苏南丘陵山区主要森林类型防水蚀功能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选择苏南丘陵山区主要森林类型——麻栎林、毛竹林、杉木林、马尾松林为研究对象,采用野外定位观测与室内模拟试验相结合的方法,研究了4种森林类型的林冠层、枯落物层和土壤层三个主要层次的防水蚀功能。主要结论如下:
     (1)不同森林类型林冠层的水文功能存在着一定的差异,毛竹林的林冠截留率最高(26.64%),其次为麻栎林(22.64%),再次为杉木林(21.29%),马尾松林最低(15.28%);林冠截留量随降雨量的增加呈Power型曲线(y=axb)增加,林冠截留率随降雨量的增加呈Logarithmic型曲线(y=a+blnx)减少。各森林类型对降雨侵蚀力有着较好的削弱作用,麻栋、毛竹、杉木、马尾松的年林内降雨侵蚀力分别为林外的63.397%、49.605%、63.536%和74.035%。
     (2)枯落物层最大持水量排序为麻栎林(39.214 t·hm-2)>毛竹林(38.182t·hm-2)>杉木林(17.734 t·hm-2)>马尾松林(6.765 t·hm-2)。相同干重条件下,麻栎林枯落物层的糙率系数最高,其次为毛竹林,再次为杉木,马尾松林最低。枯落物层持水速度(mm/h)随浸水时间(h)的增加呈Power型曲线(y=axb)减少。糙率系数n值随枯落物层干重的增加呈Logarithmic型曲线(y=a+blnx)增加。
     (3)基于主成分分析,各森林类型土壤层水文功能排序为毛竹林>麻栎林>杉木林>马尾松林。基于灰色关联分析表明,各森林类型土壤抗蚀性以毛竹林较强,麻栎林和杉木林属于中等,马尾松林属较弱。土壤抗剪性能排序为麻栎>马尾松林>杉木林>毛竹林。土壤抗冲性能排序为毛竹林>杉木林>麻栎林>马尾松林。研究区各森林类型土壤的渗透性能、抗剪性能、抗冲性能均可用少数土壤理化因子组成的多元线性方程来表征。
     (4)本研究分别构建了具有一定广泛适用性和客观科学性的森林水源涵养功能综合评价方法、土壤抗水蚀功能综合评价方法、森林防水蚀功能综合评价体系。研究区森林类型水源涵养功能评价结果表明:毛竹林属于较好等级,麻栎林属于中等,杉木林属于较差等级,而马尾松林均属于差等级;土壤抗水蚀功能评价结果表明:毛竹林土壤属于较强等级,麻栎林、马尾松林和杉木林均属于中等;森林防水蚀功能评价结果表明:毛竹林属于较强等级,麻栎和杉木属于中等,马尾松林属于较弱。
This study chose main forests such as Quercus (Quercus acutissima), Bamboo (Phyllostachys pubescens), Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana Lamb) in the south hilly and mountain region of Jiangsu Province. The experiment studied the anti warer ersion fuction of the three main layers, such as canopy, litter and soil in the four typical forests by the method of the positioning observation in the field and indoor simulation. The main conclusions as follows:
     (1) There were some difference among the hydrological function of different forests, the canopy interception rate of Bamboo was the highest (26.64%), the second one was Quercus (22.64%), the third one was Chinese fir (21.29%), and the last one was Masson pine (15.28%). Canopy interception (mm) increased with the increase of rainfall (mm) by Power model (y=axb), canopy interception rate (%) reduced with the increase of rainfall (mm) by Logarithmic model (y=a+blnx). Four forests had slowed down the rainfall erosivity well, the annual rainfall erosivity under Quercus, Bamboo, Chinese fir and Masson pine were 63.397%,49.605%, 63.536% and 74.035% of the one outside respectively.
     (2) The largest water-holding capacity of litter was in order of Quercus (39.214t·hm-2)> Bamboo (38.182 t·hm-2)> Chinese fir(17.734t·hm-2)> Masson pine (6.765t·hm-2). When dry weigh was same, the roughness coefficient of litter of Quercus was the highest (26.64%), the second one was Bamboo, the third one was Chinese fir, and the last one was Masson pine. Water-holding velocity (mm/h) of litter reduced with the increase of impinging time (h) by Power model (y=axb). Roughness coefficient of litter increased with the increase of dry weigh by Logarithmic model (y=a+blnx).
     (3) Based on the principal component analysis, soil hydrological function was in order of Bamboo> Quercus> Chinese fir> Masson pine. Based on grey correlation analysis, evaluation results of soil anti-erodibility of forests showed that:Bamboo belonged to relatively strong, Quercus and Chinese fir belonged to middle, Masson pine belonged to relatively poor. Soil shear-resistantance of different forests was in order of Quercus> Masson pine> Chinese fir> Bamboo. Soil anti-scourability of different forests was in order of Bamboo> Chinese fir> Quercus> Masson pine. Soil permeability, soil shear-resistantance and soil anti-scourability could be described by plural linear regression equations of some soil physical and chemistry factors.
     (4) The comprehensive evaluation method of forest water conservation function, comprehensive evaluation method of soil anti water erosion function and comprehensive evaluation system of forest anti water erosion function, all of them had a certain extensive applicability and scientific. The evaluation results of forest water conservation function in the study region showed that:Bamboo belonged to relatively good, Quercus belonged to middle, Chinese fir belonged to relatively bad, Masson pine belonged to bad; the evaluation results of soil anti water erosion function showed that:Bamboo belonged to relatively strong, Quercus, Chinese fir and Masson pine belonged to middle; the evaluation results of forest anti water erosion function showed that:Bamboo belonged to relatively strong, Quercus and Chinese fir belonged to middle, Masson pine belonged to relatively poor.
引文
[1]丛日亮,黄进,张金池,等.苏南丘陵区主要林分类型土壤抗蚀性分析[J].生态环境学报,2010,19(8):1862-1867.
    [2]杨学军,姜志林.苏南丘陵主要森林类型地被层水源涵养功能研究[J].水土保持通报报,2001,21(3):28-31.
    [3]张彪,杨艳刚,张灿强.太湖地区森林生态系统水源涵养功能特征[J].水土保持研究,2010,17(5):96-100.
    [4]李士生,姜志林.苏南丘陵主要森林类型保持水土效益的研究[J].长江流域资源与环境,1994,3(1):54-59.
    [5]周跃,李宏伟,徐强.云南松林的林冠对土壤侵蚀的影响[J].山地学报,1999,17(4):324-328.
    [6]Wischmeier WH, Smith DD. A universal soil-loss equation to guide conservation farm planning. Trans. Int. Congr. Soil Sci.,7th, p.418-425.
    [7]王彦辉.几个树种的林冠降雨特征.林业科学[J].2001,37(4):2-9.
    [8]韩冰,吴钦孝,刘向东.林地枯枝落叶层对溅蚀影响的研究[J].防护林科技,1994,(2):7-1.
    [9]沈冰,王文焰.植被影响下的黄土坡地降雨漫流数学模型[J].水土保持学报,1993,7(1):23-2.
    [10]赵鸿雁,刘向东,吴钦孝.枯枝落叶层阻延径流速度研究[M].中国科学院西北水土保持研究所集刊.14集,1991.64-7.
    [11]陈奇伯,张洪江,谢明曙.森林枯落物及其苔藓层阻延径流速度研究[J].北京林业大学学报,1994,(1):26-31.
    [12]吴长文等.水土保持林中枯落物的作用[J].中国水土保持,1993,(11):28-30.
    [13]朱显谟.黄土高原脱贫致富之道——三论黄土高原的国土整治[J].水土保持学报,1998,(4):1-5.
    [14]王库.植物根系对土壤抗侵蚀能力的影响[J].土壤与环境,2001,10(3):250-252.
    [15]张爱国,李锐,杨勤科,张平仓.水蚀土壤因子野外测试问题探讨[J].人民黄河,2002,24(2):28-29.
    [16]王云琦,王玉杰,张洪江,肖江伟,吴云,陈林.重庆缙云山不同土地利用类型土壤结构对土壤抗剪性能的影响[J].农业工程学报,2006,22(3):40-45.
    [17]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    [18]杨永红,刘淑珍,王成华.土壤含水量和植被对浅层滑坡土体抗剪强度的影响[J].灾害学报,2006,21(2):51-54.
    [19]田积莹.子午岭连家砭地区土壤物理性质与土壤抗蚀性指标的初步研究[J].土壤学报,1964,12(3):21-38.
    [20]杨玉盛,何宗明等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2):32-37.
    [21]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀抗冲性及其指标的研究[J].中国水土保持,1992,(4).
    [22]王佑民,郭培才等.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(2):11-16.
    [23]尚金成,刘鑫卿,张勇传,等.基于多层神经元网络的随机自适应径流预报模型[J].水电能源科学,1995,13(1):18.
    [24]张科利,曹其新,细山田健三,等.神经网络模型在土壤侵蚀预报中应用的探讨[J].土壤侵蚀与水土保持学报,1995,1(1):58-63.
    [25]张洪江,北原曜.不同枯落物糙率系数室内试验方法[J].北京林业大学学报,1994,16(增刊4):79-84.
    [26]张洪江,北原曜.几种林木枯落物对糙率系数n值的影响[J].水土保持学报,1994,8(4):4-10.
    [27]中华人民共和国.土工实验方法标准[S].GBT50123-1999.
    [28]储小园.绪云山林地土壤侵蚀物理力学机制研究[D].北京林业大学博士论文.2010.6.
    [29]张建辉,刘刚才,倪师军,等.紫色土不同土地利用条件下土壤抗冲性研究[J].中国科学E辑技术科学,2003,33(增刊):61-68.
    [30]胡珊珊,于静洁,胡堃,等.华北石质山区有松林对降雨再分配过程的影响[J].生态学报,2010,30(7):1751-1757
    [31]黄进,张家洋,张金池,等.北亚热带次生毛竹林冠生态水文效应及其影响因素分析[J].水土保持通报报,2009,29(1):23-27.
    [32]黄进,杨会,张金池.桐庐生态公益林主要林分类型的土壤水文效应[J].生态环境学报,2009,18(3):1094-1099.
    [33]黄进,杨会,张金池.桐庐生态公益林主要林分类型土壤抗蚀性研究[J].水土保持学报,2010,24(1):49-52.
    [34]史晓梅,史东梅,文卓立.紫色土丘陵区不同土地利用类型土壤抗蚀性特征研究[J].水土保持学报,2007,21(4):63-66.
    [35]史长婷,王恩姮,陈祥伟.典型黑土区水土保持林对土壤可蚀性的影响[J].水土保持学报,2009,23(3):25-28.
    [36]任改,张洪江,程金花,等.重庆四面山几种人工林地土壤抗蚀性分析[J].水土保持学报,2009,23(3):20-24.
    [37]董慧霞,李贤伟,张健,等.退耕地三倍体毛白杨林地土壤抗蚀性研究[J].水土保持通报,2008,28(6):45-48.
    [38]姜培坤,愈益武,徐秋芳,等.商品林地土壤物理性质演变与抗蚀性的评价[J].水土保持学报,2002,16(1):112-115
    [39]张振国,黄建成,焦菊英.安塞黄土丘陵沟壑区退耕地植物群落土壤抗蚀性分析[J].水土保持研究,2008,15(1):28-31.
    [40]张振国,范变娥,白文娟,等.黄土丘陵沟壑区退耕地植物群落土壤抗蚀性研究[J].中国水土保持科学,2007,5(1):7-13.
    [41]史东梅,吕刚,蒋光毅,等.马尾松林地土壤物理性质变化及抗蚀性研究[J].水土保持学报,2005,19(6):35-39.
    [42]张金池,陈三雄,刘道平,浙江安吉主要植被类型土壤抗蚀性指标筛选及评价模型构建[J].亚热带水土保持,2006,18(2):1-5.
    [43]胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854-863.
    [44]于大炮,刘明国,邓红兵,等.辽西地区林地土壤抗蚀性分析[J].生态学杂志,2003,22(5):10-14.
    [45]王云琦,王玉杰,朱金兆.缙云山典型林分林地土壤抗蚀性分析[J].长江流域资源与环境,2005,14(6)755-780.
    [46]胡文忠,李文忠,高国雄,刘国强,周心澄,贾俊姝.北川河流域退耕还林不同配置模式对土壤抗冲性的影响[J].水土保持研究.2006,13(3):77-79.
    [47]朱显谟.甘肃中部土壤侵蚀调查报告[J].土壤专报,1958,(32).
    [48]朱显谟.我国十年水土保持工作的成就[J].土壤,1959,(10).
    [49]蒋定生,李新华等.黄土高原水土流失危险程度预警研究[J].土壤侵蚀与水土保持学报,1995,1(1):12-19.
    [50]李勇.朱显谟等.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,35(5):390-393.
    [51]吴佩华,郑世清等.黄土高原土壤抗冲性的试验研究[J].水土保持研究,1997,4(5):47-58.
    [52]朱显谟.黄土高原植被因素对水土流失的影响[J].土壤学报,1960,8(2),110-120.
    [53]刘国彬,张光辉.原状土冲刷法与人工模拟降雨法研究土壤抗冲性对比分析[J].水土保持通报,1996,16(2):32-37.
    [54]汪有科,吴钦孝等.林地枯落物抗冲性机理研究[J].水土保持学报,1993,7(1):75-80.
    [55]周佩华,武春龙.黄土高原抗冲性的试验研究方法探讨[J].水土保持学报,1993,7(1):29-34.
    [56]吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):11-16.
    [57]吴普特,周佩华等.黄土丘陵沟壑区土壤抗冲性研究[J].水土保持学报,1993,7(3),19-25.
    [58]黄进,张金池,杨会.桐庐生态公益林主要森林类型水源涵养功能综合评价[J].中国水土保持科学,2010,8(1):46-50.
    [59]鲁绍伟,毛富玲,靳芳,等.中国森林生态系统水源涵养功能[J].水土保持研究,2005,12(4):223-226.
    [60]王云琦,王玉杰,朱金兆.缙云山典型林分林地土壤抗蚀性分析[J].长江流域资源与环境,2005,14(6)755-780.
    [61]王伟,张洪江,李猛,等.重庆市四面山林地土壤水分入渗特性与评价[J].水土保持学报,2008,22(4):95-98.
    [62]张颖,牛健植,谢宝元,等.森林植被对坡面土壤水蚀作用的动力学机理[J].生态学报,2008,28(10):5084-5094.
    [63]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16-22.
    [64]朱兵兵,张平仓,王一峰,等.长江中上游地区土壤入渗规律研究[J].长江科学院院报,2006,28(4):43-47.
    [65]王鹏程,肖文发,张守攻,等.三峡库区主要森林植被类型土壤渗透性能研究[J].水土保持学报,2007(6):51-54.
    [66]袁建平,张素丽,张春燕,等.黄土丘陵区小流域土壤稳定入渗速率空间变异.土壤学报,2001,38(4):579-583.
    [67]刘少冲,段文标,陈立新.莲花湖库区几种主要林型水文功能的分析和评价[J].水土保持学报,2007,21(1):79-83.
    [68]王云琦,王玉杰.缙云山典型林分森林土壤持水与入渗特性[J].北京林业大学学报,2007,28(3):102-108.
    [69]吕刚,吴祥云,雷泽勇,等.辽西半干旱低山丘陵区人工林地表层土壤水文效应[J].水土保持学报,2008,22(5):204-208.
    [70]杨海龙,朱金兆,毕利东.三峡库区森林流域生态系统土壤渗透性能的研究[J].水土保持学报,2003,17(3):63-65.
    [71]潘紫文,刘强,佟得海.黑龙江省东部山区主要森林类型土壤水分的入渗速率[J].东北林业大学学报,2003,30(5):24-26.
    [72]王月玲,蒋齐,蔡进军,等.半干旱黄土丘陵区土壤水分入渗速率的空间变异性[J].水土保持通报,2008,28(4):52-55.
    [73]王伟,张洪江,李猛,等.重庆市四面山林地土壤水分入渗特性研究与评价[J].水土保持学报,2008,22(4):95-98.
    [74]黄进,张晓勉,张金池.桐庐生态公益林主要森林类型土壤抗水蚀功能综合评价[J].生态环境学报,2010,19(4):932-937.
    [75]王云琦,王玉杰,刘楠.三峡库区典型林分土壤抗侵蚀性能及评价[J].北京林业大学学报,2010,32(6):54-60.
    [76]张爱国,李锐,杨勤科.中国水蚀土壤抗剪强度研究[J].水土保持通报,2001,21(3):5-9.
    [77]张晴雯,雷廷武,潘英华,高佩玲.细沟侵蚀可蚀性参数及土壤临界抗剪应力的有理(实验)求解方法[J].中国科学院研究生院学报,2004,21(4):468-475.报,2002,39(3):296-300.
    [78]张爱国,李锐,杨勤科,张平仓.水蚀土壤因子野外测试问题探讨[J].人民黄河,2002,24(2):28-29.
    [79]王云琦,王玉杰,张洪江,肖江伟,吴云,陈林.重庆缙云山不同土地利用类型土壤结构对土壤抗剪性能的影响[J].农业工程学报,2006,22(3):40-45.
    [80]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    [81]刘秀萍,陈丽华,宋维峰.林木根系与黄土复合体的抗剪强度试验研究[J].北京林业大学学报,2006,28(5):68-72.
    [82]杨永红,刘淑珍,王成华.土壤含水量和植被对浅层滑坡土体抗剪强度的影响[J].灾害学,2006,21(2):51-54.
    [83]Asdak C, Jarvis PG, Gardingen PV, et al.Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan,Indonesia[J]. Journal of Hydrology,1998a,206:237-244.
    [84]Asdak C, Jarvis PG, Gardingen PV. Evaporation of intercepted precipitation based on an energy balance in unlogged and logged forest areas of central Kalimantan, Indonesia[J]. Agricultural and Forest Meteorology,1998b,92:173-180.
    [85]Berndtsson R, Nodomi K, Yasuda H, et al.Soil water and temperature patterns in an arid desert dune sand[J]. Journal of Hydrology,1996,185:221-240.
    [86]Bosch JM, Hewlett JD. A review of catchment experiments to determine the effect of vegetation changes on water yield and evaportranspiration[J]. Journal of Hydrology,1982,55:3-23.
    [87]Bronstert A, Plate EJ. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments[J]. Journal of Hydrology,1997,198:177-195.
    [88]Carlyle-Moses DE, Laureano JSF, Price AG. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico[J]. Journal of Hydrology,2004a,297:124-135.
    [89]Carlyle-Moses DE. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community[J]. Journal of Arid Environments,2004b,58:181-202.
    [90]Carlyle-Moses DE, Priceb AG. An evaluation of the Gash interception model in a northern hardwood stand[J]. Journal of Hydrology,1999,214:103-110.
    [91]Chuang YL, Oren R, Bertozzi AL, et al. The porous media model for the hydraulic system of a conifer
    [92]Deguchi A, Hattori S, Park H. The influence of seasonal changes in canopy structure on interception loss:Application of the revised Gash model[J]. Journal of Hydrology,2006,318:80-102.
    [93]Dietz J, Leuschner C, et al. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia[J]. ForestEcology and Management,2006,237: 170-178.
    [94]Dunkerley D. Measuring interception loss and canopy storage in dryland vegetation. A brief review and evaluation of available research strategies [J]. Hydrological Processes,2000,14:669-678.
    [95]Ford CR,Goranson CE,Mitchell RJ,et al.Diurnal and seasonal variability in the radial distribution of sap flow:predicting total stem flow in Pinus taeda trees[J]Tree Physiology,2004,24:951-960.
    [96]Garcia-Pausas J, Casals P, RomanyaJ. Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer[J]. Soil Biology and Biochemistry,2004,36:989-997.
    [97]Gash JHC, Valente F, David JS. Estimates and measurements of evaporation from wet, sparse pine forest in Portugal[J]. Agricultural and Forest Meteorology,1999,94:149-158.
    [98]Gash JHC, Lloyd CR, Lachaud G. Estimation sparse forest rainfall interception with ananalytical model[J]. Journal of Hydrology,1995,170:78-86.
    [99]Gash JHC, Wright IR, Lloyd CR. Comparative estimates of interception loss from three coniferous forests in Great Britain[J]. Journal of Hydrology,1980,48:89-105.
    [100]Gash JHC.An analytical model of rainfall interception in forests[J]. Quarterly Journal of the Royal Meteorological Society,1979,105:43-55.
    [110]Germann PF, Beven K. Kinematic wave approximation to infiltration into soils with orbing macropores[J].Water Resources Research,1985,21:990-996.
    [111]Germann PF, Edwards WM, Owens LB.Profiles of bromide and increased soil moisture after infiltration into soils with macropores[J]. Soil Science Society of America Journal,1984,48:237-244.
    [112]Giertz S, Diekkruger B.Analysis of the hydrological processes in a small headwater catchment in Benin(West Africa)[J]. Physics and Chemistry of the Earth.2003,28:1333-1341.
    [113]Gomez JA, Giraldez JV, Fereres E. Rainfall interception by olive trees in relation to leaf area[J]. Agricultural Water Management,2001,49:65-76.
    [114]Granier A, Biron P, Lemoine D. Water balance,transpiration and canopy conductance in two beech stands[J]. Agricultural and Forest Meteorology,2000,100:291-308.
    [115]Guevara-Escobar A,Gonzalez-Sosa E,Veliz-Chavez C,et al.Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area[J] Journal of Hydrology,2007,333:532-541
    [116]Hamada S, Ohta T, Hiyama T, et al. Hydrometeorological behaviour of pine and larch 103 forests in eastern Siberia[J]. Hydrological Processes,2004,18:23-39.
    [117]Hanchi A, Rapp M. Stemflow determination in forest stands[J]. Forest Ecology and Management,1997, 97:231-235.
    [118]Harmon ME, Franklin JF, Swanson FJ, t al. Ecology of coarse woody debris in Temperate Ecosystem[C]. Advances in Ecological Research,1986,15:133-1761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700