热水太阳池在西藏当雄错盐湖卤水提锂中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏当雄错盐湖位于藏北高原腹地西南处,该湖湖水类型属于中度碳酸盐型,湖水Mg/Li<0.1。原始湖水中富含Na、K、Br、B、Li、Rb等具有经济价值的元素,卤水经过日晒蒸发浓缩以后K、B、Li、Rb浓度显著增高,并达到工业开发品位。本文以西藏当雄错碳酸盐型低镁锂比盐湖卤水为对象,采用自主设计研发的热水太阳池提锂工艺,在继钾提取基础上针对富锂卤水中的锂进行提取研究。
     热水太阳池技术首次将地热资源和盐梯度太阳池结合,通过在盐梯度太阳池底部加设热交换器,利用地热水循环来对池内卤水进行加热,加速卤水升温,并最终获得高品位的碳酸锂。热水太阳池技术可以解决目前针对高原盐湖提锂过程中遇到的问题,如生产周期长、卤水温度低以及盐藻问题等,在不加入任何化学试剂的前提下,从卤水中提取碳酸锂。
     热水太阳池池壁由钢筋、混凝土和砖块垒砌而成,池壁与地平夹角为当雄错地区冬至日的太阳高度角,这样有利于加热池中的卤水在一天之内接受更多的太阳辐射;池底为长方形结构,长2m、宽1m;加热池内壁铺有10cm厚的保温材料。热水太阳池中的卤水分为下对流层(浓缩卤水层)、非对流层(盐梯度层)和上对流层(淡水层)三个部分。下对流层由富锂卤水组成,高矿化度的卤水可以吸收和储存来自热交换器和太阳辐射的热量;非对流层中卤水盐度从上至下呈指数递增,热量不易在这一层中穿透因而具有保温作用;上对流层由淡水组成,用来保护盐梯度层不被破坏。
     论文研究内容围绕热水太阳池展开,通过热、盐扩散研究、模拟提锂对比研究和热交换器研究对热水太阳池性能进行表征,并利用热水太阳池技术在当雄错盐湖现场进行提锂实验。
     首先通过对富锂卤水进行提锂实验,考察了热交换器在下对流层中的不同位置对温度分布的影响。当热交换器位于下对流层、距离底部5cm时,下对流层中的最大温差只有10℃,平均温度最高能达到55℃。此外,下对流层的温度分布还影响碳酸锂的结晶析出,通过实验发现碳酸锂在温度大于45℃的卤水中结晶较为理想。随着加热的进行,热水太阳池中的卤水温度分布会出现分异现象,并形成高温带和低温带。
     盐梯度层在热水太阳池中起着关键作用,实验对加设热交换器以后的卤水动态变化进行了考察和分析。实验结果显示在没有盐梯度层存在时,搅拌作用能够加速卤水升温,但同时由于水分蒸发导致NaCl、硫酸盐、碱类矿物因为过饱和而提前大量析出,最终使得析出的盐类矿物中碳酸锂含量下降;稳定的盐梯度层可以提高下对流层的平均温度,并改变碳酸锂的析出品位;实验中还发现盐梯度层的厚度对其保温作用有很大影响,厚度越厚保温效果越明显,下对流层中卤水的平均温度越高。
     通过对比50℃模拟太阳池提锂实验,探讨和分析了现场提锂实验中的共性和差异。实验对提锂完成后的卤水离子含量进行了对比研究,发现除Na~+以外,其他离子含量均有降低,尤其是Li~+和CO_3~(2-)。同时对Na~+含量的不规律变化进行了讨论;通过对两次实验的矿物鉴定发现,现场实验析出的盐类矿物中碳酸锂含量要高于50℃模拟实验。
     热交换器是热水太阳池的核心部件,选择间壁式热交换器有利于我们针对热水太阳池结构进一步开展实验。针对间壁式热交换器的结构特点设计了L4(32)类型的正交实验,分别对影响热交换效率的三个因素热交换器材料、热交换管形状以及管道内部热水流速进行考察和分析。实验结果显示不锈钢材料的性能要高于PERT材料;使用“回”形加热器要比使用“U”形加热器效率高一点,但是程度不明显;热水在加热管内的流速同样会影响热交换器的效率,流速越大,加热效率越高。同时通过正交实验中的R极值进行分析后认为:在影响热交换器热交换效率高低的这三个因素中,材料因素>流体流速>加热管形状。
The Damxung Co salt lake is located on the southwest of the northern Tibetplateau hinterland, the water of which is a moderate carbonate type and its Mg/Li<0.1.The water is rich in elements with great economic value, like Na、K、Br、B、Li、Rb. After insolating and evaporating brine, the concentration of K、B、Li、Rb increasessignificantly and meets the criteria of industrial development. This paper takes theDamxung Co salt lake of a low ratio of Mg/Li carbonate type as research object. Theexperiments of Li extraction from lithium-rich brine are taken based on K extractionby using hot water solar pond (HWSP) technology for the first time.
     The HWSP technology combines the geothermal energy and the salt gradientsolar pond (SGSP) for the first time. The heat exchanger is installed at the bottom onthe basis of SGSP and the energy is transferred from the heat exchanger to the brineby using hot water circulation so that the temperature of the brine is raised rapidly andeventually obtained the high grade lithium carbonate. The HWSP technology cansolve the problems we have encountered in the process of lithium extraction fromplateau salt lakes, for instance the long production cycle, the lower brine temperatureand the dunaliella salina problems. Most of all, lithium carbonate can be extractedfrom brine without adding any chemical reagent.
     The walls of hot water solar pond (HWSP) are made of reinforced concrete andbricks. The angle between sidewall and horizontal plane is exactly the same as thesolar altitude of Damxung Co area at winter solstice, thus the brine in HWSP canreceive more solar radiation within a day. The bottom of HWSP has a shape ofrectangular, which is2meters long and1meter wide. The internal walls of HWSP arecovered with10centimeters thick insulation material to keep brine warm in the following experiments. The brine in the hot water solar pond can be divided into threeparts of Lower Convective Zone (LCZ, concentrated brine layer), NonconvectiveZone (NCZ, salt gradient layer) and Upper Convective Zone (UCZ, fresh water layer).The LCZ is composed of lithium-rich brine and the high salinity brine can absorb andstore the heat from the heat exchanger and solar radiation; the salinity of LCZincreases exponentially from top to bottom, which contributes to prevent the heatfrom penetrating, thus it has the insulation effect; the UCZ is composed of freshwaterand is used to protect the underlying brine from destroyed.
     This research is mainly revolve round the HWSP, of which the performance ischaracterized through the study of heat and salinity diffusion, lithium extractingsimulation and the heat exchanger. The HWSP technology is used in lithiumextracting experiments on Damxung Co salt lake.
     The experiment of lithium extraction from the rich lithium brine inspected theinfluence of the heat exchanger in the different LCZ position on the distribution oftemperature. When the heat exchanger is on LCZ and5cm distant from the bottom ofthe pool, the maximum temperature difference is only10℃and the highest averagetemperature could reach55℃. On the other hand, the experiment shows that theLCZ temperature distribution also affects the crystallization of lithium carbonate. Thebest crystallization temperature of lithium carbonate is above45℃in the brine.With continuously heating, the temperature distribution of the brine will change andform high temperature zone and low temperature zone.
     The salt gradient layer makes an important role on HWSP. The experimentsinspected and analyzed the brine dynamical change after the heat exchanger isinstalled on the brine pool. The experiment shows that without the salt gradient layer,blending can speed up the brine warming, but at the same time due to the waterevaporation, sodium chloride, sulfate and alkali mineral in great quantities areseparated in advance for supersaturate precipitation, eventually the content of lithiumcarbonate mineral drops. The stability of salt gradient layer would raise the averagetemperature of the LCZ and change the grade of lithium carbonate mineral. Theexperiment also found that the thickness of the salt gradient layer takes great effect onheat preservation. The thicker the salt gradient layer is, the better effect of heatpreservation and higher the average temperature of brine on LCZ will be.
     The general similarity and difference of lithium extraction on the fieldexperiment is researched and analyzed by comparing with50℃simulated the solarpond experiment. The experiments analyzed the amount of ion of brine in which lithium is extracted and found except Na~+, the amount of all ions drop, especially Li~+and CO_3~(2-)and discussed the irregular change of the amount of Na~+. Throughcomparing mineral identification of two experiments, the amount of carbonate oncrystal mineral precipitation by the field experiment is higher than that in simulatedexperiment.
     The heat exchanger is the core component of HWSP. The surface type of heatexchanger is conducive to carry out the further experiments for HWSP. Therefore,according to the structural characteristics of the surface type heat exchanger,orthogonal experiment of L4(32) was used to examine and analyze the three factors ofimpacting the heat exchange efficiency. The three factors are the materials of heatexchangers, the shape of the heat exchange tube and the hot water flow rate in thepipeline. The experimental results show that the properties of thermal conductivity ofstainless steel are better than PERT material. The heating efficiency of spiral-typeheater exchanger is better than that of the U-type, but the difference is not significant.The flow rate of hot water on the heating tube also affects the efficiency of the heatexchanger. The quicker the flow rate is, the higher the heating efficiency will be. Atthe same time by the comparison and analysis of extreme value R in the orthogonalexperiment, the sequence of three factors impacting the heat exchanging efficiency is:the material factors> flow rate> the tube shape.
引文
[1] Grosjean C, Miranda P H, Perrin M, et al. Assessment of world lithium resources andconsequences of their geographic distribution on the expected development of the electricvehicle industry[J]. Renewable and Sustainable Energy Reviews.2012,16(3):1735-1744.
    [2] Hykawy J. Looking at lithium: discussing market demand for lithium in electronics[J].Mater. World Ceram. Lithium.2010,18(5):34-35.
    [3] Baumgartner W, Gross A. The global market for electric vehicles[J]. Business Economics.2000,35(4):51-56.
    [4] Ritchie A, Howard W. Recent developments and likely advances in lithium-ion batteries[J].Journal of Power Sources.2006,162(2):809-812.
    [5] Dewulf J, Van der Vorst G, Denturck K, et al. Recycling rechargeable lithium ion batteries:Critical analysis of natural resource savings[J]. Resources, Conservation and Recycling.2010,54(4):229-234.
    [6] Kushnir D, Sanden B A. The time dimension and lithium resource constraints for electricvehicles[J]. Resources Policy.2012,37(1):93-103.
    [7] Chen Y, Tian Q, Chen B, et al. Preparation of lithium carbonate from spodumene by asodium carbonate autoclave process[J]. Hydrometallurgy.2011,109(1-2):43-46.
    [8] Averill W A, Olson D L. A review of extractive processes for lithium from ores andbrines[J]. Energy.1978,3(3):305-313.
    [9]郑绵平.论盐湖学[J].地球学报.1999,20(04):395-401.
    [10] Hamzaoui A H, M'Nif A, Hammi H, et al. Contribution to the lithium recovery frombrine[J]. Desalination.2003,158(1-3):221-224.
    [11] An J W, Kang D J, Tran K T, et al. Recovery of lithium from Uyuni salar brine[J].Hydrometallurgy.2012,117-118(0):64-70.
    [12] Isupov V P, Kotsupalo N P, Nemudry A P, et al. Aluminium hydroxide as selective sorbentof lithium salts from brines and technical solutions[J]. Studies in Surface Science andCatalysis.1999,120(A):621-652.
    [13] Yancheng C, Hsu K J. Chapter21-Exploitation of Lithium in Brines by Hsu's Method[G].Amsterdam:2001:421-428.
    [14] Averill W A, Olson D L. A review of extractive processes for lithium from ores andbrines[J]. Energy.1978,3(3):305-313.
    [15] Dang V, Steinberg M. Preliminary design and analysis of recovery of lithium from brinewith the use of a selective extractant[J]. Energy.1978,3(3):325-336.
    [16] Rona M, Schmuckler G. Separation of lithium from dead sea brines by gel permeationchromatography[J]. Talanta.1973,20(2):237-240.
    [17] Gabra G G, Torma A E. Lithium chloride extraction by n-butanol[J]. Hydrometallurgy.1978,3(1):23-33.
    [18] Zhang Q, Sun S, Li S, et al. Adsorption of lithium ions on novel nanocrystal MnO2[J].Chemical Engineering Science.2007,62(18-20):4869-4874.
    [19]郑绵平,卜令忠.盐湖资源的合理开发与综合利用[J].矿产保护与利用.2009(1):17-22.
    [20]郑绵平,刘喜方.青藏高原盐湖水化学及其矿物组合特征[J].地质学报.2010,84(11):1585-1599.
    [21]郑绵平.青藏高原盐湖资源研究的新进展[J].地球学报.2001(2):97-102.
    [22] Lowenstein T, Risacher F. Closed basin brine evolution and the influence of Ca-Cl inflowwaters. Death Valley and Bristol Dry Lake, California, QaidamBasin, China, and Salar deAtacama, Chile[J]. Geochem.2009(15):71-94.
    [23]刘元会,邓天龙.国内外从盐湖卤水中提锂工艺技术研究进展[J].世界科技研究与发展.2006,28(05):69-75.
    [24] Hamzaoui A H, M'Nif A, Hammi H, et al. Contribution to the lithium recovery frombrine[J]. Desalination.2003,158(1-3):221-224.
    [25]申军,戴斌联.盐湖卤水锂矿资源开发利用及其展望[J].化工矿物与加工.2009,0(04):1-7.
    [26] Ebensperger A, Maxwell P, Moscoso C. The lithium industry: Its recent evolution andfuture prospects[J]. Resources Policy.2005,30(3):218-231.
    [27]宋彭生,李武,孙柏,等.盐湖资源开发利用进展[J].无机化学学报.2011,27(05):801-815.
    [28] Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: Relative importanceof pegmatite, brine and other deposits[J]. Ore Geology Reviews.2012,0(0).
    [29]高峰,郑绵平,乜贞,等.盐湖卤水锂资源及其开发进展[J].地球学报.2011,32(04):483-492.
    [30] Garrett D. Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing,Uses and Properties[M]. Elsevier Academic Press,2004:651.
    [31] Comibol. Gerencia nacional de recursos evaporiticos[M]. Memoria Institucional,2000:55.
    [32] Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability: a constraint forelectric vehicles?[J]. J. Ind. Ecol.2011,15(0):760-775.
    [33]郑绵平,向军.青藏高原盐湖[M].北京科学出版社,1989.
    [34]赵元艺.中国盐湖锂资源及其开发进程[J].矿床地质.2003,22(01):99-106.
    [35]宋新宇,姚建华.柴达木盆地锂资源开发[J].干旱区资源与环境.1999,13(03):1-7.
    [36]郑绵平.西藏自治区尼玛县当雄错表面卤水锂钾硼矿综合勘查报告[R].中国地质科学院矿产资源研究所,2010.
    [37]佟伟,童铭陶,张知非.西藏地热[M].北京:科学出版社,1981.
    [38]郑绵平.西藏扎布耶盐湖锂、硼、钾综合开发扩大试验研究报告[R].中国地质科学院矿产资源研究所,2000.
    [39]伍倩,郑绵平,乜贞,等.西藏当雄错碳酸盐型盐湖卤水自然蒸发析盐规律研究[J].无机化学学报.2012,28(09):1895-1903.
    [40]伍倩,郑绵平,乜贞,等.当雄错盐湖卤水提钾盐田日晒工艺扩大试验研究[J].无机化学学报.2013,29(1):36-44.
    [41]白嘉启,梅琳,杨美伶.青藏高原地热资源与地壳热结构[J].地质力学学报.2006,12(3):354-362.
    [42]陈墨香.中国地热资源的分布及其开发利用[J].自然资源.1991(5):40-46.
    [43]谢鄂军.西藏地热资源开发利用方案探讨[J].西藏科技.2002(3):16-27.
    [44]艾印双,郑天愉.青藏高原地震活动及其构造背景[J].地球物理学进展.1997,12(2):30-40.
    [45]黄维农,王学魁,孙之南,等.西藏扎布耶盐湖太阳池的建造与运行试验[J].太阳能学报.2010,31(02):163-167.
    [46]郑绵平,刘喜方.中国的锂资源[J].新材料产业.2007,0(08):13-16.
    [47] Risacher F, Alonso H, Salazar C. The origin of brines and salts in Chilean salars: ahydrochemical review[J]. Earth-Science Reviews.2003,63(3-4):249-293.
    [48]杨建元,程温莹,邓天龙,等.东台吉乃尔湖晶间卤水综合利用研究(煅烧法提锂工艺)[J].无机盐工业.1996,0(02):29-32.
    [49] Isupov V P, Kotsupalo N P, Nemudry A P, et al. Aluminium hydroxide as selective sorbentof lithium salts from brines and technical solutions[J]. Adsorption and its Applications inIndustry and Environmental Protection—Vol.I:Applications in Industry.1999, Volume120, Part A:621-652.
    [50]罗清平,郭朋成,李存增,等.我国锂资源分布及提取工艺研究现状[J].湿法冶金.2012,31(02):67-70.
    [51]何力,陈儒庆,徐运海,等.用吸附法从察尔汗盐湖卤水中提取锂[J].湿法冶金.2003,22(03):118-128.
    [52]吸附法提锂技术取得重大突破[J].2006:685.
    [53]孙淑英,叶帆,宋兴福,等.盐湖卤水萃取提锂及其机理研究[J].无机化学学报.2011,37(03):439-444.
    [54]黄师强,崔荣旦,张淑珍,等.磷酸三丁酯从大柴旦盐湖卤水萃取锂的研究[J].盐湖科技资料.1980,0(Z1):14-24.
    [55]童兆达,李发金,黄师强,等.从大柴旦盐湖脱硼卤水中用TBP连续萃取分离氯化锂[J].稀有金属.1987(1):66-70.
    [56]陈正炎,古伟良,陈富珍.国内外盐湖卤水提锂方法及其发展[J].新疆有色金属.1996,0(01):21-25.
    [57]陈正炎,仇世源,古伟良,等.从饱和氯化镁卤水中分离锂镁的新萃取体系研究[J].稀有金属.1996,20(3):161-164.
    [58] Zhou Z, Qin W, Fei W, et al. A Study on Stoichiometry of Complexes of Tributyl Phosphateand Methyl Isobutyl Ketone with Lithium in the Presence of FeCl3[J]. Chinese Journal ofChemical Engineering.2012,20(1):36-39.
    [59]杨兆娟,向兰.从盐湖卤水中提锂的研究进展[J].海湖盐与化工.2005,34(06):27-29.
    [60]钟辉,周燕芳,殷辉安.卤水锂资源开发技术进展[J].矿产综合利用.2003(1):23-28.
    [61] Tian L, Ma W, Han M. Adsorption behavior of Li+onto nano-lithium ion sieve from hybridmagnesium/lithium manganese oxide[J]. Chemical Engineering Journal.2010,156(1):134-140.
    [62] Teixeira M F S, Moraes F C, Fatibello-Filho O, et al. Voltammetric determination of lithiumions in pharmaceutical formulation using a λ-MnO2-modified carbon-paste electrode[J].Analytica Chimica Acta.2001,443(2):249-255.
    [63] Zhang Q, Sun S, Li S, et al. Adsorption of lithium ions on novel nanocrystal MnO2[J].Chemical Engineering Science.2007,62(18-20):4869-4874.
    [64] Dixit S S, Shashidhar M S, Devaraj S. Cyclitol based metal complexing agents. Preferencefor the extraction of lithium by myo-inositol based crown-4-ethers depends on the relativeorientation of crown ether oxygen atoms[J]. Tetrahedron.2006,62(18):4360-4363.
    [65]李骁龙,李少鹏,张钦辉,等. TiO2离子筛的合成及锂吸附性能研究[J].功能材料.2009,40(08):1338-1341.
    [66] Alexandratos S D, Stine C L, Sachleben R A, et al. Immobilization of lithium-selective14-crown-4on crosslinked polymer supports[J]. Polymer.2005,46(17):6347-6352.
    [67]吴成泰,何永炳.1987年诺贝尔化学奖获得者之一——JM莱恩教授[J].大学化学.1988,3:1.
    [68] Sachleben R A, Davis M C, Bruce J J, et al. An efficient synthesis of lithium-selectiveextractants: Tertiary-alkyl-14-crown-4ethers[J]. Tetrahedron Letters.1993,34(34):5373-5376.
    [69]梁渠,闫书一,吴忠忠,等.冠醚聚氨酯泡塑的合成及其在锂镁分离中的应用[J].成都理工大学学报(自然科学版).2009,36(03):326-332.
    [70] Nie Z, Bu L, Zheng M, et al. Experimental study of natural brine solar ponds in Tibet[J].Solar Energy.2011,85(7):1537-1542.
    [71]罗莎莎,郑绵平.西藏地区盐湖锂资源的开发现状[J].地质与勘探.2004,40(3):11-14.
    [72] Tundee S, Terdtoon P, Sakulchangsatjatai P, et al. Heat extraction from salinity-gradientsolar ponds using heat pipe heat exchangers[J]. Solar Energy.2010,84(9):1706-1716.
    [73] Kaushika N D. Solar ponds: A review[J]. Energy Conversion and Management.1984,24(4):353-376.
    [74]高峰,郑绵平,乜贞,等.西藏扎北盐湖夏季卤水自然蒸发实验研究[J].盐湖研究.2011,19(04):21-27.
    [75]缪仁杰,谭永璐,李淑兰,等.太阳池热能利用技术[J].可再生能源.2008,26(2):6-9.
    [76] Andrews J, Akbarzadeh A. Enhancing the thermal efficiency of solar ponds by extractingheat from the gradient layer[J]. Solar Energy.2005,78(6):704-716.
    [77] Angeli C, Leonardi E. The effect of thermodiffusion on the stability of a salinity gradientsolar pond[J]. International Journal of Heat and Mass Transfer.2005,48(21-22):4633-4639.
    [78] Kooi C F. Salt gradient solar pond with reflective bottom: Application to the “saturated”pond[J]. Solar Energy.1981,26(2):113-120.
    [79] Mullett L B, Tsilingiris P T. Effects of molecular diffusion of salt in salt-gradient solarponds[J]. Applied Energy.1988,29(1):57-71.
    [80] Karim C, Slim Z, Kais C, et al. Experimental study of the salt gradient solar pondstability[J]. Solar Energy.2010,84(1):24-31.
    [81]王华,孟凡茂,孙文策,等.水浊度和提热量对太阳池盐梯度层稳定性综合影响[J].大连理工大学学报.2011,51(4):512-517.
    [82] Weinberger H. The physics of the solar pond[J]. Solar Energy.1964,8(2):45-56.
    [83] Kooi C F. The steady state salt gradient solar pond[J]. Solar Energy.1979,23(1):37-45.
    [84] Xu H. Laboratory studies on dynamical processes in salinity-gradient solar pond[D]. OhioState University,1990.
    [85] Zangrando F. On the hydrodynamics of salt-gradient solar ponds[J]. Solar energy.1991,46(6):323-341.
    [86] Veronis G. Effect of a stabilizing gradient of solute on thermal convection[J]. J. Fluid Mech.1968,34(2):315-336.
    [87] Costa L D, Knobloch E, Weiss N O. Oscillations in double-diffusive convection[J]. Journalof Fluid Mechanics.1981,109(1):25-43.
    [88] Finlayson B A. The Galerkin method applied to convective instability problems[J]. J. FluidMech.1968,33(part1):201-208.
    [89]史玉凤,刘红,孙文策.多孔介质有效导热系数的实验与模拟[J].四川大学学报(工程科学版).2011,43(3):198-203.
    [90]孙文策,史玉凤,李楠,等.多孔介质对太阳池热盐扩散影响实验研究[J].大连理工大学学报.2010(1):46-51.
    [91]孙文策,周永平,解茂昭,等.盐田太阳池实验研究[J].大连理工大学学报.2003(2):176-180.
    [92] Weinberger H. The physics of the solar pond[J]. Solar Energy.1964,8(2):45-56.
    [93] Meyer K A. Numerical model for describing the layer behavior in salt-gradient solar pond[J].J. Solar Energy Engineering.1983(105):341.
    [94] Panahi Z, Batty J C, Riley J P. Numerical simulation of the performance of a salt-gradientsolar pond[J]. J. Solar Energy Engineering.1983(105):369.
    [95] Rubin H, Benedict B A, Bachu S. Modeling the performance of a solar pond as a source ofthermal energy[J]. Solar energy.1984,32(6):771-778.
    [96] Beniwal R S, Singh R. Calculation of thermal efficiency of salt gradient solar ponds[J]. HeatRecovery Systems and CHP.1987,7(6):497-516.
    [97] Giestas M, Joyce A, Pina H. The influence of non-constant diffusivities on solar pondsstability[J]. International journal of heat and mass transfer.1997,40(18):4379-4391.
    [98] Jayaprakash R, Perumal K. The stability of an unsustained salt gradient solar pond[J].Renewable energy.1998,13(4):543-548.
    [99] Alagao F B. Simulation of the transient behavior of a closed-cycle salt-gradient solarpond[J]. Solar energy.1996,56(3):245-260.
    [100]郭廷锋,李洪普,王云生,等.青海冷湖钾盐矿提钾工艺优化研究[J].盐业与化工.2012,41(09):28-31.
    [101] Agha K R, Abughres S M, Ramadan A M. Design methodology for a salt gradient solarpond coupled with an evaporation pond[J]. Solar Energy.2002,72(5):447-454.
    [102] Al-Jamal K, Khashan S. Parametric study of a solar pond for Northern Jordan[J]. Energy.1996,21(10):939-946.
    [103] Kurt H, Ozkaymak M, Binark A K. Experimental and numerical analysis ofsodium-carbonate salt gradient solar-pond performance under simulated solar-radiation[J].Applied Energy.2006,83(4):324-342.
    [104]乜贞.碳酸盐盐湖卤水提锂工艺研究[D].中国地质科学院,2001.
    [105] El-Sebaii A A, Ramadan M R I, Aboul-Enein S, et al. History of the solar ponds: A reviewstudy[J]. Renewable and Sustainable Energy Reviews.2011,15(6):3319-3325.
    [106]张永生,郑绵平,乜贞,等.西藏扎布耶盐湖碳酸盐型卤水15℃等温蒸发实验[J].海湖盐与化工.2005,34(04):1-14.
    [107]王晓军,程绍敏.西藏主要气候特征分析[J].高原山地气象研究.2009,29(04):81-84.
    [108]廖志杰,张振国.西藏南部地热[J].地质论评.1989,35(04):366-372.
    [109]关志华,陈传友.西藏河流水资源[J].自然资源.1980(02):25-35.
    [110]唐力君,郑绵平,刘建华.碳酸盐型盐湖卤水的模拟太阳池结晶试验[J].地球学报.2009,30(02):249-255.
    [111] Karim C, Slim Z, Kais C, et al. Experimental study of the salt gradient solar pondstability[J]. Solar Energy.2010,84(1):24-31.
    [112]罗莎莎,郑绵平.西藏地区盐湖锂资源的开发现状[J].地质与勘探.2004,40(03):11-14.
    [113]罗莎莎,郑绵平.太阳池的研究与应用[J].能源研究与信息.2004,20(01):29-37.
    [114]罗莎莎,郑绵平.新型太阳池的研究[J].盐湖研究.2003,11(03):65-70.
    [115]唐力君,郑绵平,乜贞.碳酸盐型盐湖提锂工艺过程中Rb、Cs、Br的变化规律[J].盐业与化工.2008,37(06):13-17.
    [116]郭秀红.西藏富锂铷铯盐湖卤水开发利用实验研究[D].中国地质科学院,2008.
    [117] Ouni M, Guizani A, Belguith A. Simulation of the transient behaviour of a salt gradientsolar pond in Tunisia[J]. Renewable Energy.1998,14(1-4):69-76.
    [118] Ouni M, Guizani A, Lu H, et al. Simulation of the control of a salt gradient solar pond in thesouth of Tunisia[J]. Solar Energy.2003,75(2):95-101.
    [119] Dah M M O, Ouni M, Guizani A, et al. Study of temperature and salinity profilesdevelopment of solar pond in laboratory[J]. Desalination.2005,183(1-3):179-185.
    [120] Jaefarzadeh M R. Heat extraction from a salinity-gradient solar pond using in pond heatexchanger[J]. Applied Thermal Engineering.2006,26(16):1858-1865.
    [121] Karakilcik M, K yma K, Dincer I. Experimental and theoretical temperature distributionsin a solar pond[J]. International Journal of Heat and Mass Transfer.2006,49(5-6):825-835.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700