滇中高原典型植被演替进程中的生态化学计量比特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究滇中高原典型植被不同演替阶段的植物叶片、根系(粗根、细根)、土壤、凋落物C、N、P、K、Ca、Mg、Na元素含量及化学计量比特征、元素间的相互关系及元素化学计量比的影响因子,判断典型植被的养分限制状况,并揭示小尺度水平上典型植被演替过程中植物特征之间的协同性趋势。通过研究得到下列结论:
     1.植物叶片C、Mg含量随植被演替进程先升高后降低,P、K含量随植被演替进程呈降低的趋势,N、Ca、Na含量随演替进程上下波动;叶片N、P、K、Ca、Mg间具有明显的线性关系,植物叶片元素受根系N、P、K、Na的影响较大;植物叶片C/N、N/P、Mg/Na比随植被演替进程上下波动,K/Ca、Ca/Mg比随演替进程呈下降趋势,P/K比随演替进程先升高后降低;植被演替的前初期(草地、灌丛)群落受N、P限制,演替中期(混交林)群落受N、K限制,演替后期(阔叶林)群落受P、K限制;随着植被类型的改变,植物叶片元素计量比的影响因子存在差异;各计量比间也具有一定的相关性。
     2.植物粗根C、N、P、Ca、Na含量随植被演替进程呈上升趋势,K、Mg含量呈下降趋势;细根N、P、Ca、Mg含量随演替进程呈上升趋势,C、K、Na含量呈下降趋势;根系自身的N、P、K元素对其它元素的含量影响较大;粗根、细根元素间的相关性存在差异;土壤P、K、Mg对植物根系元素的影响较大;植物根系C/N、P/K、Mg/Na(?)匕随植被演替进程先升高后降低,N/P、K/Ca比随演替进程先下降后升高,Ca/Mg比随演替进程上下波动;土壤元素对根系元素计量比的影响较小,根系元素计量比受自身多种元素的共同调控。
     3.土壤容重随植被演替进程而减小,随土层深度增加而增大;土壤孔隙度随植被演替进程而增大,随土层深度增加而减小;土壤C、N、Na含量随植被演替进程先升高后降低,K、Ca、Mg含量随演替进程总体上呈下降的趋势,P含量随植被演替进程上下波动;垂直剖面上,四种不同植被下土壤C含量随土层深度加深而降低,N含量随土层深度的加深无明显规律,P、K含量的垂直分布较均匀,Ca、Mg、Na含量随土层深度的加深呈先升高后降低的变化趋势;土壤C、P、K、Ca、Mg(?)司线性关系明显;土壤K、Mg元素有相当部分来源于凋落物的归还;土壤各计量比值随植被演替进程呈先升高后降低的变化规律;不同植被下土壤C/N比随土层的加深而降低,P/K、Ca/Mg、Mg/Na比随土层的加深呈先升高后降低的变化规律,N/P、K/Ca比随土层的加深而升高;草丛、灌草丛、针阔混交林土壤元素的计量比受其C、P、K、Ca、Mg、Na的共同调控,阔叶林土壤元素的计量比则受其C、N、P、K、Ca、Mg的影响较大。
     4.四种植被下,针阔混交林凋落物的储量最大,阔叶林储量次之,草丛储量最小;凋落物C、K、Ca、Mg含量随演替进程而降低,N含量随演替进程表现出先升高后降低的规律,P、Na含量随演替进程上下波动;凋落物C、K、Ca、Mg、Na间具有明显的相关性;凋落物C/N、Ca/Mg比随植被演替进程先下降后升高,N/P、K/Ca比随演替进程先升高后降低,P/K比随演替进程而升高,Mg/Na比随演替进程而降低;凋落物的计量比与其的元素具有明显的线性关系。
This thesis researches the stages of succession of the typical vegetation in Yunnan Plateau on plant leaves, roots, soil, litter, the element content of C, N, P, K, Ca, Mg, Na and the stoichiometric ratio characteristics, the relationship between the research objects and the elements and the impact factors of the stoichiometric ratio, aiming at estimating the nutrient limit condition of the typical vegetation and revealing the synergistic trend among the plant characteristics during the process of typical vegetation succession in the small-scale level. The results showed that as follows:
     (1) The content of the leaf C and Mg showing first increases then decreases vary with the process of vegetation succession, while P, K content decreases, and N, Ca and Na content fluctuates; N, P, K, Ca and Mg content among the leaves shows obvious linear relationship, elements of plant leaves are impacted by the N, P, K and Na content in their roots greatly; the ratio of C/N, N/P, Mg/Na in the plant leaves appears fluctuation with the vegetation succession processed, the ratio of K/Ca, Ca/Mg shows downtrend with it, and the ratio of P/K first increases then decreases; at the initial phase of vegetation succession, the grass and shrub community growth are restrained by the content of N, P. At the medium time, the mixed forest community growth is restrained by the content of N, K. at the later stage, the broad-leaved forest community development is restrained by the content of P, K; with the change of vegetation type, the impact factors of the elements stoichiometric ratio in plant leaves are different; the stoichiometric ratios relates to each other.
     (2) the content of C, N, P, Ca, Na in plant coarse roots rises with the process of vegetation succession, and the content of K, Mg decreases; the content of N, P, Ca, Mg in plant fine roots rises with the process of vegetation succession, and the content of C, K, Na declines; the content of N, P, K in the root system itself has greater impact on the content of other elements; the correlation between coarse roots and fine roots elements differs; the content of P, K, Mg in the soil has great impact on the roots element; the content of C/N, P/K and Mg/Na of plant roots than first increases then decreases, the ratio of N/P, K/Ca first decreases then increases, the ratio of Ca/Mg fluctuates; the elements in the soil has a little influence on the root elements stoichiometric ratio, and it is jointly regulated by its own various elements.
     (3) The soil bulk density decreases with the vegetation succession process and increased with the soil depth; the soil porosity increases with the vegetation succession process and decreases with the soil depth; the content of C, N, Na in the soil first increases and decreases with the vegetation succession process, the content of K, Ca, Mg appears downtrend with the succession process in general, and the content of P fluctuates; on the vertical profile, the content of C in the soil under four different vegetation decreases with soil depth, while the content of N changes with no apparent rule, the content of P, K distributes uniformly in the vertical profile, the content of Ca, Mg, Na first increases then decreases with soil depth; the content of C, P, K, Ca, Mg in the soil shows obvious linear relationship; a considerable part of K, Mg element comes from the return of litter; all stoichiometric ratios in the soil first increase then decrease; under the different vegetation, the ratio of C/N decreases with soil depth, the ratio of P/K, Ca/Mg, Mg/Na first increase and then decrease with soil depth, while the ratio of N/P, K/Ca increases; the stoichiometric ratio of soil elements of grass, shrub conifer forest commonly controlled by of the content of C, P, K, Ca, Mg, Na in the soil, and the stoichiometric ratio of the soil elements in the broad-leaved forest is subject to the content of C, N, P, K, Ca, Mg.
     (4) as for litter reserves of four kinds of vegetation, the mixed coniferous forest has the most, broad-leaved forest takes second place, and the grass follows; in the litter, the content of C, K, Ca, Mg reduces with the succession process, the content of N first increases then decreases, the content of P and Na fluctuates in the succession process; the content of C, K, Ca, Mg, Na in the litter has significant correlation; the ratio of C/N, Ca/Mg in the litter first decreases then increases, the ratio of N/P, K/Ca is otherwise, the ratio of P/K increases, and the ratio of Mg/Na reduces; the litter stoichiometry ratio has a significant linear relationship with its elements.
引文
[1]郎南军,胡涌.云南天然林保护与可持续经营技术研究[J].北京林业大学学报.2002,24(1).6.
    [2]郭立群,王庆华,周洪昌,等.滇中高原区主要森林类型及其演变趋势[J].云南林业科技.1999,1.2-1].
    [3]郭立群,王庆华,周洪昌,等.滇中高原区主要森林类型林地土壤蓄水功能[J].云南林业科技.1999,1.26-30.
    [4]孟广涛,郎南军,方向京,等.滇中高原山地防护林体系水土保持效益研究[J].水土保持通报.2001,21(1).4.
    [5]秦海,”天童常绿阔叶林不同演替阶段植物叶片和土壤养分及其生态化学计量学研究[D],”硕士,华东师范大学,华东师范大学,上海,2009.
    [6]J. J. Elser, D. R. Dobberfuhl, N. A. MacKay, et al. Organism Size, Life History, and N:P Stoichiometry[J]. BioScience.1996,46 (9).11.
    [7]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报.2008,28(8).11.
    [8]D. S. Schimel. ALL LIFE IS CHEMICAL[J]. BioScience.2003/05/012003,53 (5).521-24.
    [9]M. Mendez and P. S. Karlsson. NUTRIENT STOICHIOMETRY IN PINGUICULA VULGARIS: NUTRIENT AVAILABILITY, PLANT SIZE, AND REPRODUCTIVE STATUS[J]. Ecology. 2005/04/012005,86 (4).982-91.
    [10]A. F. Michaels. The Ratios of Life[J]. Science. May 9,2003 2003,300 (5621).906-07.
    [11]J. J. E. Robert Warner Sterner, Ecological stoichiometry:the biology of elements from molecules to the biosphere[M]. princeton.UK:princeton university press,2002,
    [12]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报.2005,29(6).13.
    [13]J. Elser, W. Fagan, R. Denno, et al. Nutritional constraints in terrestrial and freshwater foodwebs[J]. Nature.2000,408.578-80.
    [14]A. Redfield. The biological control of chemical factors in the environment[J]. American Scientist. 1958,46.205-21.
    [15]D. Tilman. Resource competition and community structure[J]. Monographs in population biology. 1982,17.1-296.
    [16]V. P. M. Nutrient cycling and nutrient use efficiency [J]. The American Naturalist.1982,119
    [17]REINERS and W. A., Complementary models for ecosystems[M] vol.127. Chicago, IL, ETATS-UNIS:University of Chicago Press,1986,
    [18]D. W. Schindler. Balancing planets and molecules[J]. Nature.2003,423 (6937).225-26.
    [19]高三平,李俊祥,徐明策,等.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J].生态学报.2007,27(3).6.
    [20]周鹏,耿燕,马文红,等.温带草地主要优势植物不同器官间功能性状的关联[J].植物生态学报.2010,34(1).10.
    [21]徐冰,程雨曦,甘慧洁,等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[J].植物生态学报.2010,34(1).10.
    [22]潘复静,张伟,王克林,等.典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征[J].生态学报.2011,31(2).
    [23]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报.2010,34(1).5.
    [24]T. Andersen, Pelagic nutrient cycles:Herbivores as sources and sinks[M]. Berlin and New York: Springer-Verlag,1997.
    [25]T. Y. The C:N:P ratios of phytoplankton determine the relative amounts of dissolved inorganic nitrogen and phosphorus released during aerobic decomposition[J]. Hydrobiologia.1989,173.
    [26]V. H. Smith. Applicability of resource-ratio theory to microbial ecology[J]. Limnology and oceanography.1993a,38.239-49.
    [27]ELSER, J. J, URABE, et al., The stoichiometry of consumer-driven nutrient recycling:Theory, observations, and consequences[M] vol.80. Washington, DC, ETATS-UNIS:Ecological Society of America,1999.
    [28]JAENIKE, J., MARKOW, et al. Comparative elemental stoichiometry of ecologically diverse Drosophila[J]. Functional Ecology.2003,17 (115-120).
    [29]史建伟,张育平,王孟本,等.植物体内非结构性碳水化合物变化及其影响因素[J].湖北农业科学.2008,47(1).4.
    [30]郝玉兰,于涌鲲,植物生物学基础[M].北京:气象出版社,2009.
    [31]刘西军,徐小牛,陈学玲,等.不同类型森林土壤4种金属元素含量的研究[J].水土保持学报.2009,23(1).127-31.
    [32]汪洪,褚天铎.植物镁素营养的研究进展[J].植物学通报.1999,16(3).1.
    [33]刘勇.植物钾与钠素营养交互作用的研究进展[J].科技资讯.2009,(29).1.
    [34]孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报.2007,31(1).16.
    [35]F. AH. An architectural approach to comparative ecology of plant root systems[J]. New Phytologist. 1987,106.
    [36]A. Hodge, G. Berta, C. Doussan, et al. Plant root growth, architecture and function[J]. Plant and Soil. 2009,321(1).153-87.
    [37]汪洪,高翔,陈磊,等.硝态氮供应下植物侧根生长发育的响应机制[J].植物营养与肥料学报.2011,17(4).1005-11.
    [38]欧阳学军,黄忠良,周国逸,等.鼎湖山南亚热带森林群落演替对土壤化学性质影响的累积效应研究[J].水土保持学报.2003,17(4).4.
    [39]卢其明,林琳,庄雪影,等.车八岭不同演替阶段植物群落土壤特性的初步研究[J].1997,18(3).48-52.
    [40]王维奇,曾从盛,钟春棋,等.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学.2010,3 1(10).
    [41]赵元藩,温庆忠,艾建林.云南森林生态系统服务功能价值评估[J].林业科学研究.2010,23(2).7.
    [42]刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J].植物生态学报.2010,34(1).8.
    [43]J. G. C. T. Correlation between concentrations of elements in plants[J]. Nature.1976,261.
    [44]王维奇,曾从盛,钟春棋,等.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学.2010,3 1(10).241 1-16.
    [45]P.WM, P. J, Z. PJ, et al. Global patterns of soil nitrogen storage[J]. Nature.1985,317
    [46]黄昌勇,土壤学[M].北京:中国农业出版社,2000.
    [47]张银龙,王月菡,王亚超,等.南京市典型森林群落枯枝落叶层的生态功能研究[J].生态与农村环境学报.2006,22(1).4.
    [48]俞益武,吴家森,姜培坤,等.湖州市不同森林植被枯落物营养元素分析[J].浙江林学院学报.2002,19(2).4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700