model for wave-rotor analysis[C]. NASA TM-105740,1992.
    [95]Paxson D E, Wilson J. Recent improvements to and validation of the one dimensional NASA wave rotor model[C]. NASA TM-106913,1995.
    [96]Paxson D E. A numerical model for dynamic wave rotor analysis[C]. AIAA Paper 95-2800,1995.
    [97]Paxson D E. A numerical investigation of the startup transient in a wave rotor[J]. Journal of Engineering for Gas Turbines and Power,1997,119(3):676-682.
    [98]Paxson D E, Lindau J W. Numerical assessment of four-port through-flow wave rotor cycles with passage height variation[C]. AIAA Paper 97-3142,1997.
    [99]Wilson J, Paxson D E. Wave rotor optimization for gas turbine topping cycles[J].Journal of propulsion and power,1996,12(4):778-785.
    [100]Welch G E. Two-dimensional numerical study of wave-rotor flow dynamics[C]. AIAA Paper 93-2525,1993.
    [101]Larosiliere L M. Three-dimensional numerical simulation of gradual opening in a wave-rotor passage[C]. AIAA Paper 93-2526,1993.
    [102]Welch G E. Macroscopic balance model for wave rotors[J]. Journal of Propulsion and Power,1997, 13(4):508-516.
    [103]Welch G E, Larosiliere L M. Passage-averaged description of wave rotor flow[C]. AIAA Paper 97-3144,1997.
    [104]Lear W E, Candler G. Direct boundary value solution of wave rotor flow fields[C]. AIAA Paper 93-0483,1993.
    [105]Hoxie S S, Lear W E, Micklow G J. A CFD study of wave rotor losses due to the gradual opening of rotor passage inlets[C]. AIAA Paper 98-3253,1998.
    [106]Fatsis A, Ribaud Y. Preliminary analysis of the flow inside a three-port wave rotor by means of a numerical model[J]. Aerospace Science and Technology,1998,2(5):289-300.
    [107]Okamoto K, Nagashima T, Yamaguchi K. Simple numerical modeling for gasdynamic design of wave rotors[J]. Journal of Propulsion and Power,2007,23(1):99-107.
    [108]Okamoto K, Nagashima T, Yamaguchi K. Rotor-wall clearance effects upon wave rotor passage flow[C].15th International Symposium on Airbreathing Engines, ISABE-2001-1222,2001.
    [109]Iancu F, Piechna J, Miiller N. Numerical solutions for ultra-micro wave rotors(UμWR)[C].AIAA Paper 2005-5034,2005.
    [110]Baronia D, Nalim M R. Numerical study of wave rotor ignition and flame propagarion in a single-channel rig[C]. AIAA Paper 2007-5054,2007.
    [111]Wijeyakulasuriya S D, Nalim M R. Multidimensional modeling of gas mixing in transient translating confined trubulentjets[C]. AIAA Paper 2011-397,2011.
    [112]Podhorelsky L, Macek J, Polasek M, et al. Simulation of a Compres pressure exchanger in 1-D code[C]. SAE 04P-241,2004.
    [113]lancu F, Piechna J, Muller N. Numerical solutions for ultra-micro wave rotors(UμWR)[C] AIAA Paper 2005-5034,2005.
    [114]Akbari P, Mueller N, Nalim M R. Performance improvement of recuperated and unrecuperated micro turbines using wave rotor machine[C]. CIMAC Congress, Kyoto,2004. Paper No.218.
    [115]陶文全.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [116]Bouzada B E, Wijeyakulasuriya S D, Nalim M R. Improved compressible-jet shear-layer simulations using RANS models for steady confined jets[C]. AIAA Paper 2010-4746,2010.
    [117]Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Compute Fluids,1995,24(3):227-238.
    [118]王福军.计算流体动力学分析—CFD软件原理及应用[M].北京:清华大学出版社,2008.
    [119]马铁犹.计算流体力学[M].北京:北京航空航天大学出版社,1987.
    [120]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2007.
    [121]Van Leer B. Upwind-difference methods for aerodynamics problems governed by the Euler equations of gas dynamics[J]. Lectures in Applied Mathematics,1985, (22):327-336.
    [122]金良安.多级喷射器特性及工程应用基础研究[M].大连:大连理工大学,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700