石墨烯纳米结构中输运性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是把两个等价碳原子交替排列在一个六角晶格上形成的一种二维结构的平面材料。它从发现之初就受到了广泛的关注,是因为石墨烯被证实了存在很多奇特的电子特性,比如在狄拉克点附件的线性色散关系,整数和半整数的量子霍尔效应,高的电子迁移率等等。所有的这些奇特性质使石墨烯成为半导体工业中硅的理想替代品。同时为了在石墨烯的能带结构上产生一个带隙,可以沿着特定的晶格方向对其进行切割,这样得到的石墨烯条带在狄拉克点附近存在一个能隙。与二维石墨烯相比,一维的石墨烯条带在输运性质上也发生了很大的改变。除了可以在狄拉克点产生带隙外,狄拉克点的另一个性质是位于布里渊区两端的两个狄拉克点是简并的(被视为一种赝自旋)。通过区分两个简并的狄拉克点,得到两个与赝自旋方向有关的电流,这种性质可以被用来制作成赝自旋电子器件。而量子抽运是一种非常有效的产生电流的方法。
     本论文主要研究了一维双层扶手椅形石墨烯条带的输运性质和赝自旋方向有关的抽运电流。论文的内容主要包括以下这些方面。
     第一章从四个方面讲述了论文的研究背景。首先实验室中几种常用的石墨烯制备方法被列举出来进行了比较。然后我们详细讨论了一些石墨烯的基本特点。因为在这里主要关注的是石墨烯的输运性质,所以紧跟着通过与宏观和微观系统比较,我们介绍了介观体系下的电子输运。本章的最后提到了石墨烯在工业领域上存在广泛的潜在应用,并且它已经开始逐步走进我们的生活。
     第二章是理论部分,主要详细推导了计算过程中用到的各种公式。紧束缚近似模型,格林函数方法,散射矩阵是研究介观体系输运性质常用的方法。另一方面,量子抽运区别于它们也是一种常用的产生电流的方法。
     在第三章我们研究发现了从单层石墨烯条带入射的电子,经过一个双层区域,电子的透射几率随着两层相对位置的变化出现周期震荡。这是因为一个基本单元中每个电子的几率密度不同,有大有小,当两个较大几率密度的电子存在相互作用时层间相互作用强。因此当两层有相对移动时,存在层间相互作用的原子发生变化,导致层间相互作用的强弱发生改变,从而影响了通过两层区域时电子透射几率的大小。透射几率出现周期性震荡的性质可以用来测量层间的相对位移,并且精度可以达到10-10这个量级。
     第四章中用量子抽运的方法在一个局域拉伸的石墨烯中产生了一个纯赝自旋电流。完美石墨烯中K点和K’点是简并的,通过拉伸石墨烯可以消除简并。同时考虑两个反平行铁磁引起的矢量势,在一个由三个势垒构成的结构中就产生了一个与赝自旋指数有关的电流。因此这样的一种结构可以被用来制作赝自旋电子器件。
     延续第四章中的工作,我们用带隙来解除K点和K’点的简并去产生一个纯的赝自旋电流。部分区域用BN作衬底可以产生一个与空间位置有关的带隙,在上一章中三个势垒的结构上再考虑两个平行的铁磁矢量势,就可以得到一个纯的赝自旋电流。
     在本文的最后一章对各部分内容给出了一个总结。
Graphene, a two dimensional material which is formed by arranging carbon atoms in a hexagonal lattice, is attractive to researchers. It has been proved to have many unique properties, such as linear dispersion relation at the Dirac point, integer and half-integer quantum Hall effect, high electron mobility and so on. All of these properties make graphene become the ideal substitute for silicon in semi-conductor industry. In order to open a gap in graphene, we can confine the graphene along a special direction to form graphene ribbon. The confined direction and the width of the ribbon affect the value of the gap. The gap is opened at the Dirac points. As we already known that the Dirac points are degeneracy in graphene. Some researchers have focused on the transport property by differing the two degenerated Dirac points which is useful to make valleytronic device. On the other hand quantum pumping is a powerful method to research the transport in mesoscopic system. This thesis studied the transport property of the bilayer graphene ribbon and generated a pure valley current in graphene by using quantum pumping method. It contains the following chapters.
     Chapter one gives an introduction of the research background and it included four parts. Firstly we present the widely used methods in laboratory to product graphene and point out the advantage part and disadvantage part of each method. Secondly some graphene properties are discussed in detail. Next the mesoscopic transport theory is explained by comparing with the transpirt theory in macroscopic and microscopic system. At last it is necessary to specify the potential applications of graphene in many aspects of real life.
     Chapter two is the theory part where the formulas used in the calculation process are derived step by step. Tight-binding model, Green's function method, scattering matrix are all the favorite theories to the researchers when they solve the transport problem. Quantum pumping theory is different from previous ones where a current flow through the device without a bias.
     In chapter three we investigate the oscillation property of the transmission probability of the bilayer graphene ribbon with two single layer leads. The DOS of each atom in a unit cell are different. Thus in the bilayer region when the top layer moves relative to the bottom layer, the interlayer interaction strength changes which results in the change of electron transmission probability through the bilayer region. This property can be used to detect the relative movement of the two layers in the order of A.
     In chapter four we try to generate pure valley current in strain engineered graphene by quantum pumping. The K and K' valley are degenerate in clear graphene and are separated by the strain induced the vector potential. By adding two anti-parallel magnetic fields a pure valley current is pumped out in the structure. The proposed structure is easily realized in experiment and can be used to make valleytronics.
     Following the work done in chapter4, we try to separate the two valleys in another method. In chapter five a pure valley current is obtained by using local gapped graphene which is achieved by using BN substrate in specific region. The FM stripes are necessary for pure valley current generation, but they should be in anti-parallel configuration.
引文
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science,2004.306(5696):p.666-669.
    2. Krishnan, A., et al., Graphitic cones and the nucleation of curved carbon surfaces. Nature,1997.388(6641):p.451-454.
    3. Harigaya, K., et al., Novel electronic wave interference patterns in nanographene sheets. Journal of Physics-Condensed Matter,2002.14(36):p. L605-L611.
    4. Dujardin, E., et al., Fabrication of mesoscopic devices from graphite microdisks. Applied Physics Letters,2001.79(15):p.2474.
    5. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials,2007. 6(3):p.183-191.
    6. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics,2009.81(1):p.109-162.
    7. Das Sarma, S., et al., Electronic transport in two-dimensional graphene. Reviews of Modern Physics,2011.83(2):p.407-470.
    8. Katsnelson, M.I., K.S. Novoselov, and A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nature Physics,2006.2(9):p.620-625.
    9. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005.438(7065):p.197-200.
    10. Zhang, Y, et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005.438(7065):p.201-204.
    11. Huertas-Hernando, D., F. Guinea, and A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Physical Review B,2006.74(15).
    12. Min, H., et al., Intrinsic and Rashba spin-orbit interactions in graphene sheets. Physical Review B,2006.74(16).
    13. Yao, Y.G., et al., Spin-orbit gap of graphene:First-principles calculations. Physical Review B,2007.75(4).
    14. Geim, A.K., Graphene:Status and Prospects. Science,2009.324(5934):p. 1530-1534.
    15. Van Bommel A J, Crombeen J E and van Tooren A, LEED and Auger electron observations of the SiC(0001) surface,1975, Surf. Sci.48 463.
    16. Hass, J., W.A. de Heer, and E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. Journal of Physics:Condensed Matter,2008. 20(32):p.323202.
    17. Choi, W., et al., Synthesis of Graphene and Its Applications:A Review. Critical Reviews in Solid State and Materials Sciences,2010.35(1):p.52-71.
    18. Emtsev, K.V., et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials,2009.8(3):p. 203-207.
    19. Berger, C., et al., Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B,2004.108(52):p.19912-19916.
    20. Juang, Z.-Y., et al., Synthesis of graphene on silicon carbide substrates at low temperature. Carbon,2009.47(8):p.2026-2031.
    21. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009.457(7230):p.706-710.
    22. Obraztsov, A.N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon,2007.45(10):p.2017-2021.
    23. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters,2008.93(11):p.113103.
    24. Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters,2009.9(1):p.30-35.
    25. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology,2010.5(8):p.574-578.
    26. Li, X., et al., Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters,2010.10(11):p. 4328-4334.
    27. Li, X.S., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science,2009.324(5932):p.1312-1314.
    28. Li, X.S., et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters,2009.9(12):p.4268-4272.
    29. Zhu, Y., et al., Graphene and Graphene Oxide:Synthesis, Properties, and Applications. Advanced Materials,2010.22(35):p.3906-3924.
    30. Paredes, J.I., et al., Graphene oxide dispersions in organic solvents. Langmuir, 2008.24(19):p.10560-10564.
    31. Marcano, D.C., et al., Improved Synthesis of Graphene Oxide. Acs Nano, 2010.4(8):p.4806-4814.
    32. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society,1958.80(6):p.1339-1339.
    33. McAllister, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials,2007.19(18):p. 4396-4404.
    34. Vandsburger, L., et al., Stabilized aqueous dispersion of multi-walled carbon nanotubes obtained by RF glow-discharge treatment. Journal of Nanoparticle Research,2009.11(7):p.1817-1822.
    35. Hazra, K.S., et al., Thinning of multilayer graphene to mono layer graphene in a plasma environment. Nanotechnology,2011.22(2):p.025704.
    36. Terrones, M., Materials Science Nanotubes Unzipped. Nature,2009. 458(7240):p.845-846.
    37. Jiao, L., et al., Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009.458(7240):p.877-880.
    38. Kosynkin, D.V., et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature,2009.458(7240):p.872-876.
    39. Sasaki, K.-i., S. Murakami, and R. Saito, Gauge Field for Edge State in Graphene. Journal of the Physical Society of Japan,2006.75(7):p.074713.
    40. Fujita, M., et al., Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan,1996.65(7):p.1920-1923.
    41. Wakabayashi, K., et al., Electronic and magnetic properties of nanographite ribbons. Physical Review B,1999.59(12):p.8271-8282.
    42. Peres, N., A. Castro Neto, and F. Guinea, Conductance quantization in mesoscopic graphene. Physical Review B,2006.73(19).
    43. Nakada, K., et al., Edge state in graphene ribbons:Nanometer size effect and edge shape dependence. Physical Review B,1996.54(24):p.17954-17961.
    44. Brey, L. and H. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B,2006.73(23).
    45. Ezawa, M., Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B,2006.73(4).
    46. Han, M., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters,2007.98(20).
    47. Zheng, H., et al., Analytical study of electronic structure in armchair graphene nanoribbons. Physical Review B,2007.75(16).
    48. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science,2008.320(5881):p.1308-1308.
    49. Zhu, Y., et al., Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. Acs Nano,2011.5(8):p. 6472-6479.
    50. Lee, J.Y., et al., Solution-processed metal nanowire mesh transparent electrodes. Nano Letters,2008.8(2):p.689-692.
    51. Ju, L., et al., Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology,2011.6(10):p.630-634.
    52. Zhao, X., et al., In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries. Advanced Energy Materials, 2011.1(6):p.1079-1084.
    53. Jang, B.Z., et al., Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices. Nano Letters,2011. 11(9):p.3785-3791.
    54. Lin, Y.M., et al., Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters,2009.9(1):p.422-426.
    55. Lin, Y.M., et al.,100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science,2010.327(5966):p.662-662.
    56. Han, M.Y., et al., Energy band-gap engineering of graphene nanoribbons. Physical Review Letters,2007.98(20).
    57. Foldi, P., et al., Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction. Physical Review B,2005.71(3).
    58. Beenakker, C.W.J. and H. Vanhouten, Quantum Transport in Semiconductor Nanostructures. Solid State Physics-Advances in Research and Applications, 1991.44:p.1-228.
    59. Zhou, B., et al., Magnetotransport and current-induced spin transfer torque in a ferromagnetically contacted graphene. Journal of Physics:Condensed Matter, 2010.22(44):p.445302.
    60. Zhang, Y.-T., et al., Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Physical Review B, 2010.81(16).
    61. Beenakker, C.W.J., Random-matrix theory of quantum transport. Reviews of Modern Physics,1997.69(3):p.731-808.
    62. Zhou, F., B. Spivak, and B. Altshuler, Mesoscopic mechanism of adiabatic charge transport. Physical Review Letters,1999.82(3):p.608-611.
    63. Hanggi, P. and F. Marchesoni, Artificial Brownian motors:Controlling transport on the nanoscale. Reviews of Modern Physics,2009.81(1):p. 387-442.
    64. Reimann, P., Brownian motors:noisy transport far from equilibrium. Physics Reports-Review Section of Physics Letters,2002.361(2-4):p.57-265.
    65. Khrapai, V., et al., Double-Dot Quantum Ratchet Driven by an Independently Biased Quantum Point Contact. Physical Review Letters,2006.97(17).
    66. Roche, B., et al., A two-atom electron pump. Nature Communications,2013. 4.
    67. Keller, M.W., et al., Accuracy of electron counting using a 7-junction electron pump. Applied Physics Letters,1996.69(12):p.1804.
    68. Switkes, M., An Adiabatic Quantum Electron Pump. Science,1999.283(5409): p.1905-1908.
    69. Pothier, H., et al., Single-Electron Pump Based on Charging Effects. Europhysics Letters,1992.17(3):p.249-254.
    70. Altshuler, B.L., CONDENSED MATTER PHYSICS:Pumping Electrons. Science,1999.283(5409):p.1864-1865.
    71. Martinis, J., M. Nahum, and H. Jensen, Metrological accuracy of the electron pump. Physical Review Letters,1994.72(6):p.904-907.
    72. Brouwer, P.W., Scattering approach to parametric pumping. Physical Review B,1998.58(16):p.10135-10138.
    73. Thouless, D., Quantization of particle transport. Physical Review B,1983. 27(10):p.6083-6087.
    74. Buttiker, M., H. Thomas, and A. Pretre, Current Partition in Multiprobe Conductors in the Presence of Slowly Oscillating External Potentials. Zeitschrift Fur Physik B-Condensed Matter,1994.94(1-2):p.133-137.
    75. Alos-Palop, M. and M. Blaauboer, Adiabatic quantum pumping in normal-metal-insulator-superconductor junctions in a mono layer of graphene. Physical Review B,2011.84(7).
    76. Sela, E. and Y. Oreg, Adiabatic Pumping in Interacting Systems. Physical Review Letters,2006.96(16).
    77. Splettstoesser, J., et al., Adiabatic Pumping through Interacting Quantum Dots. Physical Review Letters,2005.95(24).
    78. Reckermann, F., J. Splettstoesser, and M.R. Wegewijs, Interaction-Induced Adiabatic Nonlinear Transport. Physical Review Letters,2010.104(22).
    79. Zhou, Y. and M.W. Wu, Single-parameter quantum charge and spin pumping in armchair graphene nanoribbons. Physical Review B,2012.86(8).
    80. San-Jose, P., et al., Single-parameter pumping in graphene. Physical Review B, 2011.84(15).
    81. San-Jose, P., et al., Laser-induced quantum pumping in graphene. Applied Physics Letters,2012.101(15):p.153506.
    82. Prada, E., P. San-Jose, and H. Schomerus, Quantum pumping in graphene. Physical Review B,2009.80(24).
    83. Zhang, Q., K.S. Chan, and Z. Lin, Spin current generation by adiabatic pumping in mono layer graphene. Applied Physics Letters,2011.98(3):p. 032106.
    84. Zhang, Q., Z. Lin, and K.S. Chan, Pure spin current generation in monolayer graphene by quantum pumping. Journal of Physics:Condensed Matter,2012. 24(7):p.075302.
    85. Tiwari, R.P. and M. Blaauboer, Quantum pumping in graphene with a perpendicular magnetic field. Applied Physics Letters,2010.97(24):p. 243112.
    86. Benjamin, R. and C. Benjamin, Quantum spin pumping with adiabatically modulated magnetic barriers. Physical Review B,2004.69(8).
    87. Liu, J.-F. and K.S. Chan, Spin-polarized quantum pumping in bilayer graphene. Nanotechnology,2011.22(39):p.395201.
    88. Wakker, G.M.M. and M. Blaauboer, Quantum pumping in a ballistic graphene bilayer. Physical Review B,2010.82(20).
    89. Saha, A. and S. Das, Quantized charge pumping in a superconducting double-barrier structure:Nontrivial correlations due to proximity effect. Physical Review B,2008.78(7).
    90. Grichuk, E. and E. Manykin, Adiabatic quantum pumping in graphene with magnetic barriers. The European Physical Journal B,2013.86(5).
    91. Zhu, R. and M. Lai, Pumped shot noise in adiabatically modulated graphene-based double-barrier structures. Journal of Physics:Condensed Matter,2011.23(45):p.455302.
    92. Benjamin, C., How to detect a genuine quantum pump effect in graphene? Applied Physics Letters,2013.103(4):p.043120
    1. Landauer, R., Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. Ibm Journal of Research and Development, 1988.32(3):p.306-316.
    2. Landauer, R., Conductance from Transmission- Common-Sense Points. Physica Scripta,1992. T42:p.110-114.
    3. S. Data, Electronic Transport in Mesoscopic Conductors, Cambridge University Press, New York,1995.
    4. Buttiker, M., Symmetry of Electrical-Conduction. Ibm Journal of Research and Development,1988.32(3):p.317-334.
    5. Marsh, A.C. and J.C. Inkson, Scattering matrix theory of transport in heterostructures. Semiconductor Science and Technology,1986.1(4):p. 285-290.
    6. Xu, H., Scattering-matrix method for ballistic electron transport:Theory and an application to quantum antidot arrays. Physical Review B,1994.50(12):p. 8469-8478.
    7. Ko, D. and J. Inkson, Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems. Physical Review B,1988.38(14):p. 9945-9951.
    8. Uryu, S. and T. Ando, Electronic states in antidot lattices:Scattering-matrix formalism. Physical Review B,1996.53(20):p.13613-13623.
    9. Muttalib, K., J. Pichard, and A. Stone, Random-Matrix Theory and Universal Statistics for Disordered Quantum Conductors. Physical Review Letters,1987. 59(21):p.2475-2478.
    10. Xu, H., Method of calculations for electron transport in multiterminal quantum systems based on real-space lattice models. Physical Review B,2002.66(16).
    11. Wang, L.-G. and S.-Y. Zhu, Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers. Physical Review B,2010.81(20).
    12. Wang, L.-G. and X. Chen, Robust zero-averaged wave-number gap inside gapped graphene superlattices. Journal of Applied Physics,2011.109(3):p. 033710.
    13. Dell'Anna, L. and A. De Martino, Multiple magnetic barriers in graphene. Physical Review B,2009.79(4).
    14. Dell'Anna, L. and A. De Martino, Wave-vector-dependent spin filtering and spin transport through magnetic barriers in graphene. Physical Review B,2009. 80(15).
    15. Bercioux, D. and A. De Martino, Spin-resolved scattering through spin-orbit nanostructures in graphene. Physical Review B,2010.81(16).
    16. Chen, X., P.L. Zhao, and Q.B. Zhu, Double-periodic quasi-periodic graphene superlattice:non-Bragg band gap and electronic transport. Journal of Physics D-Applied Physics,2013.46(1).
    17. Zhao, P.-L. and X. Chen, Electronic band gap and transport in Fibonacci quasi-periodic graphene superlattice. Applied Physics Letters,2011.99(18):p. 182108.
    18. Sena, S.H.R., et al., Fractal spectrum of charge carriers in quasiperiodic graphene structures. Journal of Physics:Condensed Matter,2010.22(46):p. 465305.
    19. Korol, A.M. and V.M. Isai, Transmission Spectra of the Graphene-based Fibonacci Superlattice.2013 Ieee Xxxiii International Scientific Conference Electronics and Nanotechnology (Elnano),2013:p.131-133.
    20. Dietel, J. and H. Kleinert, Transport in graphene superimposed by a moving electrical superlattice potential. Physical Review B,2012.86(11).
    21. Burset, P., et al., Transport in superlattices on single-layer graphene. Physical Review B,2011.83(19).
    22. Zeb, M., K. Sabeeh, and M. Tahir, Chiral tunneling through a time-periodic potential in monolayer graphene. Physical Review B,2008.78(16).
    23. Pellegrino, F.M.D., G.G.N. Angilella, and R. Pucci, Resonant modes in strain-induced graphene superlattices. Physical Review B,2012.85(19).
    24. Lin, X., et al., Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation. Chinese Physics B,2011.20(4):p. 047302.
    25. Barbier, M., P. Vasilopoulos, and F.M. Peeters, Extra Dirac points in the energy spectrum for superlattices on single-layer graphene. Physical Review B, 2010.81(7).
    26. Tiwari, R. and D. Stroud, Tunable band gap in graphene with a noncentrosymmetric superlattice potential. Physical Review B,2009.79(20).
    27. Killi, M., S. Wu, and A. Paramekanti, Band Structures of Bilayer Graphene Superlattices. Physical Review Letters,2011.107(8).
    28. Abrikosov A A, Gorkov L P, Dzaloshinski I E, Methods of Quantum Field Theory in Statistical Physics, Englewood Cliffs, New Jersey:Prentice-Hall, Inc,1962.
    29. Bonch-Bluevich V L, Tyablikov S V. The Green Function Method in Statistical Mechanics, Amsterdam:North-Holland Publishing Company,1962
    30. Lifshitz E M, Pitaevskii L P, Statistical Physics, Vol.9 of Course of Theoretical Physics, Oxford:Pergamon Press,1980.
    31. Doniach S, Sondheimer E H, Green's Functions for Solid State Physicists, London:The Benjamin?Commings Publishing Company, Inc,1974.
    32. Fisher, D. and P. Lee, Relation between conductivity and transmission matrix. Physical Review B,1981.23(12):p.6851-6854.
    33. Brouwer, P.W., Scattering approach to parametric pumping. Physical Review B,1998.58(16):p.10135-10138.
    1. Novoselov, K.S., Electric Field Effect in Atomically Thin Carbon Films. Science,2004.306(5696):p.666-669.
    2. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials,2007. 6(3):p.183-191.
    3. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics,2009.81(1):p.109-162.
    4. Das Sarma, S., et al., Electronic transport in two-dimensional graphene. Reviews of Modern Physics,2011.83(2):p.407-470.
    5. Katsnelson, M.I., K.S. Novoselov, and A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nature Physics,2006.2(9):p.620-625.
    6. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005.438(7065):p.197-200.
    7. Zhang, Y., et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005.438(7065):p.201-204.
    8. Huertas-Hernando, D., F. Guinea, and A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Physical Review B,2006.74(15).
    9. Min, H., et al., Intrinsic and Rashba spin-orbit interactions in graphene sheets. Physical Review B,2006.74(16).
    10. Yao, Y.G., et al., Spin-orbit gap of graphene:First-principles calculations. Physical Review B,2007.75(4).
    11. Robinson, J.T., et al., Wafer-scale Reduced Graphene Oxide Films for Nanomechanical Devices. Nano Letters,2008.8(10):p.3441-3445.
    12. Chen, C.Y., et al., Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotechnology,2009.4(12):p. 861-867.
    13. Bunch, J.S., et al., Electromechanical Resonators from Graphene Sheets. Science,2007.315(5811):p.490-493.
    14. Garcia-Sanchez, D., et al., Imaging mechanical vibrations in suspended graphene sheets. Nano Letters,2008.8(5):p.1399-1403.
    15. Isacsson, A., Nanomechanical displacement detection using coherent transport in graphene nanoribbon resonators. Physical Review B,2011.84(12).
    16. Gonzalez, J.W., et al., Electronic transport through bilayer graphene flakes. Physical Review B,2010.81(19).
    17. Fujita, M., et al., Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan,1996.65(7):p.1920-1923.
    18. Li, X., et al., Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science,2008.319(5867):p.1229-1232.
    19. Han, M., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters,2007.98(20).
    20. Tapaszto, L., et al., Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnology,2008. 3(7):p.397-401.
    21. Campos-Delgado, J., et al., Bulk Production of a New Form of sp2Carbon: Crystalline Graphene Nanoribbons. Nano Letters,2008.8(9):p.2773-2778.
    22. Datta, S.S., et al., Crystallographic etching of few-layer graphene. Nano Letters,2008.8(7):p.1912-1915.
    23. Terrones, M., Materials Science Nanotubes Unzipped. Nature,2009. 458(7240):p.845-846.
    24. Kosynkin, D.V., et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature,2009.458(7240):p.872-876.
    25. Jiao, L., et al., Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009.458(7240):p.877-880.
    26. Cano-Marquez, A.G., et al., Ex-MWNTs:Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano Letters,2009.9(4):p.1527-1533.
    27. Zheng, H., et al., Analytical study of electronic structure in armchair graphene nanoribbons. Physical Review B,2007.75(16).
    28. Malard, L.M., et al., Probing the electronic structure of bilayer graphene by Raman scattering. Physical Review B,2007.76(20).
    29. Li, Y., et al., The structural and electronic properties of Li-doped fluorinated graphene and its application to hydrogen storage. International Journal of Hydrogen Energy,2012.37(7):p.5754-5761.
    30. Campos-Delgado, J., et al., Bulk production of a new form of sp(2) carbon: Crystalline graphene nanoribbons. Nano Letters,2008.8(9):p.2773-2778.
    31. Ellas, A.L., et al., Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic Nanoribbons Using Metal Clusters as Nanoscalpels. Nano Letters,2010.10(2):p.366-372.
    32. Jiao, L.Y., et al., Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology,2010.5(5):p.321-325.
    33. Sahu, B., et al., Energy gaps, magnetism, and electric-field effects in bilayer graphene nanoribbons. Physical Review B,2008.78(4).
    1. Novoselov, K.S., Electric Field Effect in Atomically Thin Carbon Films. Science,2004.306(5696):p.666-669.
    2. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials,2007. 6(3):p.183-191.
    3. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics,2009.81(1):p.109-162.
    4. Das Sarma, S., et al., Electronic transport in two-dimensional graphene. Reviews of Modern Physics,2011.83(2):p.407-470.
    5. Katsnelson, M.I., K.S. Novoselov, and A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nature Physics,2006.2(9):p.620-625.
    6. Britnell, L., et al., Resonant tunnelling and negative differential conductance in graphene transistors. Nature Communications,2013.4:p.1794.
    7. Zutic, I., J. Fabian, and S. Das Sarma, Spintronics:Fundamentals and applications. Reviews of Modern Physics,2004.76(2):p.323-410.
    8. Dery, H., et al., Nanospintronics Based on Magneto logic Gates. IEEE Transactions on Electron Devices,2012.59(1):p.259-262.
    9. Zhai, F., et al., Magnetic barrier on strained graphene:A possible valley filter. Physical Review B,2010.82(11):p.115442.
    10. Zhai, F, Y. Ma, and Y.-T. Zhang, A valley-filtering switch based on strained graphene. Journal of Physics:Condensed Matter,2011.23(38):p.385302.
    11. Cao, Z.-Z., Y.-F. Cheng, and G.-Q. Li, Strain-controlled electron switch in graphene. Applied Physics Letters,2012.101(25):p.253507.
    12. Gunlycke, D. and C.T. White, Graphene Valley Filter Using a Line Defect. Physical Review Letters,2011.106(13):p.136806.
    13. Liu, Y, et al., Controllable valley polarization using graphene multiple topological line defects. Physical Review B,2013.87(19):p.195445.
    14. Rycerz, A., J. Tworzydlo, and C.W.J. Beenakker, Valley filter and valley valve in graphene. Nature Physics,2007.3(3):p.172-175.
    15. Zhang, Z.Z., K. Chang, and K.S. Chan, Resonant tunneling through double-bended graphene nanoribbons. Applied Physics Letters,2008.93(6):p. 062106.
    16. Xiao, D., W. Yao, and Q. Niu, Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport. Physical Review Letters,2007. 99(23):p.236809.
    17. Garcia-Pomar, J., A. Cortijo, and M. Nieto-Vesperinas, Fully Valley-Polarized Electron Beams in Graphene. Physical Review Letters,2008.100(23):p. 236801.
    18. Pereira Jr, J.M., et al., Valley polarization due to trigonal warping on tunneling electrons in graphene. Journal of Physics:Condensed Matter,2009.21(4):p. 045301.
    19. Zhang, Q., K.S. Chan, and Z. Lin, Spin current generation by adiabatic pumping in monolayer graphene. Applied Physics Letters,2011.98(3):p. 032106.
    20. Zhang, Q., Z. Lin, and K.S. Chan, Pure spin current generation in monolayer graphene by quantum pumping. Journal of Physics:Condensed Matter,2012. 24(7):p.075302.
    21. Liu, J.-F. and K.S. Chan, Spin-polarized quantum pumping in bilayer graphene. Nanotechnology,2011.22(39):p.395201.
    22. Jiang, Y., et al., Generation of Pure Bulk Valley Current in Graphene. Physical Review Letters,2013.110(4):p.046601.
    23. Switkes, M., An Adiabatic Quantum Electron Pump. Science,1999.283(5409): p.1905-1908.
    24. Zhu, R. and H. Chen, Quantum pumping with adiabatically modulated barriers in graphene. Applied Physics Letters,2009.95(12):p.122111.
    25. Prada, E., P. San-Jose, and H. Schomerus, Quantum pumping in graphene. Physical Review B,2009.80(24):p.245414.
    26. Tiwari, R.P. and M. Blaauboer, Quantum pumping in graphene with a perpendicular magnetic field. Applied Physics Letters,2010.97(24):p. 243112.
    27. Connolly, M.R., et al., Gigahertz quantized charge pumping in graphene quantum dots. Nature Nanotechnology,2013.8(6):p.417-420.
    28. Roche, B., et al., A two-atom electron pump. Nature Communications,2013. 4.
    29. Benjamin, C., How to detect a genuine quantum pump effect in graphene? Applied Physics Letters,2013.103(4).
    30. Thouless, D.J., Quantization of particle transport. Physical Review B,1983. 27(10):p.6083-6087.
    31. Ni, Z.H., et al., Uniaxial Strain on Graphene:Raman Spectroscopy Study and Band-Gap Opening. Acs Nano,2008.2(11):p.2301-2305.
    32. Ni, Z.H., et al., Uniaxial Strain on Graphene:Raman Spectroscopy Study and Band-Gap Opening (vol 2, pg 2301,2008). Acs Nano,2009.3(2):p.483-483.
    33. Pereira, V. and A. Castro Neto, Strain Engineering of Graphene's Electronic Structure. Physical Review Letters,2009.103(4):p.046801.
    34. Pereira, V., A. Castro Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene. Physical Review B,2009.80(4):p.045401.
    35. Fujita, T., M.B.A. Jalil, and S.G. Tan, Valley filter in strain engineered graphene. Applied Physics Letters,2010.97(4):p.043508.
    36. Brouwer, P.W., Scattering approach to parametric pumping. Physical Review B,1998.58(16):p.10135-10138.
    37. Wang, L.-G. and S.-Y. Zhu, Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers. Physical Review B,2010.81(20):p.205444.
    1. Novoselov, K.S., Electric Field Effect in Atomically Thin Carbon Films. Science,2004.306(5696):p.666-669.
    2. The rise and rise of graphene. Nature Nanotechnology,2010.5(11):p. 755-755.
    3. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics,2009.81(1):p.109-162.
    4. Das Sarma, S., et al., Electronic transport in two-dimensional graphene. Reviews of Modern Physics,2011.83(2):p.407-470.
    5. Katsnelson, M.I., K.S. Novoselov, and A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nature Physics,2006.2(9):p.620-625.
    6. Nakada, K., et al., Edge state in graphene ribbons:Nanometer size effect and edge shape dependence. Physical Review B,1996.54(24):p.17954-17961.
    7. Wakabayashi, K., et al., Electronic and magnetic properties of nanographite ribbons. Physical Review B,1999.59(12):p.8271-8282.
    8. Brey, L. and H. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B,2006.73(23).
    9. Ezawa, M., Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B,2006.73(4).
    10. Han, M., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters,2007.98(20).
    11. Zheng, H., et al., Analytical study of electronic structure in armchair graphene nanoribbons. Physical Review B,2007.75(16).
    12. Kane, C.L. and E.J. Mele, Quantum Spin Hall Effect in Graphene. Physical Review Letters,2005.95(22).
    13. Min, H., et al., Intrinsic and Rashba spin-orbit interactions in graphene sheets. Physical Review B,2006.74(16).
    14. Huertas-Hernando, D., F. Guinea, and A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Physical Review B,2006.74(15).
    15. Yao, Y.G., et al., Spin-orbit gap of graphene:First-principles calculations. Physical Review B,2007.75(4).
    16. Novoselov, K., Mind the gap. Nature Materials,2007.6(10):p.720-721.
    17. Kim, S., et al., Origin of Anomalous Electronic Structures of Epitaxial Graphene on Silicon Carbide. Physical Review Letters,2008.100(17).
    18. Nguyen, T.C., M. Otani, and S. Okada, Semiconducting Electronic Property of Graphene Adsorbed on (0001) Surfaces of SiO_{2}. Physical Review Letters, 2011.106(10).
    19. Giovannetti, G., et al., Substrate-induced band gap in graphene on hexagonal boron nitride:Ab initio density functional calculations. Physical Review B, 2007.76(7).
    20. Ribeiro, R., et al., Inducing energy gaps in monolayer and bilayer graphene: Local density approximation calculations. Physical Review B,2008.78(7).
    21. Zhou, S.Y., et al., Substrate-induced bandgap opening in epitaxial graphene. Nature Materials,2007.6(10):p.770-775.
    22. Zhai, F., Y. Ma, and Y.-T. Zhang, A valley-filtering switch based on strained graphene. Journal of Physics:Condensed Matter,2011.23(38):p.385302.
    23. Cao, Z.-Z., Y.-F. Cheng, and G.-Q. Li, Strain-controlled electron switch in graphene. Applied Physics Letters,2012.101(25):p.253507.
    24. Wang, J., K.S. Chan, and Z. Lin, Quantum pumping of valley current in strain engineered graphene. Applied Physics Letters,2014.104(1):p.013105.
    25. Zhai, F., et al., Magnetic barrier on strained graphene:A possible valley filter. Physical Review B,2010.82(11).
    26. Rycerz, A., J. Tworzydlo, and C.W.J. Beenakker, Valley filter and valley valve in graphene. Nature Physics,2007.3(3):p.172-175.
    27. Zhang, Z.Z., K. Chang, and K.S. Chan, Resonant tunneling through double-bended graphene nanoribbons. Applied Physics Letters,2008.93(6):p. 062106.
    28. Gunlycke, D. and C.T. White, Graphene Valley Filter Using a Line Defect. Physical Review Letters,2011.106(13).
    29. Liu, Y., et al., Controllable valley polarization using graphene multiple topological line defects. Physical Review B,2013.87(19).
    30. Peters, E.C., et al., Valley-polarized massive charge carriers in gapped graphene. Physical Review B,2013.87(20).
    31. Zhai, F. and K. Chang, Valley filtering in graphene with a Dirac gap. Physical Review B,2012.85(15).
    32. Moldovan, D., et al., Resonant valley filtering of massive Dirac electrons. Physical Review B,2012.86(11).
    33. Lee, M.K., et al., Valley-based field-effect transistors in graphene. Physical Review B,2012.86(16).
    34. Liu, J.-F. and K.S. Chan, Spin-polarized quantum pumping in bilayer graphene. Nanotechnology,2011.22(39):p.395201.
    35. Zhang, Q., Z. Lin, and K.S. Chan, Pure spin current generation in mono layer graphene by quantum pumping. Journal of Physics:Condensed Matter,2012. 24(7):p.075302.
    36. Zhang, Q., K.S. Chan, and Z. Lin, Spin current generation by adiabatic pumping in mono layer graphene. Applied Physics Letters,2011.98(3):p. 032106.
    37. Prada, E., P. San-Jose, and H. Schomerus, Quantum pumping in graphene. Physical Review B,2009.80(24).
    38. Tiwari, R.P. and M. Blaauboer, Quantum pumping in graphene with a perpendicular magnetic field. Applied Physics Letters,2010.97(24):p. 243112.
    39. Connolly, M.R., et al., Gigahertz quantized charge pumping in graphene quantum dots. Nature Nanotechnology,2013.8(6):p.417-420.
    40. Roche, B., et al., A two-atom electron pump. Nature Communications,2013. 4.
    41. Switkes, M., An Adiabatic Quantum Electron Pump. Science,1999.283(5409): p.1905-1908.
    42. Zhu, R. and H. Chen, Quantum pumping with adiabatically modulated barriers in graphene. Applied Physics Letters,2009.95(12):p.122111.
    43. Thouless, D., Quantization of particle transport. Physical Review B,1983. 27(10):p.6083-6087.
    44. Brouwer, P.W., Scattering approach to parametric pumping. Physical Review B,1998.58(16):p.10135-10138.
    45. Wang, L.-G. and X. Chen, Robust zero-averaged wave-number gap inside gapped graphene superlattices. Journal of Applied Physics,2011.109(3):p. 033710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700