四角切圆燃煤锅炉超细煤粉再燃技术数值试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解决燃煤发电造成氮氧化物的污染问题,发展洁净煤发电技术是当前国际社会最为关心的问题之一。燃料再燃技术是一种有效的低NOx排放燃烧技术。早期的研究工作都把天然气作为再燃燃料,随着研究的深入,研究者发现以超细煤粉作为再燃燃料,在一定条件下可以实现类似、甚至高于天然气的NOx脱除效果,同时可减小未完全燃烧损失、提高NOx还原率,确保较高的锅炉燃烧效率。超细煤粉再燃技术中影响NOx生成量和飞灰含碳量的因素很多,可归结为再燃燃料本身特性和燃烧条件。通过揭示超细煤粉再燃过程NOx的生成和控制机理,研究工艺参数的最优配置是当前亟待解决的问题。虽然国内外对此进行了不少的试验与计算研究,但都局限在一维实验炉和小型中试炉,并多将重点集中在NOx脱除率上,对于飞灰含碳量的研究少有报道。
     本文在对煤粉燃烧产生NOx污染物的原理、控制技术进行归纳总结与分析的基础上,以我国典型的四角切圆燃烧煤粉锅炉为研究对象,建立合理的数学模型和几何模型对超细煤粉再燃过程进行全尺寸三维数值模拟,系统地研究了再燃燃料特性和燃烧参数对NOx排放、飞灰含碳量和锅炉热效率的影响规律。论文的主要工作和结论如下。
     (1)建立了模拟煤粉燃烧前期流场的数学模型,气相的湍流流动选择Realizablek-ε模型,气相湍流燃烧使用混合分数概率密度函数模型,煤粉颗粒相流动采用随机轨道方法,挥发分析出模型为双竞争反应热解模型,焦炭燃烧采用动力/扩散控制燃烧模型,用P-1辐射模型计算辐射传热。对四角切圆燃煤锅炉炉内热态流场进行了数值模拟,确定了其网格划分的最优方案,并且计算结果与实测结果基本相符,证明了上述数学模型和几何模型的有效性。
     (2)采用上述数学模型与NOx后处理模拟方法对四角切圆锅炉空气分级燃烧过程进行了数值模拟,探讨了OFA(火上风)风率和OFA喷口高度对NOx排放、飞灰含碳量和锅炉热效率的影响,结果表明,增加OFA风率可以降低NOx排放值,OFA喷口高度h对于NOx减排存在一个最佳值。NOx浓度的数值计算结果与实测结果吻合,表明了采用NOx后处理模拟方法研究氮氧化物排放情况的可靠性。
     (3)煤粉再燃技术是在空气分级的基础上实现燃料分级,利用上述数学模型与三个煤粉再燃还原NOx模型对超细煤粉再燃过程NOx生成特性与飞灰含碳量进行了数值模拟,将模拟后所得计算结果与试验结果进行了比较,证明了动力/扩散控制焦炭燃烧模型对UBC预测的有效性,评估了三个煤粉再燃还原NOx模型的有效性及适用范围。结果表明,改进模型大大提高了模拟NOx的精确度。另外,通过分析超细煤粉再燃过程NOx的生成特性,表明了超细煤粉再燃具有一种减少NOx排放量较大的综合潜力。
     (4)利用合适的煤粉再燃还原NOx模型对全尺寸锅炉的不同粒度的超细煤粉再燃过程进行了三维数值模拟,考察了再燃区长度、再燃燃料投射位置、再燃煤粉粒径、再燃量及再燃区过量空气系数对NOx排放、飞灰含碳量和锅炉热效率的影响。提出了燃烧工艺参数优化配置方案:对于不同粒度的安徽烟煤再燃煤粉,再燃燃料喷口相对高度h_0存在同一最佳值,为0.210左右,再燃区过量空气系数存在同一最佳值,在0.8~0.9之间,此时NOx的脱除率达到最高;超细煤粉再燃量宜在10%~20%之间选择;在实际的工程应用中,可以在保证燃尽要求的基础上增大再燃区长度;再燃煤粉的平均粒径宜在20μm~30μm之间选择。结果同时表明,以超细煤粉作为再燃燃料,对NOx还原效果明显改善,并能大幅度降低飞灰含碳量,提高锅炉燃烧效率与热效率。
     (5)利用合适的煤粉再燃还原NOx模型对全尺寸锅炉的不同煤种的超细煤粉再燃过程进行了三维数值模拟,综合研究了燃料特性与燃烧工艺参数对NOx排放、飞灰含碳量和锅炉热效率的影响。结果表明:在相同的条件下,褐煤再燃还原NOx的效果最好,其次是安徽淮南烟煤、神府烟煤、贫煤,无烟煤效果最差;在相同的条件下,褐煤再燃带来的飞灰含碳量最低,其次是安徽淮南烟煤、神府烟煤、贫煤,无烟煤再燃炉膛出口飞灰含碳量最高;对于不同煤种的超细再燃煤粉,再燃燃料喷口相对高度h_0存在同一最佳值,再燃燃料喷口最佳位置主要与主燃料的种类有关;当以不同煤种的超细煤粉为再燃燃料时,其对应不同的最佳再燃区过量空气系数。
     (6)通过分析上述结果,得到了主燃料煤粉干燥无狄基挥发分含量V_(daf)与再燃燃料喷口相对高度最佳值h_0op之间的关系和再燃煤粉干燥无灰基挥发分含量V_(daf)与再燃区过量空气系数最佳值SR_2op之间的关系
     当对锅炉实施煤粉再燃技术时,可根据主燃料煤粉和再燃煤粉干燥无灰基挥发分含量由上述关系式估算出其对应的再燃燃料喷口相对高度最佳值和再燃区过量空气系数最佳值,为燃烧参数的优化提供了便利的途径。
     (7)基于前文得到的优化参数对400t/h四角切圆煤粉炉设计了4个改造方案,空气分级、天然气再燃、超细烟煤粉再燃与超细褐煤粉再燃。模拟得出了各方案的温度场及出口温度、组分浓度场及组分出口平均浓度、NOx浓度场及其排放浓度、碳黑(soot)的排放浓度与飞灰含碳量。形成了从NOx脱除率、锅炉燃烧效率、锅炉热效率和锅炉结渣四个角度出发,评价不同改造方案优劣的方法。结果表明,超细褐煤粉再燃是4个改造方案中最理想的改造方案,NOx脱除率高,炉膛出口温升较小,排烟热量损失较小,并降低了炉膛出口不完全燃烧产物排放量和飞灰含碳量,增加了锅炉的燃烧效率与热效率,得到了比天然气再燃更低的碳黑排放量,更大程度的抑制了锅炉结渣,控制了环境污染。超细褐煤粉是三种再燃燃料当中最为理想的再燃燃料,它有优越的燃尽性,与天然气相比成本低并且对NOx有更强的还原性。
     (8)利用基于35t/h全尺寸锅炉数值试验得到的优化参数对容量更大(400t/h)、燃烧器喷口布置更复杂的锅炉设计了改造方案,分析改造方案的模拟结果可以看出,改造方案可以获得高效率、低污染的燃烧效果,从而在一定程度上说明了本文得到的优化燃烧参数放大的准确性。本文计算结果可用于更大型号的锅炉燃烧参数的优化。
     本文的创新点是:
     (1)通过深刻分析超细煤粉再燃过程NOx的生成/还原机理与超细煤粉再燃条件下的热解特性,基于焦炭N转化为NO模型,提出了考虑还原性组分H_2对NO的还原和燃料再燃对HCN含量的影响的煤粉再燃还原NOx改进模型,使NOx浓度的计算结果最大偏差由26%降低到9%。
     (2)基于全尺寸锅炉超细煤粉再燃过程的三维数值模拟,全面分析了再燃煤粉特性和燃烧工艺参数对NOx排放及脱除率、飞灰含碳量和锅炉热效率的影响规律,得到了锅炉燃烧综合效果较好时各参数的优化配置。并提出了最佳再燃燃料投射位置与主燃料煤粉干燥无灰基挥发分含量的定量关系式,最佳再燃区过量空气系数与再燃煤粉干燥无灰基挥发分含量的定量关系式。
     (3)针对大型四角切圆燃烧煤粉锅炉设计了改造方案,全方位定量分析比较了空气分级、天然气再燃、超细烟煤粉再燃与超细褐煤粉再燃4种改造方案,给出了各方案炉内详细的温度场,组分浓度场,NOx、碳黑等污染物的排放状况,并通过分析颗粒统计数据,确定了炉膛出口飞灰含碳量。提出了从NOx脱除率、锅炉燃烧效率、锅炉热效率和锅炉结渣四个角度出发,评价不同改造方案优劣的方法,从而确定了最优的改造方案和最佳的再燃燃料。
The pollutant NOx emission which come from coal combustion in power plant and the technology of clean coal-fired electric power have been paid more and more attention on in the world. Fuel reburning technology is one of the most efficient methods in NOx reduction. In the early research, natural gas was always being considered as the reburn fuel. With the improvement in reaearch, the researchers found micronized coal, under given conditions, can make an effect the same as, even more efficient than the NOx reduction efficiency of natural gas. Moreover, micronized coal reburning can effectively reduce NOx while minimizing carbon loss and keeping high heat efficiency. There are many factors that influence the NOx emission and unburned carbon in fly ash (UBC) during micronized coal reburning. This paper considered the factors as two hands. One is the characteristic of reburn fuel. The other is the combustion condition. The optimization of combustion parameters by revealing NOx formation and reduction mechanisms in micronized coal reburning has become an urgent problem to be solved. Up to now, simulations and experiments of coal reburning were conducted mostly for bench-scale furnace or pilot-scale furnace, which focused on the NOx reduction efficiency and were with so few reports about the unburned carbon in fly ash.
     The typically tangentially fired boiler was aimed to build reasonable mathematical model and geometrical model in order to conduct three dimensional numerical simulation of micronized coal reburning. The models were established through the generalization and analysis of the pollutant NOx emission mechanisms and control technology in coal combustion. Moreover, this paper conducted a systematical research on the effects of the combustion parameters and reburn fuel characteristics on the NOx emissions, unburned carbon in fly ash and the boiler heat efficiency. The major work and conclusions of present paper are as followings.
     1. The mathematical model was established to predict turbulence, combustion, and heat transfer in the full-scale tangentially fired utility boiler furnace. The turbulence was described by Realizable k -εturbulence model. Mixture fraction / probability density function model was employed to describe the chemical reaction and heat transfer process accrued in furnace. The stoichastic tracking model was applied to analyze the gas-solid flow field. The energy equation was solved directly, and radiation was depicted by P-1 model. The devolatilization process was modeled by two competing reaction model. Char combustion was modeled by diffusion-kinetics model. Furthermore, the optimum scheme of furnace meshing was obtained. The computational results are in good agreement with the experimental results, indicating that the mathematical and geometrical models described above are feasible in simulation of general coal combustion process.
     2. Three dimensional numerical simulation of air-staged combustion process in a full-scale tangentially fired boiler was conducted with those numerical models described above and a NOx post-processing approach to study the effects of the Over-fire air (OFA) ratios and the OFA heights on the NOx emissions, the unburned carbon in fly ash and the boiler heat efficiency. The results indicated that the OFA height has optimum value where NOx reduction efficiency is the highest. With the increase of OFA ratio, NOx reduction efficiency increases noticeably. The comparison between the measured and predicted NOx emissions shows a good coincidence, indicating that the post-processing approach is valid in prediction of NOx emission.
     3. Coal reburning technology was proposed in the foundation of the air-staged combustion technology. NOx formation and UBC in micronized coal reburning were simulated by the mathematical model described above and three NOx models. It proved that diffusion-kinetics char combustion model can be applied to predict UBC and evaluated the validity and the applicability of the three NOx models by comparing computational results and experimental ones. The results indicated that the improved model can greatly improve the NOx simulation accuracy. Moreover, it indicated that micronized coal reburning technology can largely reduce the NOx emissions through the analysis of NOx formation characteristic in micronized coal reburning.
     4. Three dimensional numerical simulation of micronized coal reburning for different reburn coal particle sizes in full-scale tangentially fired boiler was conducted by a suitable NOx model to study the effects of the reburn zone length, the height of reburn nozzles, the stoichiometric ratio in reburn zone, the reburn fuel fraction and the reburn coal fineness on the NOx reduction efficiency, the unburned carbon in fly ash and the boiler heat efficiency. The results indicated that the NOx reduction efficiency reaches the largest value when the relative height of reburn nozzles is about 0.210 and the stoichiometric ratio is between 0.8 and 0.9 in reburn zone; NOx reduction efficiency increases with reburn zone length, reburn fuel fraction and the decrease of reburn coal particle size; the optimum reburn fuel fraction is between 10% and 20%; the optimum particle size of reburn fuel is between 20μm and 30μm; the smaller the coal particle size is, the better the burnout performance of coal is, and the higher the boiler heat efficiency is.
     5. Three dimensional numerical simulation of micronized coal reburning for different reburn coal types in full-scale tangentially fired boiler was conducted by a suitable NOx model to study the effects of the combustion parameters and fuel characteristics on the NOx reduction efficiency, the unburned carbon in fly ash and the boiler heat efficiency. The results indicated that the more volatiles the coal is, the more effective the NOx reduction is, and the lower the UBC is; the type of reburn coal has no influence on the optimum injection location, but the type of primary coal has influence on the optimum injection location; the type of reburn coal has significant influence on the optimum stoichiometric ratio in reburn zone.
     6. By means of the analysis of results described above, the relationship between primary coal volatile matter V_(daf) and optimum relative height of reburn nozzles h_(0)op is h_0op= 0.361V_(daf)~(-0.155)and the relationship between reburn coal volatile matter V_(daf) and optimum stoichiometric ratio in reburn zone SR_2op isSR_2op = 0.336 + 3.66×10~(-2)V_(daf) -5.87×10~(-4)V_(daf)~2which can provide convenience for combustion parameter optimization in micronized coal reburning.
     7. A 400t/h tangentially fired boiler was reconstructed according to the optimum parameters obtained above. Four reconstruction projects had been promoted in this work. They are air staging, natural gas reburning, micronized bituminous coal reburning and micronized brown coal reburning. Numerical simulations had been processed on the four projects above. Temperature field, species concentration field, NOx concentration field, exit gas temperature, exit species concentration, exit NOx emission, exit soot emission and UBC for different projects were given respectively. The results showed that micronized brown coal reburning is the best reconstruction project of all with high NOx reduction efficiency, lower temperature rising at exit, and smaller heat loss due to exhaust gas. This project also can reduce the unburned carbon in fly ash, enhance the combustion efficiency and boiler heat efficiency, emit less soot than natural gas reburning, largely reduce the slag and control the environment pollution. Micronized brown coal is the best of the three reburn fuel. Brown coal is of superior burnout performance, and it was cheaper and with higher NOx reduction ratio than natural gas.
     8. A 400t/h boiler was reconstructed successfully according to the optimum parameters which obtained through numerical simulation of a 35t/h full-scale boiler. It proved that the computational results can be applied to optimize combustion parameters of larger boiler.
     The new ideas presented in this paper are as follows:
     Firstly, a improved NOx model considering the deoxidation property of H_2 gas and the effect of the fuel reburning on the content of HCN is established through the deep analysis of NOx formation and reduction mechanisms in micronized coal reburning and pyrogenation behavior of micronized coal under reburning condition, with which the NOx concentration is calculated. Compared with the experimental results, the deviations of present calculated results are within 9%, but the deviations of results calculated by the unimproved NOx model are within 26%.
     Secondly, based on the three dimensional numerical simulation of micronized coal reburning in full-scale tangentially fired boiler, systematic analyses have been carried out on the effects of the combustion parameters and reburn fuel characteristics on the NOx emissions, unburned carbon in fly ash and the boiler heat efficiency. Moreover, the optimum parameters are obtained for a better comprehensive effect. The quantitative relationship between primary coal volatile matter V_(daf) and optimum relative height of reburn nozzles h_0op, and the quantitative relationship between reburn coal volatile matter V_(daf) and optimum stoichiometric ratio in reburn zone SR_2op are established for the first time.
     Thirdly, comprehensive quantitative analysis and comparison of air staging, natural gas reburning, micronized bituminous coal reburning and micronized brown coal reburning have been conducted. The results show the temperature, the species and the pollution of NOx distributions in the furnace, and exit soot emission. Furthermore, the UBC is given through the analysis of the particle statistical data. Finally, according to the NOx reduction efficiency, the combustion efficiency, the boiler heat efficiency and the slag, the best reconstruction project and reburn fuel can be determined.
引文
[1]毕玉森.电站锅炉NOx排放现状、预测及技术政策,中国电力,1998,31(12):59-61.
    
    [2]毛健雄,毛健全,赵树民等.煤的清洁燃烧.北京:科学技术出版社,1998.
    
    [3] Xu Xuchang, Chen Changhe, QiHaiyin. Development of coal combustion pollution control for SO_2 and NOx in China. Fuel Processing Technology, 2000, 62 (2-3):153-160.
    
    [4]郭静,阮宜纶.大气污染控制工程.北京:化学工业出版社,2001.
    
    [5] Chen W Y, Ma L. Effect of heterogeneous mechanisms during reburning of nitrogen oxide.AIChE Journal, 1996, 42(7):1968-1975.
    
    [6] Burch T E, Tillman F R, Chen W Y et al. Partitioning of nitrogrnous species in thefuel-rich stage of reburning. Energy and Fuels, 1991, (5):231-237.
    
    [7] Smart J P, Morgen D J. The effectiveness of multi-fuel reburning in an internallyfuel-staged burner for NOx reduction. Fuel, 1994, 73(9):1437-1442.
    
    [8] Kichener A, Splieechoff H. The effect of different reburning fuels on NOx reduction.Fuel, 1994, 73(9):1443-1446.
    
    [9]刘忠,阁维平,高正阳等.超细煤粉的细度对再燃还原NO的影响.中国电机工程学 报,2003,23(10):204-208.
    
    [10]金晶,张孝忠,李瑞阳.超细煤粉再燃的模拟计算与试验研究.中国电机工程学报,2004,24(10): 215-218.
    
    [11]金晶,李瑞阳,张孝忠.超细煤粉还原NOx的试验研究.热能动力工程,2004,19(6):582-585.
    
    [12]周昊,邱坤赞,王智化等.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响.燃料化学学 报,2004,32(2):146-150.
    
    [13]Hampartsoumian E. , Folayan O.O.. Optimisation of NOx reduction in advanced coalreburning systems and the effect of coal type. Fuel. 2003, (82): 373-384.
    
    [14]Li S, Xu T, Zhou Q et al. Optimization of coal reburning in a 1MW tangentially firedfurnace. Fuel, 2007, 86:1169-1175.
    
    [15]Spliethoff H, Greul U, Ruediger H et al. Basic effect on NOx emissions in air stagingand reburning at a bench scale test facility. Fuel. 1996, 75 (5): 560-564.
    
    [16]Backreedy R I, Jones J M, Ma L et al. Prediction of unburned carbon and NOx in atangentially fired power station using single coals and blends. Fuel, 2005,84:2196-2203.
    
    [17]Pallare's J, Arauzo I, Diez L I. Numerical prediction of unburned carbon levels inlarge pulverized coal utility boilers. Fuel, 2005, 84:2364-2371.
    
    [18]王彦富,蒋军成,龚延风等.全尺寸隧道火灾实验研究与烟气逆流距离的理论预测.中国安全科 学学报,2007,17(8):37-41.
    
    [19]Vikhansky A., Bar-Ziv E., Chudnovsky B. et al. Measurements and numerical simulations??for optimization of the combustion process in a utility boiler. Int. J. Energy Res., 2004, 28(5): 391-401.
    
    [20]Stanmore B. R., Visona S. P.. Prediction of NO emissions from a number of coal-fired power station boilers. Fuel Process. Technol., 2000, 64(1): 25-46.
    
    [21]潘维,池作和,斯东波等.200MW四角切圆燃烧锅炉改造工况数值模拟.中国电机工程学报,2005, 25(8):110-115.
    
    [22]黄琴,蒋军成.重气泄漏扩散实验的计算流体力学(CFD)模拟验证.中国安全科学学报,2008, 18(1): 50-55.
    
    [23]王志荣,蒋军成,郑杨艳.连通容器气体爆炸流场的CFD模拟.化工学报,2007,58(4):854-861.
    
    [24]傅维镳.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003.
    
    [25]Zeldovich Y B. The oxidation of nitrogen in combustion and explosions. Acta Physicochim,URSS, 1946, 21:577-583.
    
    [26]Bowman C T. Kinetics of nitric oxide formation in combustion processes. In: Proceedingsof the Fourteenth Symposium (International) on combustion. Pittsburgh, PA, TheCombustion Institute, 1973, 270.
    
    [27]Hanson R K, Salimian S. Survey of rate constants in H/N/O systems. In: W C Gardiner,editor, Combustion Chemistry, 1984.
    
    [28]赵坚行.热动力装置的排气污染与噪声.北京:科学出版社,1995.
    
    [29]杨冬,路春美,王永征等.煤燃烧过程中氮氧化物的转化及控制.山西能源与节能,2003,(4): 14-16.
    
    [30]Fenimore C P. Formation of nitric oxide from fuel nitrogen in ethylent flames.Combustion and Flames, 1972, 19:289-302.
    
    [31]Fenimore C P. Formation of nitric oxide in premixed hydrocarbon flames. In: 13~(th) Symp.(Int' 1.) on Combustion. The Combustion Institute, 1971, 373.
    
    [32]Fenimore C P. Reactions of fuel-nitrogen in rich flame gases. Combustion and Flames,1976, 26:249-256.
    
    [33]Morely C. The mechanism of NO formation from nitrogen compounds in hydrogen flamesstudied by laser fluorescence. In: Proceedings of the Eighteenth Symposium(International) on Combustion. Pittsburgh, PA, The Combustion Institute, 1981, 23.
    
    [34]Schefer R W, Namazian M and Kelly J. In: combustion Research Facility News. Sandia,1991, 3(4).
    
    [35]DeSoete G G. Overall Reaction Rates of NO and N_2 Formation from Fuel Nitrogen. In: 15~(th)Symp. (Int' 1.) on Combustion. The Combustion Institute, 1975, 1093.
    
    [36]Dupont V, orkashanian M, Williams A et al. Reduction of NOx formation in natural gasburner flames. Fuel, 1993, 72(4):497-503.
    
    [37]钟北京,傅维标.燃烧过程中快速型氮氧化物排放形成机理及其影响因素.燃烧科学与技 术,1997,3(4):388-393.
    
    [38]新井纪男.燃烧生成物的发生与抑制技术.北京:科学出版社,2001.
    
    [39]徐璋.超细粉再燃降低NOx排放的热态试验研究与数值模拟:(博士学位论文).杭州:浙江大学, 2003.
    
    [40]神原,宝田,中川等.化学工学论文集,1993,19:496.
    
    [41]段树林,陈刚,辛颖等.燃烧室形状对柴油机燃烧及排放影响的试验研究.大连海事大学学报, 2002,28(3):60-64.
    
    [42]Fluent Inc. FLUENT User' s Guide and Tutorial Guide Version 6. 1. Lebanon: FLUENT Inc,2003.
    
    [43]Bowman C T. Chemistry of gaseous pollutant formation and destruction. In: W Bartok andA F Saroflm, eds. Fossil Fuel Combustion. J Wiley and Sons, Canada, 1991.
    
    [44]Levy J M, Chen L K, Sarofim A F et al. NO/Char reactions at pulverized coal flameconditions. In: 18~(th) Symp. (Int' 1.) on Combustion. The Combustion Institute, 1981.
    
    [45]Jones W P. The effect of temporal fluctuations in temperature on nitric oxide formation.Combustion Science and Technology, 1975, 10:93.
    
    [46]毕玉森.低氮氧化物燃烧技术的发展状况.热力发电,2000,(2):1-9.
    
    [47]曹焰等.电站燃煤锅炉控制NOx排放的技术策略.热力发电.1999,(6):2-4.
    
    [48]国家环境保护总局.火电厂大气污染排放标准.GB13223-2003,2003.
    
    [49]Chen S L, Cole J A, Heap M P et al. Advanced NO reduction processes using -NH and -CNcompounds In conjunction with staged air addition. In: Twenty - Second Symposium (International) on combustion. The Combustion Institute, Pittsburgh, PA, 1988,1135-1145.
    
    [50]Folsom B A, Payne K Moyeda D Vladimir Zamansky and Golden J. Advanced reburning withnew process enhancements. In: EPRI/EPA 1995 Joint Symposium on Stationary CombustionNOx Control. Kansas City, 1995.
    
    [51]Xu H, Smoot L D. A reduction model for NOx reduction by advanced reburning. Energy &fuels, 1998, 12:1278-1289.
    
    [52]Tree D R, Clark A W. Advanced reburning measurements of temperature and species in apulverized coal flame. Fuel, 2000, 79(13):1687-1695.
    
    [53]苏胜,向军,李敏等.先进再燃烧技术影响因素分析.电力环境保护,2004,20(1):37-41.
    
    [54]沈伯雄,孙幸福.影响先进再燃脱氮效率的因素分析.煤炭转化,2004,27(4):47-50.
    
    [55]沈伯雄,孙丰福.天然气先进再燃脱氮效率影响因素的实验与模拟研究.中国电机工程学报, 2005,25(5):146-149.
    
    [56]Enhancing the use of coals by gas reburning-sorbent injection. Vo]ume 2-Gas reburning-sorbent injection at Hennepin Unit 1. Illinois Power Company. U.S. Department of Energy, March 1996.
    
    [57]国家电站燃烧工程技术研究中心.元宝山发电厂#3锅炉超细化煤粉再燃低NOx燃烧技术模化试 验研究报告.2003.
    
    [58]陈炳华,张颉,孙锐等.运行参数对锅炉煤粉着火燃烧和飞灰含碳量影响的数值研究.动力工程, 2004,24(4):470-476.
    
    [59]Party M, Engle G. Formation of HCN by the action of nitric oxide on methane at atmospherepressure. General conditions of formation. Compt, Rend., 1950, 1302-1304.
    
    [60]Drummond L J. Shock Induced reactions of methane with nitrous and nitric oxides, Bull.Chem. Soc., Japan, 1969, 42:285.
    
    [61]Wendt J 0 L, Sternling C V, Matovich M A. Reduction of sulfur trioxide and nitrogenoxides by secondary fuel injection. In: Fourteecth Symposium (international) oncombustion. The Combustion Institute, Pittsburgh, PA, 1973, 897-904.
    
    [62]Myerson A L The reduction of nitric oxide in simulated combustion effluents byhydrocarbon-oxygen mixtures. In: Fifteenth Symposium (international) on combustion.Combustion Institute, Pittsburgh, PA, 1974, 1085-1092.
    
    [63]Babock&Wilcox Company. Demonstration of coal reburning for cyclone boiler NOx control.Comprehensive Report to Congress Clean Coal Technology program, DOE / FE-0157, 1990.
    
    [64]Folsom B A, Sommer T M, Payne R. Demonstration of Combined NOx and SO_2 emission control.technologies Involving gas reburning. In: AFRE-JFRC international Conference onEnvironmental Control of Combustion Processes, Honolulu, HI, 1991.
    
    [65]Power Generation Tech Update. A publication of GRI on the use of natural gas in utilityelectric power generation. 1994, 2(1).
    
    [66]李友荣,吴双应,卢啸风等.喷气再燃降低NOx排放炉内混合状况冷态模拟实验.重庆大学学报, 2001,24(4):117-119.
    
    [67]卢啸风,郑先国,刘汉周等.天然气再燃低NOx技术的冷模试验分析.重庆大学学报,2003, 26(5):40-45.
    
    [68]苏胜,向军,胡松,孙学信,张忠孝,朱基木.气体再燃降低NOx排放的实验研究.动力工程, 2004 24(6):884-888.
    
    [69]Takahashi Y, Sakai M, KUnimoto T et al. Proceedings of the 1982 Joint Symposium onstationary NOx Control, EPRI Report No. CS-3182, 1983.
    
    [70]Babock&Wilcox Company. Energy and Environmental Research Corporation. Evaluation ofgas reburning and low-NOx burners on a wall-fired boiler. Comprehensive Report toCongress Clean Technology Program, Irvine, CA, 1990.
    
    [71]曾东,巢江辉,郑守忠,蔡粗.携带流反应器中煤粉再燃烧NOx还原特性.环境科学,1999 20(4): 67-70.
    
    [72]钟北京,施卫伟,傅维标.煤和煤焦还原NOx的实验研究.工程热物理学报,2000,21(3):383-387.
    
    [73]李戈,师东波,池作和,潘维,岑可法.煤粉再燃还原NOx的实验研究.电站系统工程,2004 20(1), 44-46.
    
    [74]张强,李彦鹏,徐益谦.再燃还原NOx机理及其技术发展.环保技术,2001,(2):17-19.
    
    [75]徐华东,罗永浩,王恩禄,等.再燃烧技术及其在我国的应用前景.动力工程,2001,21(4):??1320-1323.
    
    [76]Nakamura M, Takashi K, Kuwahara M et al. Demonstration test and practical studies on combustion technologies of micro-pulverized coal. In: International Conference on Power Engineering-97. Tokyo, 1997, 2(2):453-458.
    
    [77]高正阳,阎维平,刘忠.低挥发分烟煤再燃还原NO的实验研究.华北电力大学学报,2003,30 (1): 41-44.
    
    [78]阎维平,高正阳,刘忠等.煤粉细度对再燃还原烟气氮氧化物影响的实验研究.电力科学与工程, 2003,2:1-4.
    
    [79]刘忠,阎维平,高正阳.停留时间对微细煤粉再燃还原NO效率的影响.燃烧科学与技术,2004, 10(4):354-358.
    
    [80]高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料N释放规律的试验研究.中国电机工程学报,2004, 24(8):238-242.
    
    [81]高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料C释放特性的试验研究.中国电机工程学报,2004, 24(10):244-248.
    
    [82]徐璋,李戈,潘维等.利用三次风细粉再燃降低NOx排放的凡个关键问题分析.热力发电, 2003(9):42-46.
    
    [83]徐璋,邓涛,李戈等.超细煤粉再燃降低NOx排放的试验研究.热力发电,2004,(2):34-37.
    
    [84]金晶,张忠孝,钟海卿等.超细煤粉分级燃烧降低NOx排放的试验.山东大学学报(工学版), 2004,34(5):26-29.
    
    [85]CONSOL Inc. Research and Development Micronized Coal Reburning Demonstration for NOx Control Final Report. 1999.
    
    [86]翁卫国,周俊虎,岑可法等.北京国华热电厂410t/h低NO燃烧系统机理及试验分析.电站系统 工程,2001,17(2):115-117.
    
    [87]文军,齐春松,王月明等.超细煤粉再燃技术在我国燃煤锅炉上的首次工程应用.热力发电, 2004(08):29-31.
    
    [88]Rafael bilbao, maria u. Alzueta. Experimental study and modeling of the burnout zonein the natural gas reburning process. Chemical Engineering Science. 1995, 50 (6):2579-2587.
    
    [89]Chen W Y, Ma L Importance of heterogeneous mechanisms during reburning of nitrogenoxide. in Third symposium on Coal Combustion, Beijing China, 1995: 594-601.
    
    [90]Greul U, Rudiger H, Spliethoff H et al. NOx controlled combustion in a bench scale testfacility. Proceedings of the 21st technical conference on coal utilization & fuelsystems. 1996, 21: 711-722.
    
    [91]Waseem A N, Robert E J, Jacob A P et al. Detailed measurements in a pulverized coalflame with natural gas reburning. Fuel, 1999, 78(6):689-699.
    
    [92]Folsom B. Three gas reburning field applications final results and long-termperformance. Combust. 1996(39): 1-18.
    
    [93]刘振琪.三级燃烧降低NOx生成量实验.热力发电,1999(2).
    
    [94]张忠孝,姚向东,乌晓江等.气体再燃低NOx排放试验研究.中国电机工程学报,2005,25(9): 99-102.
    
    [95]金晶,李瑞阳,陈占军等.煤粉粒度对煤粉燃烧NOx排放特性影响的试验研究.热力发电, 2004,33(9):16-26.
    
    [96]钟海卿,金晶,樊俊杰等.超细煤粉再燃技术降低NOx排放试验.上海理工大学学报,2005,27(1): 46-50.
    
    [97]苏胜,向军,胡松等.气体再燃降低NOx排放的实验研究.动力工程,2004,24(6):884-888.
    
    [98]钟北京,傅维标.再燃过程中HCN对NOx还原的重要性.燃烧科学与技术,2000,6(1):77-84.
    
    [99]钟北京,徐旭常.燃烧系统中燃料燃烧和NOx形成过程的计算机模拟.燃烧科学与技术,1995, 1(2):1-9.
    
    [100] 钟北京,施卫伟,傅维标.煤再燃过程中燃料特性对NO还原的影响.燃烧科学与技术,2001, 7(2):115-119.
    
    [101] 钟北京,施卫伟,傅维标.煤粉再燃过程中NO异相还原机理的重要性.燃烧科学与技术,2002, 8(1): 6-8.
    
    [102] Boyd R K, Kent J H. Three-Dimensional Furnace Computer Modeling. The 21~(st) Symp.(Int' 1.) on Combustion. The Combustion Institute Pittsburgh, 1986, p265-273.
    
    [103] Gomer K, Insser W. Prediction of Three Dimensional Flows in Verity Baler Furnacesand Comparison with Experiment. Comb. Sci and Tech, 1988, 58: P43-57.
    
    [104] 钟北京,傅维标.气体燃料雨燃对NOx还原的影响.热能动力工程,1999,14(6):419-423.
    
    [105] Shen Boxiong, Yao Qiang. Kinetic model for natural gas reburning. Fuel ProcessingTechnology. 2004, 85: 1301-1315.
    
    [106] Taniguchi M, Yamamoto K, Kobayashi H et al. A reduced NOx reaction model forpulverized coal combustion under fuel-rich conditions. Fuel, 2002, 81: 363-371.
    
    [107] Zarnitz R, Pisupati S V. Evaluation of the use of coal volatiles as reburning fuelfor NOx reduction. Fuel. 2007, 86:554-559.
    
    [108] Xu M, AzevedoJLT. Modelling of the combustion process and NOx emission in a utilityboiler. Fuel. 2000, 79:1611-1619.
    
    [109] Su S, Xiang J, Sun L et al. Numerical simulation of nitric oxide destruction bygaseous fuel reburning in a single-burner furnace. Proceedings of the CombustionInstitute, 2007, 31:2795-2803.
    
    [110] 岑可法,姚强,骆仲泱等.燃烧理论与污染控制.北京:机械工业出版社,2004.
    
    [111] 应展烽,陈志华,范宝春等.三维方管柱体可压绕流的大涡模拟.南京理工大学学报,2008, 32(2):154-159.
    
    [112] 徐江荣.气-固两相湍流模型的研究及煤粉浓淡旋流燃烧器两相流动的数值模拟:(博士学位 论文).杭州:浙江大学,1999.
    
    [113] 朱志强.W型火焰燃烧室燃烧过程及污染物生成的数值模拟:(硕士学位论文).北京:华北??电力大学,2000.
    
    [114] 费祥麟主编.高等流体力学.西安:西安交通大学出版社,1989.
    
    [115] 岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1990.
    
    [116] 黄卫星,诸海碧,黎梅等.气固循环床上行两相流颗粒曳力系数研究.四川大学学报,2008, 40(2): 53-57.
    
    [117] 王应时,范维澄,周力行等.燃烧过程数值计算.北京:科学出版社,1986.
    
    [118] 周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991.
    
    [119] 傅维标.燃烧学.北京:高等教育出版社,1992.
    
    [120] Badzioch S, Hawkaley P G W. Kinetics of thermal decomposition of pulverized coalparticles. Ind. Eng. Chem. Process Design and Development, 1970, 9:521-530.
    
    [121] Baum M. M., Street P. J.. Predicting the combustion behavior of coal particles.Combust. Sci. Tech., 1971, 3(5):231-243.
    
    [122] Field M. A.. Rate of combustion of size-graded fractions of char from a low rankcoal between 1200K and 2000K. Combust. Flame, 1969, 13:237-252.
    
    [123] Smith I W. The combustion rates of coal chars: A Review. In 19~(th) Symp. (Int' 1.)on Combustion, The Combustion Institute, 1982, pp1045-1065.
    
    [124] Launder B E, Reece G J, Rodi W. Progress in the Development of a Reynolds-StressTurbulence Closure. J. Fluid Mech., 1975, 68(3):537-566.
    
    [125] 韩才元,徐明厚,周怀春等.煤粉燃烧.北京:科学出版社,2001.
    
    [126] Scheefer R W. Lean Premixed Recirculating flow combustion for control of oxidesof nitrogen. In: 16~(th) Symposium (Int.) on combustion, 1977, 119.
    
    [127] Sturgess G J. Modification of combustor stoichiometry distribution for reduced NOxemission form aircraft engines. J. of Engineering for Gas Turbine and Power, 1993,115:579.
    
    [128] Zhao J X. An analytical design methodology for an annular combustor. Comp. FluidDyn., 1994, 4:13.
    
    [129] Martino P D, Binque G. Numerical study of swirling reaction flow in a can-typecombustor. 1944, AIAA paper 94-0344.
    
    [130] Smoot L D, Smith P J. Coal combustion and gasfication. New York: Plenum Press, 1985.
    
    [131] Hampartsoumian E., Nimmo W. The prediction of NOx emission from spray combustor.Combust. Sci. and Tech., 1993, 93:153.
    
    [132] Liao C, Liu Z, Zheng X. NOx Prediction in 3-D Turbulent Diffusion Flames by UsingImplicit Multgrid Methods. Combust. Sci. and Tech., 1996, 119:219-260.
    
    [133] Guo Y C, Chan C K. A multi-fluid model for simulating turbulent gas-particle flowand pulverized coal combustion. Fuel, 2000, 79:1467.
    
    [134] Zhou L X, Qiao X L, Chen X L et al. AUSM Turbulence-Chemistry Model for SimulatingNOx Formation in Turbulent Combustion. Fuel, 2002, 81(13):1703-1709.
    
    [135] 张宇.旋流煤粉燃烧器NO生成的数值模拟和两相流动的实验研究:(博士学位论文).北京: 清华大学,2004.
    
    [136] 刘汉周.天然气再燃降低NOx排放的试验研究与数值模拟:(博士学位论文).重庆:重庆大 学,2006.
    
    [137] 周凯元.气体爆燃火焰在狭缝中的淬熄.火灾科学,1999,8(1):22-33.
    
    [138] 刘延雷,郑津洋,徐平等.环境温度对高压储氢罐泄露扩散影响的数值模拟.工程热物理学 报,2008,29(5):770-772.
    
    [139] ShihT.H., Liou W. W., Shabbir A. et al. Anew k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids. 1995, 24(3): 227-238.
    
    [140] 王福军.计算流体动力学分析.北京:清华大学出版社.2004.
    
    [141] 黄卫星,易彬,杨颖等.循环床气固提升管中颗粒浓度的轴向分布.四川大学学报,2000, 32(6):38-41.
    
    [142] 赵永志,郑津洋.宽粒径分布流化床的微观尺度模拟与分析.中国电机工程学报,2007, 27(35):55-61.
    
    [143] Crowe C.T.. Fall Meeting of the West. St. See. of the Comb, lnst, 1974.
    
    [144] Crowe C.T., D. T. Pratt. Spring Meeting of the Cen. St. Sec. of the Comb. lnst,1978.
    
    [145] Sloss L L NOx emission from coal combustion. IEA Coal Resersch/36, 1991.
    
    [146] Kuo K K Y. Principles of combustion. New York, Wiley, 1986.
    
    [147] Jones W. P., Whitelaw J. H.. Calculation methods for reacting turbulent flows: Areview. Combustion and Flame, 1982, 48: 1-26.
    
    [148] Siegel R, Howell J R. Thermal radiation heat transfer. Washington D C: HemispherePublishing Corporation, 1992.
    
    [149] Cheng P. Two-Dimensional Radiation Gas Flow by a Moment Method. AIAA Journal, 1964,(2): 1662-1664.
    
    [150] Hurt R, Sun J K, Lunden M. A kinetic model of carbon burnout in pulverized coalcombustion. Combust Flame, 1998, 113:181-197.
    
    [151] Stopford P J. Recent applications of CFD modeling in the power generation andcombustion industries. Applied Mathematical Modelling, 2002, 26(2): 351-74.
    
    [152] Mereb J, Wendt J O L. Reburning mechanisms in a pulverized coal combustor.Twenty-third Symposium (International) on Combustion. The Combustion Institute, 1990,1273-1279.
    
    [153] Arenillas A., Backreedy R. I., Jones J. M. et al. Modelling of NO formation in thecombustion of coal blends. Fuel, 2002, 81:627-636.
    
    [154] 陈汉平.计算流体力学.北京:水利电力出版社,1995.
    
    [155]Patankar S V.传热与流体的数值计算.北京:科学出版社.1984.
    
    [156] 陶文铨.数值传热学(第2版).西安:西安交通大学出版社.2001.
    
    [157] 浦晖,李学来.可调式引射器内流动的数值计算.福州大学学报,2006,34(1):145-148.
    
    [158] Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974, 3:269-289.
    
    [159] 段树林,辛颖,肖进.柴油机缸内气体流动过程的数值计算.大连海事大学学报,2001, 27(4):43-48.
    
    [160] 邓洋波,刘世青,钟兢军.AVE中钝体布置与燃烧室流动特性研究.工程热物理学报,2008, 29(8):1415-1418.
    
    [161] 孙平.600MW电站锅炉炉内多相流动、传热、燃烧过程及炉内偏差、污染、结渣的数值实验 研究:(博士学位论文).杭州:浙江大学,1999.
    
    [162] 谭厚章.四角切圆水平浓淡燃烧方式实验研究与数值模拟:(博士学位论文).西安:西安交 通大学,1998.
    
    [163] Purvis M.R.I., Tadulan E.L., Tariq A. S.. NOx control by air staging in a small biomass fuelled underfeed stoker. Int. J. Energy Res., 2000, 24(10): 917-933.
    
    [164] Ren J. X., Li F. Q., Gu Q. Y. et al. Low NOx combustion technology of China and staged combustion. Energy and the Environment Proceedings of the International Conference on Energy and the Environment, Shanghai, China, Dec. 2003.
    
    [165] 宋贵良,锅炉计算手册(上册).沈阳:辽宁科学技术出版社,1995.
    
    [166] 张洪.煤炭发热量的几种测定方法及差别.四川水泥,2002,(6):10-11.
    
    [167] 周吴.大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究:(博士学位论文). 杭州:浙江大学,2004.
    
    [168] Del Vahl Davis. G, Mallinson G. D.. False diffusion in numerical fluid mechanics.Univ of New South Wales, School of Mech. and Ind. Eng. Rept. 1972/FMT/1.
    
    [169] Leonard B P. A stable and accurate convective modeling procedure based on quadraticupstream interpolation. Comput Meth Appl Mech Eng, 1979, 29:59-98.
    
    [170] 刘霞,高小涛,肖军等.400t/h煤粉锅炉分级送风低NOx燃烧数值模拟.燃烧科学与技术, 2006,12(3):274-280.
    
    [171] 宋亚强.煤粉炉低NOx燃烧技术的数值试验研究:(硕士学位论文).南京:东南大学,2005.
    
    [172] Song Y H. Fate of fuel nitrogen during pyrolysis and oxidation. Proceeding of secondstationary source combustion symposium. 2001.
    
    [173] DOE/NETL. Micronized coal reburning demonstration for NOx control. US Departmentof Energy and National Energy Technology Laboratory, DOE/NETL-2001/1148, 2001.
    
    [174] Smoot L D, Hill S C, Xu H. NOx control through reburning. Progress in Energy andCombustion Science, 1998, 24(5):385-408.
    
    [175] 金晶.超细煤粉分级燃烧NOx还原过程的研究:(博士学位论文).上海:上海理工大学,2005.
    
    [176] 樊俊杰,张忠孝,金晶.煤粉再燃燃烧含氮组分转化机理的敏感性分析.中国工程热物理学 会燃烧学学术会议论文集,天津,2007,074075:182-187.
    
    [177] 刘圣华,姚明宇,张宝剑.洁净燃烧技术.北京:化学工业出版社,2006.
    
    [178] 魏小林,田文栋,盛宏至.高水分煤在流化床中燃烧时NOx的排放特性.热能动力工程,1999, 14(81):205-211.
    
    [179] 郭永红,孙保民,康志忠.超细粉再燃技术中HCN对NOx的生成和还原的影响.电站系统工 程,2005,21(2):15-17.
    
    [180] 姜秀民,李巨斌,邱健荣.超细煤粉燃烧特性的研究.中国电机工程学报,2000,20(6): 71-74.
    
    [181] Turns S R. An Introduction to Combustion. New York, McGraw-Hill Inc, 1996.
    
    [182] Maly Peter M, Zamansky Vladimir M. Loc Ho et al. Alternative fuel reburning. Fuel,1999, 78(3): 327-334.
    
    [183] Wendt J O L. Mechanisms governing the formation and destruction of NO and othernitrogenous species in low NO coal combustion systems. combust Sci. Tech., 1995,108:323-344.
    
    [184] Liu Hao, Hampartsoumian Edward, Bernard M. Gibbs. Evaluation of optimal fuelcharacteristics for efficient NO reduction by coal reburning. Fuel, 1997,76(11):985-993.
    
    [185] Rudiger H, Greul U, Spliethoff H, et al. Distribution of fuel nitrogen in pyrolysisproducts used for reburning. Fuel, 1997, 76(3):201-205.
    
    [186] 刘小伟,姚洪,蔡攸敏等.煤粉密度对燃煤过程中颗粒物形成特性的影响.化工学报,2007, 58(10):2567-2571.
    
    [187] 张洪,胡光洲,范佳鑫等.矿物在煤粉中的分布规律研究.工程热物理学报,2008,29(7): 1231-1235.
    
    [188] 李芳.燃煤锅炉分级燃烧过程的数值模拟:(硕士学位论文).大连:大连理工大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700