碱土金属掺杂对铈锆固溶体结构及储放氧性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究铈锆固溶体的碱土金属掺杂改性,以改善材料的储放氧性能。研究了铈基储氧材料的反相微乳法制备工艺的优化,分别研究了四种碱土金属元素掺杂对铈锆固溶体的结构及性能的影响,研究了改性前后储氧材料与贵金属之间的相互作用,并分析了储放氧机理。
     通过绘制反相微乳体系的拟三元相图、采用TG-DTA、原位XRD等方法优化了铈锆固溶体的制备工艺。并对反相微乳法与溶胶凝胶法制备的样品进行了结构和性能的比较,反相微乳法制备的样品具有更大的比表面积,更高的晶相纯度及氧化还原性能。
     系统研究了Mg、Ca、Sr、Ba四种掺杂剂及不同掺杂浓度对Ce_(0.67)Zr_(0.33)O_2的物相结构和储放氧性能的影响。碱土金属掺杂可提高Ce_(0.67)Zr_(0.33)O_2的均相性及结构热稳定性,其中Ca和Sr具有适宜的离子半径,可进入Ce_(0.67)Zr_(0.33)O_2晶格形成三元固溶体,基于半径效应和电价平衡效应在面心立方结构的晶体中产生晶格缺陷和氧空位,从而提高体相和表面氧的扩散和迁移性能。Mg的离子半径较小,Ba的离子半径较大,均无法以阳离子取代方式进入Ce_(0.67)Zr_(0.33)O_2晶格,对其储放氧性能无明显的改善作用。
     采用TPR、动态OSC和CO脉冲等实验方法,并对测试前后的样品进行FTIR、Raman及TG-DTA等表征,推断铈基储氧材料的储放氧机理。储放氧过程中主要有表面氧、近表层晶格氧以及体相氧三个氧种参与,OSC过程中的反应遵循L-H机理,此外储放氧过程中发生了CO的歧化反应。
     以碱土金属改性的Ce_(0.67)Zr_(0.33)O_2为载体,负载贵金属Pd(0.5wt.%)后进行高温氧化还原处理,采用H2-TPR、三效催化性能评价对样品进行表征,以考察碱土金属改性对于铈锆固溶体与贵金属Pd之间相互作用的影响。结果表明,碱土金属掺杂对于Pd与CZ的相互作用有很大影响,主要取决于掺杂剂种类和掺杂浓度,这种相互作用的改变进而对于催化剂的三效催化活性也产生了一定的作用,Sr掺杂改性后的储氧材料与贵金属存在较强的相互作用,可显著提高CO、C_3H_8和NO的催化性能。
     自主研制了储放氧性能(OSC)测试装置,并建立了全面分析铈锆固溶体总储放氧和动态储放氧性能的实验方法,可以达到的最高测试频率为0.1Hz。
The aim of this paper is to investigate the doping effect of alkaline earth metals on chemical/structural properties and oxygen storage capacity (OSC) of CeO_2-ZrO_2 solid solution. The preparation procedure of reverse microemulison method was studied to produce ceria-based material. Also, the interaction of modified ceria-based material and Pd was studied. Further, mechanism of CO oxidation over ceria-based solid solution was studied.
     The quasi-ternary (cyclohexane/water/OP-10/n-hexanol) phase diagram was investigated to determine the W/O type microemulison region. The in situ XRD and TG-DTA technique were used to determine the proper calcine temperature. Some physical-chemical techniques such as XRD, BET, Raman and HRTEM are used to characterize the resultant powders. OSC (total OSC and dynamic OSC) and catalytic performance was also evaluated. The results showed that, compared with the sample with the same composition prepared by sol-gel method, the samples prepared by reversed microemulsion has higher surface area, narrower size distribution, less agglomeration, better purity in phase and better performance.
     To study the effect of alkaline earth metals (Mg、Ca、Sr、Ba) with the same electronic shell structure and different ionic radius on the structure/performance of Ce0.67Zr0.33O2, alkaline earth metals doped Ce0.67Zr0.33O2 was prepared via reverse microemuslsion method. Further high temperature reduction and mild temperature oxidation treatment (redox aged) was carried out on the samples. Results showed that, alkaline earth doping enhanced the phase purity, the thermal stability, which depends on the ionic radius. Ca and Sr have proper ionic radius and can create more oxygen ion vacancies and lattice defect in the fluorite lattice due to charge compensation and radius effect. So improved OSC was obtained after doping. But the ionic radius of Mg and Ba was either too small or too large for effect modification on the cell, and no positive effect was found on the improvement of OSC.
     The mechanism of CO oxidation under dynamic condition over ceria-based solid solution was studied using TPR, dynamic OSC and CO pulse measurement. The produced samples after measurement were characterized using FTIR, Raman and TG-DTA analysis. It was suggested that three kinds of oxygen species including surface oxygen, near surface oxygen and bulk oxygen participated the OSC process. The mechanism can be explained using L-H law and CO disproportionation (2CO=CO_2+C) reaction exist. The adsorption/desorption of CO, O2 and CO_2 also occurred with oxygen migration. Alkaline earth doping can promote the oxygen migration by the modification of surface and cell of Ce0.67Zr0.33O2 solid solution. On the other hand, the ability of CO_2 adsorption was improved due to the enhancement of alkalinity from doping.
     Pd(0.5wt.%)supported on the doped Ce0.67Zr0.33O2 was prepared by the impregnation method. Redox aging treatment was carried out before measurement. H2-TPR and catalytic activity of the samples was evaluated to study the interaction of Pd and OSC materials. Results showed that alkaline earth doping influenced greatly on the interaction depends on the kinds and content of dopant. Pd/CZSr has the best CO, C_3H_8 and NO conversion rate.
     The oxygen storage capacity (OSC) is a crucial property of CeO_2-ZrO_2 directly linked to the efficiency of TWC operating under fluctuating conditions. In this paper, an apparatus working under transient condition used for dynamic OSC measurement (less than 0.1Hz) was developed in our laboratory. Further, the quantitative and qualitative analysis method was developed to evaluate the OSC systematically.
引文
[1] Ka?par J, Fornasiero P, Hickey N, Automotive catalytic converters: current status and some perspectives, Catalysis Today, 2003, 77(4): 419~449
    [2] K?nig A, Herding G, Hupfeld B, et al., Current tasks and challenges for exhaust aftertreatment research. A viewpoint from the automotive industry, Topics in Catalysis, 2001, 16(1-4): 23~31
    [3] Gandhi H S, Graham G W, McCabe R W, Automotive exhaust catalysis, Journal of Catalysis, 2003, 216(1-2): 433~442
    [4] Webster D E, 25 years of catalytic automotive pollution control: a collaborative effort, Topics in Catalysis, 2001, 16(1-4): 33~38
    [5] 王务林,赵航,王继先,汽车催化转化器系统概论,北京:人民交通出版社,1999.10
    [6] 李玉山,王来军,文明芬等,单钯汽车尾气催化剂研究进展,化工新型材料,2006,34(7):1~4
    [7] Aneggi E, Boaro M, de Leitenburg C, et al., Insights into the redox properties of ceria-based oxides and their implications in catalysis, Journal of Alloys and Compounds, 2006, 408: 1096~1102
    [8] Di Monte R, Ka?par J, Heterogeneous environmental catalysis - a gentle art: CeO2-ZrO2 mixed oxides as a case history, Catalysis Today, 2005, 100(1-2): 27~35
    [9] Loong C K, Ozawa M, The role of rare earth dopants in nanophase zirconia catalysts for automotive emission control, Journal of Alloys and Compounds, 2000, 303, 60~65
    [10] Di Monte R, Ka?par J, On the role of oxygen storage in three-way catalysis, Topics in Catalysis, 2004, 28(1-4): 47~57
    [11] Wu X D, Yang B, Weng D, Effect of Ce-Zr mixed oxides on the thermal stability of transition aluminas at elevated temperature, Journal of Alloys and Compounds, 2004, 376(1-2): 241~245
    [12] Piras A, Trovarelli A, Dolcetti G, Remarkable stabilization of transition alumina operated by ceria under reducing and redox conditions, Applied Catalysis B: Environmental, 2000, 28(2): L77~L81
    [13] Jacobs G, Graham U M, Chenu E, et al., Low-temperature water-gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design, Journal of Catalysis, 2005, 229(2): 499~512
    [14] Suhonen S, Valden M, Hietikko M, et al., Effect of Ce-Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD, Applied Catalysis A: General, 2001, 218(1-2): 151~160
    [15] Liotta L F, Longo A, Macaluso A, et al., Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations, Applied Catalysis B: Environmental, 2004, 48(2): 133~149
    [16] Kenevey K, Valdivieso F, Soustelle M, et al., Thermal stability of Pd or Pt loaded Ce0.68Zr0.32O2 and Ce0.50Zr0.50O2 catalyst materials under oxidising conditions, Applied Catalysis B: Environmental, 2001, 29(2): 93~101
    [17] Di Monte R, Ka?par J, Fornasiero P, et al., NO reduction by CO over Pd/Ce0.6Zr0.4O2-Al2O3 catalysts: in situ FT-IR studies of NO and CO adsorption, Inorganica Chimica Acta, 2002, 334: 318~326
    [18] Cornelius S J, Collings N, Glover K, The role of oxygen storage in NO conversion in automotive catalysts, Topics in Catalysis, 2001, 16(1-4): 57~62
    [19] Ka?par J, Fornasiero P, Graziani M, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, 1999, 50(2): 285~298
    [20] Trovarelli A, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002, 73
    [21] Yao H C, Yu Yao Y F, Ceria in Automotive Exhaust CatalystsⅠ. Oxygen storage, Journal of catalysis, 1984, 86(2): 254~265
    [21] Trovarelli A, Boaro M, Rocchini E, et al., Some recent developments in the characterization of ceria-based catalysts, Journal of Alloys and Compounds, 2001, 323: 584~591
    [23] 郑育英,邓淑华,三效催化剂中助剂的研究进展,三峡大学学报,2004,26(1): 93~94
    [24] Cho B K, Chemical modification of catalyst support for enhancement of transient catalytic activity: nitric oxide reduction by carbon monoxide over rhodium, Journal of catalysis, 1991, 131(1): 74~87
    [25] Vidmar P, Fornasiero P, Ka?par J, et al., Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide, Journal of Catalysis, 1997, 171(1): 160~168
    [26] He H, Dai H X, Ng L H, et al., Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: An investigation on performance and redox properties, Journal of Catalysis, 2002, 206(1): 1~13
    [27] Murota T, Hasegawa T, Aozasa S, et al., Production method of cerium oxide with high storage capacity of oxygen and its mechanism, Journal of Alloys and Compounds, 1993, 193(2): 298~299
    [28] Ozawa M, Kimura M, Isogai A, The application of Ce-Zr oxide solid-solution to oxygen storage promoters in automotive catalysts, Journal of Alloys and Compounds, 1993, 193(1-2): 73~75
    [29] Fornasiero P, Balducci G, Di Monte R, et al., Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2, Journal of Catalysis, 2001, 164(1): 173~183
    [30] Ozawa M, Role of cerium-zirconium mixed oxides as catalysts for car pollution: A short review, Journal of Alloys and Compounds, 1998, 277: 886~890
    [31] Hori C E, Permana H, Ng K Y S, et al., Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system, Applied Catalysis B: Environmental, 1998, 16(2): 105~117
    [32] Fornasiero P, Ka?par J, Graziani M, On the rate determining step in the reduction of CeO2-ZrO2 mixed oxides, Applied Catalysis B: Environmental, 1999, 22(1): L11~L14
    [33] Vlaic G, Di Monte R, Fornasiero P, et al., Redox property-local structure relationships in the ph-loaded CeO2-ZrO2 mixed oxides, Journal of Catalysis, 1999, 182(2): 378~389
    [34] Sugiura M, Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions, Catalysis Surveys from Asia, 2003, 7(1): 77~87
    [35] Formasiero P, Di Monte R, Rao G R, et al., Rh-loaded CeO2-ZrO2 solid solutions as highly effects oxygen exchanges: Dependence of the reductions behavior and the oxygen storage capacity on the structural properties, Journal of Catalysis, 1995, 151(1): 168~177
    [36] Trovarelli A, Zamar F, Llorca J, et al., Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling, Journal of Catalysis, 1997, 169(4): 490~502
    [37] Suzuki T, Morikawa A, Suda A, Alumina-ceria-zirconia composite oxide for three-way catalyst, R&D Review of Toyota CRDL, 2002, 37(4): 28~33
    [38] 许大鹏,ZrO2和CeO2纳米材料及ZrO2-CeO2固溶体的高压研究,[博士学位论文],吉林大学,2000
    [39] Yasutaka Nagai, Takamasa Nonaka, Akihiko Suda, et al. Structure analysis of CeO2-ZrO2 mixed oxides as oxygen storage promoters in automotive catalysts[J]. R&D Review of Toyota CRDL, 37(4):20-27
    [40] Yashima M, Arashi H, Kakihana M, et al., Raman scattering study of cubic-tetragonal phase transition in Zr1-xCexO2 solid solution, Journal of the American Ceramic Society, 1994, 77(4): 1067~1071
    [41] Ka?par J, Fornasiero P, Baiducci G, et al., Effect of ZrO2 content on textural and structural properties of CeO2-ZrO2 solid solutions made by citrate complexation route, Inorganica Chimica Acta, 2003, 349: 217~226
    [42] Deguchi H, Yoshida H, Inagaki T, et al., EXAFS study of doped ceria using multiple data set fit, Solid State Ionics, 2005, 176(23-24): 1817~1825
    [43] Mastelaro V R, Briois V, de Souza D P F, et al., Structural studies of a ZrO2-CeO2 doped system, Journal of the European Ceramic Society, 2003, 23(2): 273~282
    [44] Vlaic G, Fornasiero P, Geremia S, Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr-O local structure, Journal of Catalysis, 1997, 168(2): 386~392
    [45] Letichevsky S, Tellez C A, de Avillez R R, et al., Obtaining CeO2-ZrO2 mixed oxides by coprecipitation: role of preparation conditions, Applied Catalysis B: Environmental, 2005, 58(3-4): 203~210
    [46] Mamontov E, Brezny R, Koranne M, et al., Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2, Journal of Physical Chemistry B, 2003, 107(47): 13007~13014
    [47] 罗孟飞,林瑞,陈敏,等,Ce-Zr-固溶体的制备和表征,中国稀土学报,2000,18(1):35~37
    [48] 庞秀江,龚茂初,王敏,等,沉淀方法对CeO2-ZrO2系储氧材料性能的影响,物理化学学报,2004,20(9):1155~1158
    [49] 冯长根,胡玉才,王丽琼,铈锆氧化物固溶体对全钯三效催化剂性能的影响,应用化学,2003,20(2):159~162
    [50] Morris M A, Reidy H M, Preparation of ceria-zirconia and yttria-zirconia mixed oxides of unusual pore structures, Ceramics International, 2005, 31(7): 929~935
    [51] Kumar K S, Mathews T, Sol-gel synthesis and microwave assisted sintering of zirconia-ceria solid solution, Journal of Alloys and Compounds, 2005, 391(1-2): 177~180
    [52] Dhage S R, Gaikwad S P, Muthukumar P, et al., Synthesis of Ce0.75Zr0.25O2 by citrate gel method, Materials Letters, 2004, 58(21): 2704~2706
    [53] 肖莉,林培琰,杨志柏,等,Ce-Zr 固溶体的纯度及其在三效催化剂中的应用,分子催化,2000,14(2):81~86
    [54] 郑育英,黄慧民,邓淑华,等,水热法制备高纯超细CeO2-ZrO2复合氧化物,无机化学学报,2005,21(8):1227~1230
    [55] Potdar H S, Deshpande S B, Deshpande A S, et al., Preparation of ceria-zirconia (Ce0.75Zr0.25O2) powders by microwave-hydrothermal (MH) route, Materials Chemistry and Physics, 2002, 74(3): 306~312
    [56] An Y, Li L, Wang J, et al., Preparation and characterization of CeO2-ZrO2 solid solution ultrafine particles using reversed microemulsion, Journal of rare earths, 2005, 23 (4): 416~419
    [57] Terribile D, Trovarelli A, Llorca J, et al., The preparation of high surface area CeO2-ZrO2 mixed oxides by a surfactant-assisted approach, Catalysis Today, 1998, 43(1-2): 79~88
    [58] Stark W J, Maciejewski M, Madler L, et al., Flame-made nanocrystalline ceria/zirconia: structural properties and dynamic oxygen exchange capacity, Journal of Catalysis, 2003, 220(1): 35~43
    [59] Potdar H S, Deshpande S B, Khollam Y B, et al., Synthesis of nanosized Ce0.75Zr0.25O2 porous powders via an autoignition: glycine nitrate process, Materials Letters, 2003, 57(5-6): 1066~1071
    [60] 杨絮飞,黎维彬,在水/环己烷微乳液体系中制备纳米级氧化锆微粒,物理化学学报,2002,18(1):5~9
    [61] 黎维彬,杨絮飞,在水/环己烷微乳液体系中制备高比表面积氧化锆,催化学报,2002,23(4):329~332
    [62] Masui T, Fujiwara K, Machida K I, et al., Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles, Chemistry of Materials, 1997, 9(10): 2197~2204
    [63] Daley R A, Christou S Y, Efstathiou A M, et al., Influence of oxychlorination treatments on the redox and oxygen storage and release properties of thermally aged Pd-Rh/CexZr1-xO2/Al2O3 model three-way catalysts, Applied Catalysis B: Environmental, 2005, 60(1-2): 117~127
    [64] Holmgren A, Andersson B, Duprez D, Interactions of CO with Pt/ceria catalysts, Applied Catalysis B: Environmental, 1999, 22(3): 215~230
    [65] Hickey N, Fornasiero P, Di Monte R, et al., A comparative study of oxygen storage capacity over Ce0.6Zr0.4O2 mixed oxides investigated by temperature-programmed reduction and dynamic OSC measurements, Catalysis Letters, 2001, 72(1-2): 45~50
    [66] Sakamoto Y, Kizaki K, Motohiro T, et al., New method of measuring the amount of oxygen storage/release on millisecond time scale on planar catalyst, Journal of Catalysis, 2002, 211(1): 157~164
    [67] Lambrou P S, Costa C N, Christou S Y, et al., Dynamics of oxygen storage and release on commercial aged Pd-Rh three-way catalysts and their characterization by transient experiments, Applied Catalysis B: Environmental, 2004, 54(4): 237~250
    [68] Sakamoto Y, Kizaki Y, Motohiro T, et al., New method of measuring the amount of oxygen storage/release on millisecond time scale on planar catalyst (vol 211, pg 157, 2002), Journal of Catalysis, 2002, 212(1): 124~124
    [69] Boaro M, Giordano F, Recchia S, et al., On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts, Applied Catalysis B: Environmental, 2004, 52(3): 225~237
    [70] Madier Y, Descorme C, Le Govic A M, Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: study by CO transient oxidation and 18O/16O isotopic exchange, The Journal of Physical Chemistry B, 1999, 103(50): 10999~11006
    [71] Boaro M, de Leitenburg C, Dolcetti G. et al., The dynamics of oxygen storage in ceria-zirconia model catalysts measured by CO oxidation under stationary and cycling feedstream compositions, Journal of Catalysis, 2000, 193(2): 338~347
    [72] He H, Dai H X, Wong K W, et al., RE0.6Zr0.4-xYxO2 (RE=Ce, Pr; x=0, 0.05) solid solutions: an investigation on defective structure, oxygen mobility, oxygen storage capacity, and redox properties, Applied Catalysis A: General, 2003, 251(1): 61~74
    [73] Dong F, Suda A, Tanabe T, et al., Characterization of the dynamic oxygen migration over Pt/CeO2-ZrO2 catalysts by 18O/16O isotopic exchange reaction, Catalysis Today, 2004, 90(3-4): 223~229
    [74] Dong F, Suda A, Tanabe T, et al., Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2-ZrO2, Catalysis Today, 2004, 93(5): 827~832
    [75] González-Velasco J R, Gutiérrez-Ortiza M A, Marc J L, et al., Effects of redox thermal treatments and feedstream composition on the activity of Ce/Zr mixed oxides for TWC applications, Applied Catalysis B: Environmental, 2000, 25(1): 19~29
    [76] Vidal H, Ka?par J, Pijolat M, et al., Redox behavior of CeO2-ZrO2 mixed oxides: I. Influence of redox treatments on high surface area catalysts, Applied Catalysis B: Environmental, 2000, 27(1): 49~63
    [77] Vidal H, Ka?par J, Pijolat M, et al., Redox behavior of CeO2-ZrO2 mixed oxides: II. Influence of redox treatments on low surface area catalysts, Applied Catalysis B: Environmental, 2001, 30(1-2): 75~85
    [78] Liotta L F, Macaluso A, Longo A, et al., Effects of redox treatments on the structural composition of a ceria-zirconia oxide for application in the three-way catalysis, Applied Catalysis B: General, 2003, 240(1-2): 295~307
    [79] Fally F, Perrichon V, Vidal H, et al., Modification of the oxygen storage capacity of CeO2-ZrO2 mixed oxides after redox cycling aging, Catalysis Today, 2000, 59(3-4): 373~386
    [80] 汪文栋,胡天斗,林培琰,等,用Pr修饰的(Ce-Zr)O2固溶体在三效催化剂中的作用,中国稀土学报,2002,20(3):265~269
    [81] 杨志柏,林培琰,肖莉,等,以Nd改性CeO2-ZrO2固溶体助剂的研究,催化学报,2001,22(4):365~369
    [82] Markaryan G L, Ikryannikova L N, Muravieva G P, et al., Red-ox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1999, 151(3): 435~447
    [83] 王恩过,陈诵英,CuO-ZrO2-CeO2复合氧化物催化性能的研究,中国稀土学报,2001,19(1):17~20
    [84] Fernández-García M, Martínez-Arias A, Iglesias-Juez A, et al., Structural characteristics and redox behavior of CeO2-ZrO2/Al2O3 supports, Journal of Catalysis 2000, 194(2): 385~392
    [85] Tadashi Suzuki, Akira Morikawa, Akihiko Suda, et al. Alumina-Ceria-Zirconia Composite Oxide for Three-Way catalyst[J]. R&D Review of Toyota CRDL, 37(4):28-33
    [86] Tauster S J, Fung S C, Garten R L, Strong metal-support interactions-group-8 noble-metals supported on TiO2, Journal of the American Chemical Society, 1978, 100(1): 170~175
    [87] Sanchez M G, Gazquea J L, Oxygen vacancy model in strong metal-support interaction, Journal of Catalysis, 1987, 104(11), 120~135
    [88] Bernal S, Calvino J J, Cauqui M A, et al., Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts, Catalysis Today, 1999, 50(2): 175~206
    [89] Priolkar K R, Bera P, Sarode P R, et al., Formation of Ce1-xPdxO2-δ solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation, Chemistry of Materials, 2002, 14(5): 2120~2128
    [90] Hickey N, Fornasiero P, Ka?par J, et al., Effects of the nature of the reducing agent on the transient redox behavior of NM/Ce0.68Zr0.32O2 (NM=Pt, Pd, and Rh), Journal of Catalysis, 2001, 200(1): 181~193
    [91] Vlaic G, Fornasiero P, Martra G, et al., Morphology of rhodium particles in ex-chloride Rh/Ce0.5Zr0.5O2 catalyst, Journal of Catalysis, 2000, 190(1): 182~190
    [92] 崔正刚,殷福珊,微乳化技术及应用,北京:中国轻工业出版社,1999.3
    [93] Meriani S, Spinolo G, Powder Diffraction, 1987, 255: 2
    [94] Wu X D, Fan J, Ran R, et al., Effect of preparation methods on the structure and redox behavior of platinum-ceria-zirconia catalysts, Chemical Engineering Journal, 2005, 109(1-3): 133~139
    [95] 冯长根,张江山,王亚军,铈锆复合氧化物纳米粉的合成及催化性能研究,中国稀土学报,2004,22(4):551~556
    [96] Sato T, Dosaka K, Yoshioka T, et al., Sintering of ceria-doped tetragonal zirconia crystallized in organic solvents, water, and air, Journal of the American Ceramic Society, 1992, 75(3): 552~556
    [97] 刘恩辉,卢其斌,苏国钧,等,反相胶束法制备纳米ZrO2粉体,功能材料,2002,38(3):310~314
    [98] 郝仕油,周雪珍,辜子英,等,超细 Ce-Zr-O 粉末的制备及其影响因素,稀有金属与硬质合金,2002,30(2):4~6
    [99] Martínez-Arias A, Fernández-García M, Ballesteros V, et al., Characterization of high surface area Zr-Ce (1:1) mixed oxide prepared by a microemulsion method, Langmuir, 1999, 15(14): 4796~4802
    [100] Tomaszewski H, Strzeszewski J, Adamowicz L, et al., Indirect determination of the piezospectroscopic coefficients of ceria-stabilized tetragonal zirconia polycrystals, Journal of the American Ceramic Society, 2002, 85(11): 2855~2857
    [101] Ferraro J R, Nakamoto K, Introductory Raman Spectroscopy, New York: Academic Press, 1994.65
    [102] Trovarelli A, Zamar F, Llorca J, et al., Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling, Journal of Catalysis, 1997, 169(4): 490~502
    [103] González-Velasco J R, Gutiérrez-Ortiza M A, Marc J L, et al., Effects of redox thermal treatments and feedstream composition on the activity of Ce/Zr mixed oxides for TWC applications, Applied Catalysis B: Environmental, 2000, 25(1): 19~29
    [104] Otake T, Yugami H, Naito H, et al., Ce concentration in ZrO2-CeO2-Y2O3 system studied by electronic Raman scattering, Solid State Ionics, 2000, 135(1-4): 663~667
    [105] Vidal H, Ka?par J, Pijolat M, et al., Redox behavior of CeO2-ZrO2 mixed oxides: II. Influence of redox treatments on low surface area catalysts, Applied Catalysis B: Environmental, 2001, 30(1-2): 75~85
    [106] 缪建英,蔡俊修,Ce0.5Zr0.5O2 固溶体的原位拉曼光谱,催化学报,1999,20 (1):25~28;
    [107] 缪建英,蔡俊修,CeO2 和 Ce0.5Zr0.5O2 固态溶液的现场拉曼光谱比较,厦门大学学报(自然科学版),1999,38(2):235~241
    [108] De Leitenburg C, Trovarelli A, Ka?par J, A temperature-programmed and transient kinetic study of CO2 activation and methanation over CeO2 supported noble metals, Journal of Catalysis, 1997, 166(1): 98~107
    [109] Daturi M, Finocchio E, Binet C, et al., Reduction of high surface area CeO2-ZrO2 mixed oxides, Journal of Physical Chemistry B, 2000, 104(39): 9186~9194
    [110] Zhang F, Chen C H, Raitano J M, et al., Phase stability in ceria-zirconia binary oxide nanoparticles: The effect of the Ce3+ concentration and the redox environment, Journal of Applied Physics, 2006, 99(8): Art. No. 084313
    [111] 董相廷,李铭,张伟,等,沉淀法制备CeO2纳米晶与表征,中国稀土学报,2001,19(1):24~26
    [112] Rey J F Q, Muccillo E N S, Lattice parameters of yttria-doped ceria solid electrolytes, Journal of the European Ceramic Society, 2004, 24(6): 1287~1290
    [113] Hong S J, Virkar A V, Lattice parameters and densities of rare-earth oxide doped ceria electrolytes, Journal of the American Ceramic Society, 1995, 78(2): 433~439
    [114] Kim D J, Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M=Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions, Journal of the American Ceramic Society, 1989, 72(8): 1415~1421
    [115] V. Solinas, E. Rombi, I. Ferino, M.G. Cutrufello, G. Colón, J.A. Navío, Preparation, characterisation and activity of CeO2-ZrO2 catalysts for alcohol dehydration, Journal of Molecular Catalysis A: Chemical, 2003 , 204: 629–635
    [116] Zamar F, Trovarelli A, de Leitenburg C, et al., CeO2-based solid solutions with the fluorite structive as novel and effective catalysts for methane combustion, Journal of Chemical Society Chemical Communications, 1995, 8: 965~966
    [117] Inaba H, Tagawa H, Ceria-based solid electrolytes, Solid State Ionics, 1996, 83(1-2): 1~16
    [118] Bozo C, Gaillard F, Guilhaume N, Characterisation of ceria-zirconia solid solutions after hydrothermal ageing, Applied Catalysis A: General, 2001, 220(1-2): 69~77
    [119] Formasiero P, Di Monte R, Rao G R, et al., Rh-loaded CeO2-ZrO2 solid solutions as highly effects oxygen exchanges: Dependence of the reductions behavior and the oxygen storage capacity on the structural properties, Journal of Catalysis, 1995, 151(1): 168~177
    [120] Colon G, Pijolat M, Valdivieso F, et al., Surface and structural characterization of CexZr1-xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters, Journal of the Chemical Society Faraday Transactions, 1998, 94(24): 3717~3726
    [121] Balducci G, Islam M S, Ka?par J, et al., Bulk reduction and oxygen migration in the ceria-based oxides, Chemistry of Materials, 2000, 12(3): 677~681
    [122] Fornasiero P, Balducci G, Di Monte R, et al., Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2, Journal of Catalysis, 2001, 164(1): 173~183
    [123] Yu S G, Supplemental catalysis and stabilization of rare-earth oxides in precious metal catalysts during purifying automotive exhaust, Precious Metals, 2002, 23(2): 66~70
    [124] 俞守耕,贵金属催化净化汽车尾气中稀土氧化物的助催化和稳定化,贵金属,2002,23(2):66~70
    [125] Martínez-Arias A, Fernández-García M, Hungría A B, et al., Effect of thermal sintering on light-off performance of Pd/(Ce,Zr)Ox/Al2O3 three-way catalysts: Model gas and engine tests, Journal of Catalysis, 2001, 204(1): 238~248
    [126] Yahiro H, Eguchi K, Arai H, Electrical properties and reducibilities of ceria-rare earth oxide system an their application to solid oxide fuel cell, Solid State Ionics, 1989, 36: 71~75
    [127] Nineshige A, Taji T, Muroi Y, et al., Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy, Solid State Ionics, 2000, 135(1-4): 481~485
    [128] Fornasiero P, Speghini A, Di Monte R, et al., Laser-excited luminescence of trivalent lanthanide impurities and local structure in CeO2-ZrO2 mixed oxides, Chemistry of Materials, 2004, 16(10): 1938~1944
    [129] Fernández-García M, Martínez-Arias A, Guerrero-Ruiz A, et al., Ce-Zr-Ca ternary mixed oxides: structural characteristics and oxygen handling properties, Journal of Catalysis, 2002, 211(2): 326~334
    [130] Kubsh J E, Rieck J S, Spencer N D, Cerium oxide stabilization: physical property and three-way activity considerations, Crucq A (Editor), Catalysis and Automotive Pollution Control II, Amsterdam: Elsevier, 1991.125~138
    [131] Harrison P G, Creaser D A, Wolfindale B A, et al., in: Dines T J, Rochester C H, Thomson J (Editors), Catalysis and Surface Characterization, Cambridge: The Royal Society of Chemistry, 1996.76~86
    [132] 张力德,牟季美,纳米材料学,沈阳:辽宁科学出版社,1994.155
    [133] Nolan M, Parker S C, Watson G W, The electronic structure of oxygen vacancy defects at the low index surfaces of ceria, Surface Science, 2005, 595(1-3): 223~232
    [134] Gotte A, Hermansson K, Baudin M, Molecular dynamics simulations of reduced CeO2: bulk and surfaces, Surface Science, 2004, 552(1-3): 273~280
    [135] Balducci G, Islam M S, Ka?par J, et al., Bulk reduction and oxygen migration in the ceria-based oxides, Chemistry of Materials, 2000, 12(3): 677~681
    [136] Tsunekawa S, Wang J T, Kawazoe Y, Lattice constants and electron gap energies of nano- and subnano-sized cerium oxides from the experiments and first-principles calculations, Journal of Alloys and Compounds, 2006, 408: 1145~1148
    [137] Nolan M, Grigoleit S, Sayle D C, et al., Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria, Surface Science, 2005, 576(1-3): 217~229
    [138] 王常珍,固体电解质和化学传感器,北京:冶金工业出版社,2000. 55
    [139] Arai H, Kunisaki T, Shimizu Y, et al., Electrical properties of calcia-doped ceria with oxygen ion conduction, Solid State Ionics, 1986, 20(4): 241~248
    [140] Yahiro H, Eguchi Y, Eguchi K, et al., Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, Journal of Applied Electrochemistry, 1988, 18(44): 527~531
    [141] Inaba H, Tanawa H, Ceria-based solid electrolytes, Solid State Ionics, 1996, 83(1-2): 1~16
    [142] Eguchi K, Setoguchi T, Inoue T, et al., Electrical properties of ceria-based oxides and their application to solid oxide full cells, Solid State Ionics, 1992, 52(1): 165~172
    [143] 许大鹏,王权泳,吕哲,等,CeO2-ZrO2系统的高压固态反应和性质,科学通报,2001,46(4):288~292
    [144] T.S. Zhang, J. Ma, S.H. Chan, P. Hing, J.A. Kilner, Intermediate-temperature ionic conductivity of ceria-based solid solutions as a function of gadolinia and silica contents, Solid State Sciences 2004, 6 (6): 565–572
    [145] Fornasiero P, Ka?par J, Sergo V, et al., Redox behavior of high-surface-area Rh-, Pt-, and Pd-loaded Ce0.5Zr0.5O2 mixed oxide, Journal of Catalysis, 1999, 182(1): 56~69
    [146] Lee J S, Choi S C, Crystallization behavior of nano ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH, Materials Letters, 2004, 58: 390~393
    [147] Chen L F, González G, Wang J A, et al., Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen, Applied Surface Science, 2005, 243(1-4): 319~328
    [148] Wang J A, Chen L F, Valenzuela M A, et al., Rietveld refinement and activity of CO oxidation over Pd/Ce0.8Zr0.2O2 catalyst prepared via a surfactant-assisted route, Applied Surface Science, 2004, 230(1-4): 34~43
    [149] Iglesias-Juez A, Martínez-Arias A, Hungría A B, et al., Influence of the nature of the Ce-promoter on the behavior of Pd and Pd–Cr TWC systems, Applied Catalysis A: General, 2004, 259(2): 207~220
    [150] Shao M, Wang D, Yu G, et al., The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation, Carbon, 2004, 42(1): 183~185
    [151] Padeste C, Cant N W, Trimm D L, The influence of water on the reduction and reoxidation of ceria, Catalysis Letters, 1993, 18: 305~316
    [152] Yang Z X, Woo T K, Hermansson K, Strong and weak adsorption of CO on CeO2 surfaces from first principles calculations, Chemical Physics Letters, 2004, 396(4-6): 384~392
    [153] Soave R, Pacchioni G, New bonding mode of CO on stepped MgO surfaces from density functional cluster model calculations, Chemical Physics Letters, 2000, 320(3-4): 345~351
    [154] Street S C, Xu C, Goodman D W, The physical and chemical properties of ultrathin oxide films, Annual Review of Physical Chemistry, 1997, 48: 43~68
    [155] Holland B T, Blanford C F, Stein A, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, 1988, 281: 538~540
    [156] Bartlett J R, Gazeau D, Zemb T, et al., Structure of multicomponent (titania/zirconia) colloids, Langmuir.1998, 14(13): 3538~3544
    [157] Dean J A, Lange’s Handbook of Chemistry, 15th ed., New York: McGraw-Hill, 1998.78
    [158] Wang N B, Lunsford J H, EPR study of 17O- on magnesium oxide, The Journal of Chemical Physics, 1971, 55(6): 3007~3012
    [159] Tench A J, Lawson T, The formation of O- and Os- adsorbed on an oxide surface, Chemical Physics Letters, 1970, 7(5): 459~460
    [160] Shen Y F, Wang S J, Huang K H, Effects of chloride precursors on the palladium valency and surface structures of Pd-Mg2+/SiO2 catalysts for carbon monoxide hydrogenation, Applied Catalysis, 1990, 57(1): 55~70
    [161] Liotta L F, Deganello G, Delichere P, et al., Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy, Journal of Catalysis, 1996, 164(2): 334~340
    [162] Dodgson I, Griffin K, Barberis G, et al., A low cost PhOH to process cyclohexanone, Chemical Industry, 1989, 24: 830~833

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700