协同决策机制下航空运输系统不正常航班问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由不正常航班引发的问题不仅给旅客带来诸多不便,也给航空运输系统造成巨大的经济损失。不正常航班问题已经成为影响航空运输系统运营效率和服务质量的核心问题。航空运输系统由航空公司、机场和空管三个子系统组成,协同决策(Collaborative Decision Making,CDM)机制已被欧美等航空发达国家证明是提高航空运输系统效率的有效管理技术。它是一种协同合作的理念,通过整合空域管理者(空管)和使用者(机场和航空公司)提供的数据得出更准确的信息,并且使管理者和和使用者共享决策信息。研究协同决策机制下航空运输系统不正常航班问题,对于提高航空运输系统的竞争力,满足日益增长的航空运输需求,具有重要的意义。
     本文以协同决策机制下航空运输系统不正常航班相关问题为研究对象,主要研究工作如下:
     构建了CDM机制下不正常航班问题决策系统框架,并详细阐述框架内各子系统的决策主体、信息需求、信息传递方式和平台支持,分析了框架内各子系统的决策模式、决策要求和决策内容等。
     CDM机制要求各航空公司及时制定出最优的不正常航班恢复策略,这是各航空公司和空管信息交流的基础。为此首先研究了航空公司不正常航班恢复的建模问题,详细分析了已有的资源指派模型、多商品网络流模型和时间离散近似模型的优点和不足,在此基础上将飞机就绪时间、飞机流不平衡约束、航班时空衔接特性、多机型调度和合并航班成本计算等问题加入资源指派模型,使新模型更符合CDM机制下航空公司的实际运行。
     然后针对新建的不正常航班恢复模型设计了一种启发式算法——贪婪随机模拟退火算法。新算法通过限制飞机路线对的数量以提高算法的时间效率;在GRASP算法的基础上添加航班串取消操作作为邻域解的构造方式之一,以解决流不平衡;设计邻域解备选池并引入基于模拟退火算法的搜索策略,有效降低了问题陷入局部最优解的概率。实例表明所建模型和设计算法的有效性,其结果与GRASP算法相比具有明显的优越性,在算法的时间效率和求解质量之间取得较好的平衡,能够满足CDM机制对航空公司实时决策和优化决策的要求。
     机场终端已成为空中交通网络的瓶颈,现有的研究工作重点关注飞机正在执行的航班性质,忽略了前后航班的衔接关系和延误波及问题。本文基于CDM机制提出将航空公司航班优先选择权引入机场终端流量优化模型,并分析航班取消信息和航班优先选择信息对流量优化方案的影响。
     机场场面管理是CDM的应用领域之一,飞机推出是机场场面管理的重要内容。为解决不正常航班影响下飞机推出地面冲突增多、航班延误加剧和机场盲区影响等问题,分析了飞机推出流程,设计了飞机推出程序,包括推出程序命名、停机位组合和推出程序标识等内容;建立了停机位组合优化设计模型,提出一种层级迭代搜索算法,并实例验证了模型和算法的有效性。
     对飞机推出程序进行三维仿真研究。在考虑了飞机滑入对飞机推出的影响后,选取模糊随机Petri网作为建模工具,使推出模型具有模糊随机性;以ServiceModel软件为平台,开发飞机推出三维可视化仿真系统,重点对推出延迟时间、推出安全间隔和单位时间推出架次三项指标进行分析。仿真结果表明设计的推出程序方案在安全和效率方面均能满足停机坪运行的要求。
Problems arising from irregular flights not only bring inconvenience to passengers, but also cause tremendous economic loss to air transportation system. Irregular flights have become the core problem affecting the operating efficiency and service quality of air transportation system. Air transportation system consists of three subsystems, namely airlines, airport and air traffic control. Collaborative Decision Making (CDM) has been proven to be the effective management technique to improve the efficiency of air transportation system by aviation developed countries in Europe and America. CDM reflects a collaborative concept, which manages to obtain more accurate information through integrating the data provided by airspace manager (air traffic control) and the users (airport and airlines) so that the manager and users could share decision-making information. The research on irregular flights recovery in the air transportation system under CDM is of important significance to improve the competitiveness of air transportation system and to meet the increasing demand of air transportation.
     This article uses relevant problems about irregular flights in the air transportation system under CDM as research objects, and the main research work is as follows:
     This article builds the decision-making scheme frame of irregular flights problems in the air transportation system under CDM, and describes in detail the decision maker, information need, systematic platform support, information transmission, decision-making mode, decision-making requirement and decision-making contents of the frame.
     CDM requires airlines to make the optimal irregular flights recovery decision in time, which is the basis of information exchange between airlines and air traffic control. Therefore, this article first studies the modeling of irregular flights recovery of airlines, and analyzes in detail the strongpoint and deficiency of the existing Resource Assignment Model, Multi-commodity Network Flow Model and Time Band Approximation Network, and on this basis, questions such as aircraft ready time, aircraft imbalance constraint, flight connectivity, multi-type aircraft allocation and cost calculation of combined flight are added into the amended Resource Assignment Model, so that the new model is more suitable for the practical operation of airlines under CDM.
     Then, a heuristic algorithm named greedy random simulated annealing algorithm is designed for the new irregular flights recovery model. The new algorithm improves the time efficiency of the algorithm by restricting the number of aircraft route pairs. On the basis of GRASP (greedy random adaptive search procedure), cancelling flight string is added as one of the composition method of neighborhood to solve aircraft imbalance. Neighbors list is designed and search strategy based on simulated annealing algorithm is introduced so as to effectively reduce the probability that questions may fall into local optimal solution. Examples prove the effectiveness of the new model and designed algorithm, whose result has obvious advantage over the GRASP algorithm. The designed algorithm has achieved a comparatively good balance between time efficiency and solution quality, so that the requirements on real-time decision-making and optimal decision-making of airlines put forward by CDM could be met.
     Airport terminal has become the bottleneck of air traffic network. The existing research work pays attention to arrival and departure flights, but neglects the cohesive relationship between the two successive flights and the problem of delay propagation. On the basis of CDM, this article proposes to add First Priority of Flight to the airport terminal flow optimization model, and analyzes the influences of flight cancellation information and flight priority information on flow optimization scheme.
     Airport surface management is one of the application fields of CDM, and aircraft pushback is an important content of airport surface management. In order to solve the problems such as increasing conflicts of aircraft pushback, increasingly serious flight delay and influence of airport blind area under the influence of irregular flights, this article analyzes aircraft pushback flow and designs the aircraft pushback procedure of busy airports, including pushback procedure naming, gate position combination and pushback procedure signage. This article also builds optimal design model of gate position combination, puts forward a hierarchy iteration algorithm, and proves the effectiveness of the model and algorithm by examples.
     The 3D-Simulation research on aircraft pushback procedure is conducted. Considering the relationship between the aircraft taxi-in and pushback, fuzzy Stochastic Petri Nets are chosen as modeling tool so as to ensure the randomicity of pushback model. Aircraft pushback 3D visible simulation system is developed by using ServiceModel software as platform. Three items of indices, namely pushback delay time, pushback safe distance and pushback aircraft number per unit time are analyzed. The simulation result indicates that the designed pushback procedure could meet apron operation needs in both aspects of safety and efficiency.
引文
[1]中国民用航空局规划发展司.中国民航统计年鉴[R].中国民用航空局,2007.
    [2]中国民用航空局.中国民航2008年12月份主要运输生产指标统计. http://www.caac.gov.cn/I1/K3/200902/t20090205_22225.html.
    [3]中国民用航空局.中国民用航空发展第十一个五年规划[R].北京:中国民用航空局,2006.
    [4]杨元元.中国发展新一代民用航空运输系统的愿景[J].中国民用航空,2007,8:16-18.
    [5]杨惠.关于《航班延误经济补偿指导意见》的几个问题[J].中国民航学院学报,2005, 23(1): 49-53.
    [6]中国民用航空局.中国民航2008年全年“三率”情况. http://www. caac.gov.cn/K1/HBZC/200903/t20090320_23399.htm.
    [7] Ashford N., Stanton H.P.M., Moore C.A. Airport Operations [M]. The McGraw Hill Companies, 1996.
    [8]张军.现代空中交通管理[M].北京:北京航空航天大学出版社,2005.
    [9]张兆宁,王莉莉.空中交通流量管理理论与方法[M].北京:科学出版社,2009.
    [10]高海军,王健,陈龙等.空中交通流量管理综述[J].控制工程,2003, 10(6): 484-487.
    [11] Ball M.O., Hoffman. Collaborative decision making for air traffic management: a preliminary assessment [R]. NEXTOR Technical Report RR-99-3, 1998.
    [12] Ball M.O., Hoffman. Collaborative decision making in air traffic management: current and future research directions [R]. NEXTOR Technical Report 2000-3, 2000.
    [13]吕小平.空中交通管理协同决策[J].空中交通管理,2005, 4: 4-5.
    [14]李泉.基于CDM的ATFM策略分析及资源分配机制研究[D].南京:南京航空航天大学硕士学位论文,2006.
    [15]黎新华,张兆宁,何健生.协调决策在空中交通流量管理中的应用[C].第七届全国交通交通运输领域青年学术会议论文集,2007.
    [16] Hall C. Information flows and a dynamic collaborative decision making architecture for increasing the efficiency of terminal area operations [D]. Ph.D. Dissertation, Operations Research Center, MIT, 1999.
    [17] Chang K, Ken Howard, Rick Oiesen, etal. Enhancements to the FAA Ground-Delay Program under collaborative decision making [J]. Interfaces, 2001, 31(1): 57-76
    [18] Thomas W.M., Michael O.Ball, H.Smith. Slot trading opportunities in collaborative ground delay programs[R].AIAA 4th Aviation Tech, 2004.2.
    [19] Hanif D., Sherali, Raymond W. An airspace planning and collaborative decision-making model [J]. Transportation Science, 2003, 37(4): 434–456.
    [20]吕小平.中国民航新一代空中交通管理系统发展总体框架[J].中国民用航空,2007, 80(8): 24-26.
    [21] Yu Gang. Operations Research in the Airline Industry [M]. Boston, MA: Kluwer Academic Publishers, 1997.
    [22] Terrab M. Ground holding strategies for air traffic control [D]. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass, 1990.
    [23] Octavio Richetta, R.Odoni. Solving optimally the static ground-holding policy problem in air traffic control [J]. Transportation Science, 1993, 27(3): 228-238.
    [24] Vranas P.B., Bertsimas D.J., Odoni A.R. The multi-airport ground holding problem in air traffic control [J]. Operations Research, 1994, 42(2): 249-261.
    [25] P.B. Vranas, D.J.Bertsimas, A.R. Odoni. Dynamic ground-holding policies for network of airports [J]. Transportation Science, 1994, 28: 261-275.
    [26]胡明华,徐肖豪,陈爱民.空中交通流量管理中的多元受限地面等待策略问题研究[J].航空学报,1998, 19(1): 78-82.
    [27]胡明华,钱爱东,苏兰根.多机场地面等待问题模型研究[J].南京航空航天大学学报,2000, 32(5): 586-590.
    [28]胡明华,李丹阳,李顺才.空中交通地面等待问题的网络流规划模型[J].东南大学学报,2000, 30(3): 104-108.
    [29]王来军,史忠科.需求随机型单机场地面等待问题的优化建模研究[J].计算机工程与应用,2004, 34: 34-36.
    [30]王莉莉,张兆宁.一种新的单机场地面等待问题优化算法[J].飞行力学,2005, 23(2): 85-88.
    [31]王飞,徐肖豪,张静.基于人工鱼群算法的单机场地面等待优化策略[J].南京航空航天大学学报,2009, 41(1): 116-120.
    [32]田勇,宋柯,顾英豪.空中交通流量管理中的改航策略研究[J].数学的实践与认识,2008, 38(10): 70-76.
    [33] D Bertsimas, SS Patterson. The air traffic flow management problem with enroute capacities [J]. Operations Research, 1998, 46(3): 406-422.
    [34]吕小平.中国民航新一代空中交通管理系统发展总体框架[J].中国民用航空,2007, 80(8): 24-26.
    [35] Etschmaier M.M., Mathaisei D.F.X.. Airline scheduling: An overview [J]. Transportation science, 1985(2):127-138.
    [36] Teodorovic D., Guberinic S. Optimal dispatching strategy on an airline network after a schedule perturbation [J]. European Journal of Operational Research, 1984(15): 178-182.
    [37] Teodorovic D. Airline Operations Research [M], New York: Gordon and breach Science Publishers, 1988.
    [38] Jarrah A.I.Z., Yu G., Krishnamurthy N. et al. A decision support framework for airline flight cancellations and delays [J]. Transportation Science, 1993(27): 266-280.
    [39] Teodorovic D., Stojkovic G. Model to reduced airline schedule disturbances [J]. Journal of Transportation Engineering, 1995(4):324-331.
    [40]解可新,韩健,林友联.最优化方法[M],天津:天津大学出版社,2004.
    [41] Argüello M.F., Bard J.F., Yu G. A GRASP for aircraft routing in response to groundings and delays [J], Journal of Combinatorial Optimization, 1997(5):211–228.
    [42] Arguello M.F.,Bard J.F.,Yu G.. Models and methods for managing airline irregular operations aircraft routing. In: Yu G. (Ed) Operations research in the airline industry [M]. Boston: Kluwer Academic Publishers, 1997, 1-45.
    [43] Yan S., Yang D. A decision support framework for handling schedule perturbations [J], Transportation Research, Part B: Methodology, 1996(30):405-419.
    [44] Thengvall B.G., Bard J.F., Yu G. Balancing user preferences for aircraft schedule recovery during irregular operations [J]. IIE Transaction on operations engineering, 2000, 32(3):181-193.
    [45] Yu G., M. Arguello, G. Song, S. McGowan, and A. White. A new era for crew recovery at Continental Airlines [J]. Interfaces,33(1): 5-22.
    [46] Wei, G., G. Yu, and M. Song. Optimization model and algorithm for crew management during irregular operations [J]. Journal of Combinatorial Optimization 1, 80-97.
    [47] Lettovsky L. Airline operations recovery: An optimization approach [D]. Georgia Institute of Technology, 1997.
    [48] Clarke M. Passenger accommodation a higher level of customer service[C]. AGIFORS Airline Operations Study Group Meeting, Mainz, Germany, 2005.
    [49] Bratu S. and C. Barnhart. An analysis of passenger delays using flight operations and passenger booking data [J]. Air Traffic Control Quarterly, 2005, 13(1): 1-28.
    [50]孙宏,文军.航空公司生产组织与计划[M].广汉:中国民用航空飞行学院,2007.
    [51]戴维东.上海航空公司航班正常问题研究[D].南京:南京航空航天大学,2006.
    [52]田晓东.如何提高航班运行的正常性[J].中国民用航空, 2004, 8: 23-25.
    [53]谢泅薪,冯素君,康燕.航空公司服务遭遇与服务补救[J].中国民用航空,2001, 6: 33-38.
    [54]张薇.改善航班延误的思考及对策[J].空运商务,2007, 2: 7-9.
    [55]戴军.空中交通管制服务与航班延误[J].中国民用航空,2004, 8: 26-28.
    [56]林石平.正确认识和处理航班延误[J].中国民用航空,2004, 12: 44-45.
    [57]谭庭状,廖俊国.机场航班正点管理工作浅探[J].中国民用航空,2008, 1: 58-60.
    [58]沙宝亮.航空公司服务质量问题的成因分析[J].世界标准化与质量管理,2005, 7: 34-36.
    [59]张克俭.大型枢纽机场运营和管理的若干问题[J].中国民用航空,2008, 6: 55-57.
    [60]周志忠.飞行运行实时优化控制研究[D].北京:北京航空航天大学博士学位论文,2001.
    [61]刘德刚.航空公司实时飞机和机组调配问题的研究[D].北京:中国科学院数学与系统科学研究所博士学位论文,2002.
    [62]姚韵.航空公司不正常航班管理和调度算法研究[D].南京:南京航空航天大学博士学位论文,2006.
    [63]朱金福.航空运输规划[M].西安:西北工业大学出版社,2009.6.
    [64] R. Hoffman, W. Hall, M. Ball, A.Odoni. Collaborative decision making in air traffic flow management [R]. Technical Report RR-99-2. Nextor, UC Berkeley, 1999, p22-27..
    [65] Thomas W.M. Fair allocation methods in air traffic management [D]. Ph.D. thesis, University of Maryland, 2002.
    [66] M.O. Ball. Collaborative mechanisms for managing airport capacity reductions in the U.S [R]. NEXTOR technical report, University of Maryland, 2008.
    [67]周茜,张学军,柳重堪. CDM GDP程序中混合使用跑道时隙分配问题研究[J].空中交通管制,2007, 5: 23-26.
    [68]周茜,张学军,柳重堪.时隙分配算法在CDMGDP程序中的应用[J].北京航空航天大学学报,2006, 32(9): 1043-1045.
    [69]董云龙.空中交通流量管理资源公平分配算法研究[D].南京:南京航空航天大学硕士学位论文,2007.
    [70]郭军.协同地面等待策略研究[D].南京:南京航空航天大学硕士学位论文,2006.
    [71]陈世林,胡明华.一种新的基于贪婪法的CDM时隙分配最优化算法[J].系统工程理论与实践,2008, 28(10): 144-149.
    [72]张荣,胡明华,张洪海.协同式地面等待程序中时隙公平分配研究[J].交通与计算机,2008,26(5): 62-65.
    [73] MJ Soomer, GJ Franx. Scheduling aircraft landings using airline's preference [J]. European Journal of Operation Research, 2008, 190(1): 277-291.
    [74] Zhang Honghai, Hu Minghua, Wang Yanjun, Gu Yinghao. Priority-based collaborative aircraft scheduling [J]. Proceedings of the 8th International Conference of Chinese Logistics and Transportation Professionals, American Society of Civil Engineers, 2008, 2:1087-1092.
    [75] Gilbo E P. Airport capacity: representation, estimation,optimization [J]. IEEE Transactions on Control Systems Technology, 1993, 1(3): 144-154.
    [76] Gilbo E P. Optimizing airport capacity utilization in air traffic flow management subject to constraints at arrival and departure fixes [J]. IEEE Transactions on Control Systems Technology, 1997, 5 (5): 490-503.
    [77]余江,王大海,浦云.终端区起飞着陆的协同优化[J].系统工程学报,2003, 18(5): 462-465.
    [78]李宝民,史忠科.空中交通流量优化管理[J].飞行力学,1998, 12: 7-13.
    [79]胡明华,刘松,苏兰根.基于统计分析的单跑道容量估计模型研究[J].数据采集与处理,2000, 15(1): 75-77.
    [80]陈欣,陆迅,朱金福.枢纽机场空侧容量利用和流量分配优化模型[J].南京航空航天大学学报,2007, 39(5): 680-684.
    [81]张洪海,胡明华,陈世林.机场进离场流量协同分配策略[J].南京航空航天大学学报,2008, 40(5): 641-645.
    [82] Gilbo E P, Howard KW. Collaborative optimization of airport arrival and departure traffic flow management strategies for CDM [J]. 3rd USA /Europe Air Traffic Management R&D Seminar Napoli: [Sn], 2000: 1-11.
    [83]徐肖豪,李雄.航班地面等待模型中的延误成本分析与仿真[J].南京航空航天大学学报,2006, 38(1):115-120.
    [84]曹力,邓雪云,王旭辉,黄圣国.基于机型的机场流量优化方法[J].南京航空航天大学学报,2008,40(5):646-650.
    [85]丁建立,王新茹,徐涛.航班延误恢复调度的混合粒子群算法[J].交通运输工程学报,2008, 8(2): 90-95.
    [86] S AhmadBeygi, A Cohn, G Yihan. Analysis of the potential for delay propagation in passenger airline networks [J]. Journal of Air Transport Management, 2008, 14(5): 221-236.
    [87] Harris R.M. Models for Runway Capacity Analysis[R]. The Miter Corporation Technical Report MTR-4102, Washington D.C., 1969: 1-94.
    [88] G.F.Newwell. Airport capacity and delays [J]. Transportation Science, 1979, 13(3): 201-241.
    [89] U.S. Department of Transportation Federal Aviation Administration. Airport Capacity and Delay[R]. AC: l50/5060-5, 1983, 9-17.
    [90] David A. Lee, Caroline Nelson, and Gerald Shapiro. The Aviation System Analysis Capability Airport Capacity and Delay Models[R]. NASA/CR-1998-207659, 1998, 12-14.
    [91]郭海琦.机场飞行区仿真技术研究[D].南京:南京航空航天大学, 2009.
    [92] Babic O, Teodorovic D, Tosic V. Aircraft stand assignment to minimize walking [J]. Journalof Transportation Engineering, 1984, 110(1):55–66.
    [93] Yan S Y, Huo C M. Optimization of multiple objective gate assignments [J]. Transport Research Part A, 2001, 35(5):413-432.
    [94] Xu J, Bailey Y G. The airport gate assignment problem: mathematical model and a tabu search algorithm[C]. Proceedings of the 34th Annual Hawaii International Conference on System Sciences, IEEE, 2001.
    [95] Yan S, Chang C. A network model for gate assignment [J]. Journal of Advanced Transportation, 1998, 32(2):176-189.
    [96] Gu Y, Chung C A. Genetic Algorithm Approach to Aircraft Gate Reassignment Problem [J]. ASCE Journal of Transportation Engineering, 1999, 125(5):384-389
    [97]张莹,胡明华,王艳军.航空器机场地面滑行时刻优化模型研究[J] .中国民航学院学报,2006 (5) : 3-6.
    [98] M.Adams, S.Kolitz, J.Milner, and A.Odoni. Evolutionary Concept for Decentralized Air Traffic Management[J]. Air Traffic Control Quarterly, 4:281-306, 2004.
    [99] Aditya Saraf, Gary Slater. Optimal Dynamic Scheduling of Aircraft Arrivals at Congested Airports[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1):53-65.
    [100]陈世林,胡明华,张洪海. SMS系统中基冲突探测的滑行道轨迹预测算法研究[J].四川大学学报,2008,45(6) :1357-1361.
    [101]尤杰,韩松臣.基于多Agent的机场场面最优滑行路径算法[J].交通运输工程学报,2009 (9) :109-112.
    [102] CACI Products Company, Inc. SIMMOD The Federal Aviation Administration Airport and Airspace Simulation Model: Information Brief[M].US Department of Transportation, Federal Aviation Administration, Atlantic City,NJ.1990.
    [103] Nera Sood, Frederick Wieland. TAAM Parallelization Combining Sequential and Parallel Algorithms for Performance Enhancement, Virginia Aeronautical Systems Laboratory Report, 2002.10: 1-6.
    [104] Amedeo R.Odoni, Jeremy Bowman, Daniel Delahaye etc. Existing and Required Modeling Capabilities for Evaluating ATM Systems and Concepts, Report No. ICAT-98-2, Cambridge, MA. MIT International Center for Air Transportation, 1998: 1-84, 125-129, 157-168.
    [105]陆迅.机场旅客与行李流程规划和仿真研究[D].南京:南京航空航天大学博士学位论文,2008.
    [106]倪桂明,杨东援.机场系统计算机仿真研究的应用与发展[J].系统仿真学报, 2002, 14(1): 112-115.
    [107]倪桂明,杨东援.机场航站楼客流计算机仿真研究[J].系统仿真学报,2002, 14(2):229-233.
    [108]刘静莉,王志清,宁宣熙.航站楼旅客流程仿真研究[J].航空计算技术,2005, 35(2): 45-49.
    [109]傅建军.机场地面容量评估研究[D].南京:南京航空航天大学,2005.
    [110]张莹.机场地面空中交通容量评估系统的进一步研究[D].南京:南京航空航天大学,2006.
    [111]蒋兵,胡明华,田勇等.机场跑道容量评估模型和估计方法的进一步研究[J].交通运输工程学报,2003, 3(2): 80-83.
    [112]于飞.机场生产流程仿真研究[D].南京:南京航空航天大学硕士学位论文,2007.
    [113]陈欣.机场空侧容量评估与优化方法研究[D].南京:南京航空航天大学博士学位论文,2007.
    [114]陆迅,唐小卫,朱金福.航站楼旅客离港流程仿真研究[J].西南交通大学学报,2009, 44(1): 135-140.
    [115]马正平,崔德光.机场航班延误优化模型[J].清华大学学报,2004, 44(4): 444-447.
    [116]吕宗平,徐肖豪,翟鹏飞等.机场跑道运行仿真[J].中国民航学院学报,2006, 24(3): 11-15.
    [117] K. Kirkpatrick, C. D. Gelatt and M. P. Vechi. Optimization by Simulated Annealing [J]. Science, 1983, 220: 671-680.
    [118]Esin Onba?o?lu, Linet ?zdamar. Parallel simulated annealing algorithms in global Optimization [J]. Journal of Global Optimization, 2001, 19(1): 27~50.
    [119] Ingber L, Rosen B. Genetic algorithms and very fast Simulated Annealing: A comparison [J]. Mathematical Computer Modeling, 1992, 16 (11): 87-100.
    [120]谢金星等.优化建模与LINDO/LINGO软件[M].北京:清华大学出版社,2007.
    [121] Stephen Atkins,Yoon Jung. Surface management system field trial results [C]. AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum,Chicago, September 20-22 2004.
    [122] Stephen Atkins. Concept description and development plan for the surface management system [J]. Journal of Air Traffic Control, 2002, 44(1).
    [123] Peter Haas. Stochastic Petri Nets for Modeling and Simulation [C]. Proceedings of the 2004 Winter Simulation Conference: 101-112.
    [124]袁崇义. Petri网原理与应用[M].北京:电子工业出版社,2005.
    [125]李杰,王书亭,陈立平.面向对象Petri网的离散事件系统仿真建模[J].华中科技大学学报,2001, 29(5): 12~13.
    [126] Murata T. Petri nets: properties, analysis, and application [C]. Proceedings of the IEEE,1989, 77(4): 541~580.
    [127] Service Model Product Team. Service Model User Guide [M]. Orem, Promodel Corporation, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700