动态系统可靠性分析关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术特别是计算机技术的发展,各种控制和容错技术被广泛应用,各元件之间相互作用和影响,许多系统的结构变得越来越复杂,系统可靠性表现出复杂性、依赖性、非单调性、多态性等特征,使得可靠性分析面临越来越高的挑战。复杂性、顺序性、依赖性是动态系统的三个典型特征,本文针对这三个典型特征,从模块化分析、动态系统失效模式、不完全覆盖、可靠性仿真等4个方面深入研究适用于动态系统的可靠性分析模型。
     本文工作的主要贡献和创新总结如下:
     1.基于模块化的可靠性分析技术研究
     提出基于亲戚依赖关系的独立模块识别方法。该方法将动态故障树转化为依赖树,依赖树只包含事件之间的依赖信息,去除了故障树中各逻辑门的逻辑含义;通过改进深度优先遍历算法,使其适用于含有重复事件的情况;通过为每个节点加入祖先集属性和依赖集属性,使其适用于事件间含有相互依赖关系的情况。该方法以各节点的祖先集属性和依赖集属性进行识别,与相互依赖基本事件、重复事件、动态逻辑门无关,适用于具有相互依赖基本事件和重复事件的动态故障树。经过实际案例验证和仿真验证,该方法适用于具有相互依赖基本事件和重复事件的动态故障树。
     提出基于同构对象的故障树分析方法。该方法通过识别故障树中的同构对象,将故障树分成几组不同的模块,同类模块仅求解一次,对于具有较强结构化特性的系统,能够明显减少其求解开销,提高分析效率。
     该研究使得现有的模块化分析方法更易于应用于动态系统的可靠性分析中。
     2.基于扩展割序的系统失效模式研究
     提出定性和定量分析动态系统失效行为的扩展割序模型。首次提出扩展割序的概念,将“导致系统失效的带有某种时序限制的最小基本事件集合”称为扩展割序,其与以往类似概念相比扩大了外延、增强了表达能力,并不要求该集合中所有的基本事件都处于某个特定顺序中,甚至没有时序限制。提出动态故障树最小扩展割序集的生成算法和不交化算法,并将不交化扩展割序集转化为标准扩展割序集。然后对标准扩展割序各割项进行冲突检测、时限集精简、基本事件集排序和量化计算,求得各标准扩展割序的量化结果,再综合求解系统可靠性参数。实验验证表明,将该模型应用到OBC系统上时,相比同类模型,求解开销从14.42s减少到5.82s。
     该模型解决了如何定位系统失效模式,以及如何利用这些失效模式获得系统可靠性参数的问题。
     3.基于不完全覆盖模型的可靠性分析技术研究
     提出基于模块化组合分析的不完全覆盖模型求解方法。该方法对基于表格的算法进行拓展改进,利用ELC模型和FLC模型,对各逻辑门进行了分析,并给出了求解的算法或公式,同时舍弃了原算法中利用表格进行循环调用的实现手段,改以现代程序设计技术中普遍支持的递归函数实现。
     提出基于扩展割序的不完全覆盖模型求解方法。该方法对SEA算法进行拓展改进,利用不交扩展割序的概念,对不完全覆盖模型的可靠性进行求解时,将其分解成两项进行。仅需对各元件的可靠性参数进行轻微调整,便可以使用扩展割序模型计算第二项。
     该研究在一定程度上解决了动态系统不完全覆盖模型的可靠性度量问题。
     4.基于通用更新过程的可修系统可靠性仿真模型研究
     提出一般分布的自适应近似抽样方法AAAS。该方法根据分布函数的特性自适应调节“拟合参数”,以达到即快且准的抽样结果。实验验证表明,在划分同样的时间段数下,该方法比同类方法具有更高的抽样精度。
     提出基于通用更新过程的可修系统可靠性仿真模型。该模型以元件修复效力参数综合考虑元件维修后可能处于的各种状态,并利用AAAS方法抽样出下一模拟时刻;基于扩展割序理论,给出系统修复策略;然后在以上研究的基础上,从系统成功完成任务能力的角度出发,利用事件表建立了动态可修系统仿真的逻辑关系,根据对系统完成任务和元件运行特征的识别得到反应系统运行的整个历史纪录和可靠性参数的统计值。
     该研究使得仿真模型能够更加真实地反映系统的运行过程。
     综上所述,本文主要针对动态系统所具有的“复杂性、顺序性、依赖性”等特征,展开相关可靠性分析技术的研究。这些研究或者首次给出了相关问题的解决方法;或者在未成熟方法的基础上进行基础理论拓展,提高模型的表达能力和求解效率;或者对现有技术进行改进,扩大其适用范围;或者从较少被关注的角度展开研究。
With the development of science and technology, especially computer technology, various control and fault tolerate techniques are widely applied, and the structure is becoming more and more complex for many systems. Since the components among system are interrelated and interactional, the reliability behaves some characteristics, such as completely, sequence, interdependence, nonmonotonicity, multi-state, etc, which make reliability analysis face the challenge. Three typical characteristics of dynamic system are complexity, sequence and interdependence. This thesis will consider these three characteristics and research the reliability analysis models of dynamic system from four aspects, i.e. modular analysis, failure mode of dynamic system, imperfect coverage model, and reliability simulation.
     The main contents and conclusions of the thesis are outlined as follows:
     1. Research on the technology of reliability analysis based on modularization
     An identification method of independent module based on kinship dependency relation is proposed. This method converts DFT to dependent tree, which only contains the dependency relations among the events, and removes the logic meaning of each logic gate. Through the amelioration of depth-first search algorithm, this method can be applied to DFT with repeated events. Through attaching ancestor property and dependency property for each node, this method is appropriate to deal with the interdependent relation among the events. This method identifies independent modules through the ancestor property and dependency property, and has no relation with the dependent basic events, repeated events or dynamic logic gates, so that it can be applied to dynamic fault tree with dependent basic events and repeated events. Both the practical case and simulation indicate that this method can be applied to DFT with dependent basic events and repeated events.
     An analysis method of fault tree is proposed based on isomorphic object. Through identifying the isomorphic object, decomposes the fault tree into various groups of independent modules. Since each group of independent module is only computed once, this method can greatly reduce the computing cost and improve the analysis efficiency for those systems with structural characteristics.
     This research makes existing modular analysis methods to be more easily applied to dynamic system.
     2. Research on system failure mode based on extended cut sequence
     An extended cut sequence (ECS) model to analyze the failure behaviors of dynamic system qualitatively and quantitatively is proposed. The concept of ECS is firstly proposed, which is the set of basic events under some temporal constraints. ECS enlarges the extension and the expressive capabilities, and does not require the basic events in a particular order, not even temporal constraints. Generative algorithm and disjoint algorithm of minimal ECS set are given, and then standard ECS set is transformed from disjoint ECS. Then, the test of conflict, the refinement of temporal restriction set and the topology sort of basic event set are carried out to quantitatively analyze each standard ECS. Finally the system reliability parameters are settled through synthetic solving. The experiment on OBC system shows that this method can decrease the time cost from 14.42s to 5.82s compared to aother recent model.
     The reliability analysis model based on ECS can locate the failure modes of dynamic system and solve the problem how to compute the unreliability of dynamic systems using these failure modes.
     3. Research on the reliability analysis based on imperfect coverage model
     A modular solving method for imperfect coverage model (IPCM) is proposed. This method expands the table-based algorithm. Based on ELC (Elementary Level Coverage) model and FLC (Fault Level Coverage) model, each logic gate is analyzed, and the algorithm and formula is given. This method discards the recursive call in the original algorithm, and uses the recursive function which is supported in almost all the modern programming techniques.
     A solving method based on ECS for IPCM is proposed. This method expands SEA (Simple & Efficient Algorithm) algorithm. Based on the conception of disjoint ECS set, the IPCM failures is separated into two terms to compute the system reliability. This method can use the model of ECS to compute the second term, by slightly alter the reliability parameters of each component.
     This research solves the problem of IPCM reliability analysis for dynamic system to a certain degree.
     4. Research on the reliability simulation model of repairable system under generalized renewal process
     In order to accurately acquire the sampling time of residual life, an auto adjust approximate sampling (AAAS) method is proposed for general distribution. Based on the feature of the distribution function, AAAS can automatically adjust the fitting parameter to quickly and accurately sample the simulation time. The experiment indicates that this method has higher accuracy than another recent method under the same number of time segments.
     With respect to the reliability analysis of repairable system, a reliability simulation model under generalized renewal process is proposed. This model samples the next simulation time by the method of AAAS, and uses the repair effective parameter to represent the state after repair. Then ECS theory is used to give the repair strategy. Finally based on the above considerations, from the aspect of successful accomplishing the task, the logic relationships are acquired by means of event lists. According to the identification of system state, the result of simulation provides the entire history of the mission and statistics of reliability parameters.
     This research make the simulation reflect the truer picture of the run process of the system.
     In a conclusion, this thesis carries out the research on the technology of reliability analysis with respect to the characteristics of dynamic system, such as complexity, sequence, interdependency, etc. Some researchs solve the unsolved problem. Some researches expand the fundamental theory based on the immature method, and improve the expression capabilities and solving efficiency. Some researches improve the existing technologies and enlarge the applicability. Some researches are carried out from the aspect which received less attention.
引文
[1] GJB 451A-2005,可靠性维修性保障性术语[S].
    [2] GJB 451-90,可靠性与维修性术语[S].
    [3]徐福祥,林华宝,郭亚泽.卫星工程[M].北京:中国宇航出版社,2002.
    [4] Dachs A F, Tiggeler H A B. Experiences with a COTS Real Time Operating System for a Satellite On Board Computer [J]. European Space Agency-Publications, 1999, (447): 221~228.
    [5] Ramesh B, Bretschneider T, McLoughlin I V. Embedded Linux Platform for a Fault Tolerant Space Based Parallel Computer [C]. 6th Real Time Linux Workshop, Singapore, Nov. 3, 2004: 39~46.
    [6] U.S. Department of Defense. MIL-HDBK-217F [S]. Reliability Prediction of Electronic Equipment. Dec. 2, 1991.
    [7] Hansen C K. Reliability prediction and simulation for a communications-satellite fleet [C]. Proceedings of Reliability and Maintainability Symposium, 1995: 152 ~ 158.
    [8] GJB 451A-2005,可靠性维修性保障性术语[S].
    [9] Brall A, Hagen W, Tran H. Reliability block diagram modeling - Comparisons of three software packages [C]. Annual Reliability and Maintainability Symposium, 2006: 119~124.
    [10] Dugan, J.B., Fault trees and imperfect coverage [J]. IEEE Transactions on Reliability, 1989, 38(2): 177~185.
    [11] Andrews J D, Dunnett S J. Event-tree analysis using binary decision diagrams [J]. IEEE Transactions on Reliability, 49(2): 230~238.
    [12] Hermams H, Herzog U, Mertsiotakis V. Stochastic Process Algebra-between LOTOS and Markov Chains [J]. Networks&ISDN Sys., 1998, (30): 901~924.
    [13] Levenson N, Stolzy J. Safety analysis using Petri nets [J]. IEEE Trans. Software Eng., 1987, (SE-13):386~397.
    [14] Dutuit Y, Chatelet E, Signoret J P, Thomas P. Dependability modelling and evaluation by using stochastic Petri nets: application to two test cases [J]. Reliability Engineering and System Safety, 1997, 55(2): 117~124.
    [15] Pearl J. Fusion, propagation, and structuring in belief networks [J]. Artificial Intelligence, 1986, 29(3): 241 ~ 288.
    [16] Torres-Toledano J G, Sucar L E. Bayesian networks for reliability analysis of complex systems [C]. Proceedings of the 6th Ibero American conference on AI, 1998:195~206.
    [17] Bobbio A, Portinale L, Minichino M, et al. Improving the analysis of dependablesystems by mapping fault trees into Bayesian networks [J]. Reliability Engineering and System Safety, 2001, (71): 249~260.
    [18] Langseth H, Portinale L. Bayesian networks in reliability [J]. Reliability Engineering and System Safety, 2007, (92): 92~108.
    [19] Sinnamon R, Andrews J D. Fault tree analysis and binary decision diagrams [J]. Microelectronics and Reliability, 1997, 37(8): 1281~1282.
    [20] Zang X, Wang D, Sun H, et al. A BDD-based algorithm for analysis of multistate systems with multistate components [J]. IEEE Transactions on Computers, 2003, 52(12): 1608~1618.
    [21] Brace K, Rudell R, Bryant R. Efficient Implementation of a BDD Package [C]. 27th ACM/IEEE Design Automation Conf., 1990: 40~45.
    [22] Aad P A, Moorsel V, Haverkort E R. Probabilistic Evaluation for the Analytical Solution of Large Markov Models:Algorithms and Tool Support [J]. Microelectran Rel., 1996, 36(6): 733~755.
    [23] Ruiz I, Paniagua E, et al. State analysis: an alternative approach to FMEA, FTA and Markov analysis [C]. Proceedings of Annual Reliability and Maintainability Symposium, 2000: 370~375.
    [24] Butler R W, et al. SURE reliability analysis: Program and mathematics [Z]. NASA-TP-2764, Mar, 1988.
    [25] Butler R W, et al. Techniques for modeling the reliability of fault tolerant system with the Markov state [Z]. NASA-RP-1348, Sep.1995
    [26] Dugan J B, Bavuso S, Boyd M. Dynamic fault tree models for fault tolerant computer systems [J]. IEEE Trans. on Relia., 1992, 41(3): 363 ~ 377.
    [27] Gulati R, Dugan J B. A Modular Approach for Analyzing Static and Dynamic Fault Trees [C]. Proceedings of Annual Reliability and Maintainability Symposium, 1997: 57~ 63.
    [28] Meshkat L, Xing L, Donohue S K, et al. An overview of the phase-modular fault tree approach to phased mission system analysis [C]. Proceedings of the first international conference on space mission challenges for information technology, 2003: 393~398.
    [29] Assaf T, Dugan J B. Diagnostic Expert Systems from Dynamic Fault Trees [C]. Proceedings of 2004 Annual Reliability and Maintainability Symposium, 2004: 444~450.
    [30] Dugan J B, Sullivan K J, Coppit D. Developing a low-cost high-quality software tool for dynamic fault-tree analysis [J]. IEEE Transactions on Reliability, 2000, 49(1): 49~59.
    [31] Amari S V, Dill G, Howald E. A New Approach to Solve Dynamic Fault Trees [C]. Proceedings of 2003 Annual Reliability and Maintainability Symposium, 2003:374~379.
    [32] Bobbio A, Codetta-Raiteri D, De Pierro M et al. Efficient analysis algorithms for parametric fault trees [C]. Proceedings Workshop on Techniques, Mehodologies and Tools for Performance Evaluation of Complex Systems, 2005: 91~105.
    [33] Marquez D, Neil M, Fenton N. Solving dynamic fault trees using a new hybrid bayesian network inference algorithm [C]. Mediterranean Conference on Control Automation, 2008: 1526~1531.
    [34] Yuge T, Yanagi S. Quantitative analysis of a fault tree with priority AND gates [J]. Reliability Engineering & System Safety, 2008, 93(11): 1577~1583.
    [35]朱正福,李长福,何恩山等.基于马尔科夫链的动态故障树分析方法[J].兵工学报,2008,29(9):1104~1107.
    [36] Zhou Z B, Ma C Q, Zhou J L, Dong D D. Dynamic fault tree analysis based on dynamic Bayesian networks [J]. System Engineering Theory and Practice, 2008, 28(2): 35~42.
    [37] Dutuit Y, Rauzy A. A linear-time algorithm to find modules of fault trees [J]. IEEE Transactions on Reliability, 1996, 45(3): 422~425.
    [38] Sun H, Andrews J D. Identification of independent modules in fault trees which contain dependent basic events [J]. Reliability Engineering & System Safety, 2004, 86(3): 285-296.
    [39] Huang Chin-Yu, Chang Yung-Ruei. An improved decomposition scheme for assessing the reliability of embedded systems by using dynamic fault trees [J]. Reliability Engineering & System Safety, 2007, 92(10): 1403~1412.
    [40] Lo H K, Huang C Y, Chang Y R et al. Reliability and sensitivity analysis, of embedded systems with modular dynamic fault trees [C]. IEEE Region 10 Conference, 2005: 1863~1868.
    [41] Tang Z, Dugan J B. Minimal Cut Set/Sequence Generation for Dynamic Fault Trees [C]. Proceedings of Annual Reliability and Maintainability Symposium, 2004:207 ~ 213.
    [42] Rauzy A. Mathematical foundations of minimal cutsets [J]. IEEE Transactions on Reliability, 2001, 50(4): 389~396.
    [43] Dong Liu, Weiyan Xing, Chunyuan Zhang, Rui Li, Haiyan Li. Cut Sequence Set Generation for Fault Tree Analysis [C]. International Conference on Embedded Software and Systems, 2007:592~603.
    [44] Dong Liu, Chunyuan Zhang, Weiyan Xing, Rui Li, Haiyan Li. Quantification of Cut Sequence Set for Fault Tree Analysis [C]. Third International Conference on High Performance Computing and Communication, 2007:755~765.
    [45]刘东.空间信息处理系统可靠性设计与分析关键技术研究[D].长沙:国防科学技术大学,2008.
    [46] Arnold T F. The Concept of Coverage and its Effect on the Reliability Model of A Repairable System [J]. IEEE Trans. Computer, 1973, (C-22): 251~254.
    [47] Dugan J B, Trivedi K S. Coverage modeling for dependability analysis of fault-tolerant systems [J]. IEEE Trans. on Computers, 1989, (38): 775~787.
    [48] Dugan J B. Automated Analysis of Phased-Mission Reliability[C]. IEEE Transactions on Reliability, 1991, 40(l): 45~52.
    [49] Xing L, Dugan J B. Generalized Imperfect Coverage Phased-Mission Analysis[C]. Proceedings Annual Reliability and Maintainability Symposium, 2002: 112~119.
    [50] Xiao G, Li Z, Li T. Dependability estimation for non-Markov consecutive-k-out-of-n: F repairable systems by fast simulation [J]. Reliability Engineering & System Safety, 2007, (92): 293~299.
    [51]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版,1985.
    [52] Kumamoto H, Tanaka K, Inoue K, et al. Sampling Monte Carlo for System, Unavailability Evaluation [J]. IEEE Trans.Rel., 1980, R-29(2): 122~125.
    [53] George S, Fishman. A Comparison of Four Monte Carlo Methods for Estimating the Probability of s-t Connectedness [J]. IEEE Trans.Rel., 1986, R-35(2): 145~154.
    [54]欧?亨利等著,吕应甲等译.可靠性工程与风险分析[M].北京:原子能出版社,1988.
    [55] Oliveira G C, Pereira M V F, Cunha S H F. A Technique for Reducing computational Effort in Monte-Carlo Based Composite Reliability Evaluation [J]. IEEE Trans. Power Sys., 1989, 4(4): 1309~1315.
    [56] Geist R. Extended Behavioral Decomposition for Estimating Ultrahigh Reliability [J]. IEEE Trans.Rel., 1991, 40(1): 22~27.
    [57] Xiao G, Li Z, Li T. Dependability estimation for non-Markov consecutive-k-out-of-n: F repairable systems by fast simulation [J]. Reliability Engineering & System Safety, 2007, (92): 293~299.
    [58] Nakayama M K. Fast simulation methods for highly dependable systems [C]. Proc. 1994 Winter Simulation Conf., 1994: 221~228.
    [59] Sandeep J, Perwez S. Splitting-based importance-sampling algorithm for fast simulation of Markov reliability models with general repair-policies [J]. IEEE Transactions on Reliability, 2001, 50(3): 235~245.
    [60] Ambuj G, Perwez S, Philip H, et al. A unified framework for simulating Markovian models of highly dependable systems [J]. IEEE Transactions on Computers, 1992, 41(1): 36~51.
    [61] Perwez S. Importance sampling for the simulation of highly reliable Markovian systems [J]. Management Science, 1994, (40): 333~352.
    [62] Christos A, Bruce C S. The balanced likelihood ratio method for estimatingperformance measures of highly reliable systems [C]. Proceedings of 1998 Winter Simulation Conference, 1998:1479~1486.
    [63] Juan A C. Adapted Importance Sampling Schemes for the Simulation of Dependability Models of Fault-Tolerant Systems with Deferred Repair [C]. Proceedings of the 39th annual Symposium on Simulation, 2006: 107~117.
    [64] Walrand J. Quick simulation of rare events in queuing networks [C]. Proc. Second Int. Workshop Appl. Math. and Performance/Reliability Models of Comput./ Commun. Syst, 1987: 275~286.
    [65] Lewis E E, Boehm F, Kirsch C, et al. Monte Carlo Simulation of Complex Systems Mission Reliability [C]. Proceedings of the 21st conference on Winter simulation, 1989: 497~504.
    [66] Wang, Y., W. Y. Li, et al. Reliability Analysis of Phasor Measurement Unit Using Hierarchical Markov Modeling [J]. Electric Power Components and Systems, 2009, (37): 517~532.
    [67] Petri C A. Kommunikation mit automaten [D]. Darmstadt: Darmstadt University of Technology, 1962.
    [68]林闯.随机Petri网和系统性能评价[M].北京:清华大学出版社,2000.
    [69] Williams R L. Go Methodology-Overview [Z]. Washington: Electric Power Research Institute, 1978.
    [70] Matsuoka T, Kobayashi M. GO-Flow: A New Reliability Analysis Methodology [J]. Nuclear Science and Engineering, 1988, (98): 64~78
    [71]沈祖培,唐辉.有共因失效的系统可靠性的GO法分析[J].清华大学学报(自然科学版),2006,46(6):829~832.
    [72]周忠宝.基于贝叶斯网络的概率安全评估方法及应用研究[D].长沙:国防科技大学,2006.
    [73] Barlow R E. Using influence diagrams [C]. Accelerated life testing and experts’opinions in reliability; 1988:145~157.
    [74] Almond R G. An extended example for testing graphical belief [R]. Technical Report 6, Statistical Sciences Inc., 1992.
    [75] Boudali H, Dugan J B. A new bayesian network approach to solve dynamic fault trees [C]. Proceedings of Annual Reliability and Maintainability Symposium, 2005: 451~456.
    [76] Boudali H, Dugan J B. A discrete-time Bayesian network reliability modeling and analysis framework [J]. Reliability Engineering and System Safety, 2005, 87(3): 337~349.
    [77] Watson H A, Bell Telephone Laboratories. Launch Control Safety Study [R]. Bell Telephone Laboratories, Murray Hill, NJ USA, 1961.
    [78] Michael S, William V, Dugan J B, et al. Fault Tree Handbook with Aerospace Applications (Version 1.1) [R]. Report for NASA Office of Safety and Mission Assurance, 2002.
    [79] Blum A, Heidelberger P, Lavenberg S S, et al. System Availability Estimator (SAVE) Language Reference and User’s Manual Version 4.0 [R]. IBM Research Report RA 219S, 1993.
    [80] Butler R W. The SURE Approach to Reliability Analysis [J]. IEEE Trans. on Reliability, 1992, 41(2): 210~218.
    [81] Bayes Net Toolbox for Matlab. http://www.cs.ubc.ca/~murphyk/Software/ BNT/bnt.html
    [82] Raptor Version 7 Software [Z]. Albuquerque, New Mexico, ARINC Engineering Services, LLC, 2005.
    [83] Coudert O, Madre J C. MetaPrime: An Interactive Fault-Tree Analyzer [J]. IEEE Transactions on Reliability, 1994, (43):121~127.
    [84] Relex Software Homepage. http://www.relex.com/
    [85] Relex Software Co. & Intellect. Reliability: A Practitioner’s Guide [Z]. 2003.
    [86] Item Software Homepage. http://www.itemsoft.com
    [87] OpenFTA homepage. http://www.openfta.com/
    [88] Sullivan K J, Dugan J B, Coppit D. The Galileo fault tree analysis tool [C]. Proceedings of the 29th Annual International Symposium on Fault-Tolerant Computing, 1999: 232~235.
    [89] Dugan J B, Venkataraman B, Gulati R. DIFTree: A software package for the analysis of dynamic fault tree models [C]. Annual Reliability and Maintainability Symposium 1997 Proceedings, 1997:13~16.
    [90] Xing L D, Dugan J B, Morrissette B A. Efficient Reliability Analysis of Systems with Functional Dependence Loops [J]. Eksploatacja I Niezawodnosc-Maintenance and Reliability, 2009(3): 65~69.
    [91] Dehlinger J, Dugan J B. Dynamic event/fault tree analysis of multi-agent systems using Galileo [C]. The Eighth International Conference on Quality Software, 2008: 429~434.
    [92] Dugan J B, Pai G J, Xu H. Combining software quality analysis with dynamic event/fault trees for high assurance systems engineering [C]. High Assurance Systems Engineering Symposium, 2007: 245~255.
    [93] Amari S V, Howald E, Schick T, et al. Relex Fault Tree Methodology [R]. Relex Software Corporation, 2003.
    [94] Trivedi K S. SHARPE 2002: Symbolic Hierarchical Automated Reliability and Performance Evaluator [C]. Proceedings of the International Conference on Dependable Systems and Networks, 2002: 544.
    [95] Hirel C, Sahner R, Zang X, et al. Reliability and Performability Modeling using SHARPE 2000 [C]. Proceedings of the 11th International Conference on Computer Performance Evaluation: Modeling Techniques and Tools, 2000:345~349.
    [96] Reliability Information Analysis Center Homepage. http://theRIAC.org
    [97]中国赛宝实验室网址,http://www.ceprei.com/
    [98]李丽萍.硬件式容错计算机系统可靠性仿真[D].哈尔滨:哈尔滨工程大学,2000.
    [99]侯成杰,刘璟炜,朱北园.卫星可靠性技术——计算机辅助可靠性分析[J].航天控制,2002(1):61~65.
    [100]马秀娟.小卫星星务管理系统设计及其可靠性问题研究[D].哈尔滨:哈尔滨工业大学,2002.
    [101]王学.载人飞船回收着陆系统可靠性研究[D].长沙:国防科技大学,2010.
    [102]张涛.装备使用阶段维修保障能力评估建模与分析[D].长沙:国防科技大学,2004.
    [103]胡超斌.神州飞船热控系统循环泵可靠性评估技术研究[D].长沙:国防科技大学,2004.
    [104]林洁.GO-FLOW原理及其计算机辅助技术[D].长沙:国防科技大学,2003.
    [105]金星,洪延姬.系统可靠性评定方法[M].北京:国防工业出版社,2005.
    [106]杨为民,盛一兴.系统可靠性数字仿真[M].北京:北京航空航天大学出版社,1990.
    [107]王少萍.工程可靠性[M].北京:北京航空航天大学出版社,2000.
    [108] Salvatore D, Xing L. A new approach to modeling the system reliability: Dynamic reliability block diagrams [C]. Annual Reliability and Maintainability Symposium, 2006: 189-195.
    [109] Minato S. Zero-suppressed BDDs and their applications [J]. International Journal on Software Tools for Technology Transfer, 2001, (3): 156-170.
    [110] Long W and Sato Y. A comparison between probabilistic models for quantification of priority-AND gates [C]. Proc. PSAM-4, 1998: 1215~1220.
    [111] Fussell J B, Aber E F, Rahl R G. On the quantitative analysis of priority-AND failure logic [J]. IEEE Transactions on Reliability 1976, (25): 324~326.
    [112] Long W, Sato Y, Horigone M. Quantification of sequential failure logic for fault tree analysis [J]. Reliability Engineering & System Safety, 2000, 67(3): 269 ~ 274.
    [113] Myers A, Rauzy A. Efficient Reliability Assessment of Redundant Systems Subject to Imperfect Fault Coverage Using Binary Decision Diagrams [J]. IEEE TRANSACTIONS ON RELIABILITY, 2008, 57(2): 336~348.
    [114]肖刚,吴俊.剩余分布抽样及其在非马尔科夫可修系统可靠性数字仿真中的应用[J].强度与环境,1997(3):58 ~ 64.
    [115]周江华,胡峰,孙国基.剩余寿命抽样的罗必塔方法及其在可靠性数字仿真中的应用[J].航空学报,2001,22(6):513 ~ 516.
    [116] Amari S V, Akers J B. Reliability analysis of large fault trees using the Vesely failure rate [C]. RAMS'04, 2004: 391~396.
    [117] Kumar A, Kumar A, Choudhary S, Varde P V. Optimization of Binary Decision Diagram using Genetic algorithm [C]. 2010 2nd International Conference on Reliability, Safety and Hazard, 2010: 168~175.
    [118] Bucci P, Kirschenbaum J, et al. Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability [J]. Reliability Engineering & System Safety, 2008, 93(11): 1616~1627.
    [119] Han W, Guo W, Hou Z. Research on the method of dynamic fault tree analysis [C]. 2011 9th International Conference on Reliability, Maintainability and Safety, 2011: 950~953.
    [120] Yevkin O. An improved modular approach for dynamic fault tree analysis [C]. Annual Reliability and Maintainability Symposium, 2011: 1~5.
    [121] Vinod G, Kushwaha H S, Verma A K, et al. Importance measures in ranking piping components for risk informed in-service inspection[J]. Reliability Engineering & System Safety, 2003, 80(2): 107~113.
    [122] Borgonovo E. Differential, criticality and Birnbaum importance measures: An application to basic event, groups and SSCs in event trees and binary decision diagrams [J]. Reliability Engineering & System Safety, 2007, 92(10): 1458~1467.
    [123] Borgonovo E. Differential importance and comparative statics: An application to inventory management [J]. International Journal of Production Economics, 2008, 111(1): 170~179.
    [124] Do V P, Barros A, Berenguer C. Reliability importance analysis of Markovian systems at steady state using perturbation analysis [J]. Reliability Engineering & System Safety, 2008, 93(11): 1605~1615.
    [125] Tian W.Fault Diagnosis of Airborne Equipment Based on Grey Correlation Fault Tree Identification Method [C].7th World Congress on Intelligent Control and Automation, 2008: 8521~8525.
    [126] Choi J S, Cho N Z. A Practical Method for Accurate Quantification of Large Fault trees [J]. Reliability Engineering & System Safety, 2007, 92(7): 971~982.
    [127] Zio E, Podofillini L. Accounting for components interactions in the differential importance measure [J]. Reliability Engineering & System Safety, 2006, 91(10): 1163~1174.
    [128] Rao K D, Gopika V, Rao V, et al. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment [J]. Reliability Engineering & System Safety, 2009, 94(4): 872~883.
    [129] Choi J S, Cho N Z. A practical method for accurate quantification of large fault trees [J]. Reliability Engineering & System Safety, 2007, 92(7): 971~982.
    [130] Yue L H, Chen W G, Yue L J. Reduction and the ordering of basic events in a fault tree based on rough set theory [J]. Progress in Safety Science and Technology, 2006, 6: 63~66.
    [131]史定华,王松瑞.故障树分析技术方法和理论.北京:北京师范大学出版社,1993.
    [132] Latronico E, Koopman P. Design time reliability analysis of distributed fault tolerance algorithms [C]. Proceedings of the International Conference on Dependable Systems and Networks, 2005: 486~495.
    [133] Bouricius W G, Carter W C, Schneider P R. Reliability Modeling Techniques for Self-Repairing Computer Systems[C]. Proc. 24th Annu. ACM Nat. Conf, 1969: 295~309.
    [134] Somani A K, Ritcey J A, Au S. Computationally-Efficent phased-mission reliability analysis for systems with variable configurations [J]. IEEE Transactions on Reliability, 1992, 41(4): 504~511.
    [135] Levitin G, Amari S. Three types of fault coverage in multi-state systems [C]. 8th International Conference on Reliability, Maintainability and Safety, 2009: 122~127.
    [136] Bavuso S J, Rothmann E, Dugan J, et al. HiRel: Hybrid Automated Reliability Predictor (HARP) Integrated Reliability Tool System (Version 7.0) [R]. NASA Technical Paper 3452, Nov. 1994, vol. 1.
    [137] Trivedi K S, Geist R M. Decomposition in reliability analysis of fault tolerant systems [J]. IEEE Transactions on Reliability, 1983, R-32(5): 463~468.
    [138] Doyle S A, Dugan J B, Patterson-Hine F A. A combinatorial approach to modeling imperfect coverage [J]. IEEE Transactions on Reliability, 1995, 44(1): 87~94.
    [139] Amari S V, Dugan J B, Misra R B. A separable method for incorporating imperfect fault-coverage in combinatorial models [J]. IEEE Transactions on Reliability, 1999, 48(3): 267~274.
    [140] Chang Y R, Amari S V, Kuo S Y. OBDD-based evaluation of reliability and importance measures for multistate systems subject to imperfect fault coverage [J]. IEEE Transactions on Dependable and Secure Computing, 2005, 2(4): 336~347.
    [141] Myers A F. k-out-of-n: G system reliability with imperfect fault coverage [J]. IEEE Transactions on Reliability, 2007, 56(3): 464~473.
    [142] Myers A F, Rauzy A. Assessment of redundant systems with imperfect coverage by means of binary decision diagrams [J]. Reliability Engineering and SystemSafety, 2008, 93(7): 1025~1035.
    [143] Geist R. Extended behavioral decomposition for estimating ultrahigh reliability [J]. IEEE Transactions on Reliability, 1991, 40(1): 22~28.
    [144] Amari S V, Myers A, Rauzy A. An efficient algorithm to analyze new imperfect fault coverage models [C]. Reliability and Maintainability Symposium, 2007: 420~426.
    [145] Xing L, Morrissette B A, Dugan J B. Efficient analysis of imperfect coverage systems with functional dependence [C]. Reliability and Maintainability Symposium, 2010: 1~6.
    [146] Dugan J B. Fault tree and imperfect coverage [J]. IEEE Transactions on Reliability, 1989, 38(2): 177~185.
    [147] Trivedi K S. Probability and Statistics with Reliability, Queuing and Computer Science Applications [M]. New York: John Wiley & Sons, 2002.
    [148] Dugan J B, Veeraraghavan M, Boyd M, Mittal N. Bounded approximate reliability models for distributed systems [C]. Proceedings of the Eighth Symposium on Reliable Distributed Systems, 1989: 137~147.
    [149] Dugan J B, Venakataramana B, Gulati R. DIFtree: A Software Package for the Analysis of Dynamic Fault Tree Models [C]. Proceedings of the Annual Reliability and Maintainability Symposium, 1997: 64~70.
    [150] Ascher H E. Repairable Systems in Reliability [J]. Encyclopedia of Statistical Sciences, 2011: 1~5.
    [151] Distefano S, Puliafito A. Dynamic reliability block diagrams VS dynamic fault trees [C]. Annual Reliability and Maintainability Symposium, 2007: 71~76.
    [152] Distefano S, Puliafito A. System modeling with Dynamic Reliability Block Diagrams [C]. Proceedings and Monographs in Engineering, Water and Earth Sciences, 2006: 141~150.
    [153] Robidoux R, Xu H, Xing L, et al. Automated Modeling of Dynamic Reliability Block Diagrams Using Colored Petri Nets [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40(2): 337~351.
    [154] Distefano S, Puliafito A. Dependability Evaluation with Dynamic Reliability Block Diagrams and Dynamic Fault Trees [J]. IEEE Transactions on Dependable and Secure Computing, 2009, 6(1): 4~17.
    [155] Fricks R M, Trivedi K S. Importance analysis with Markov chains [C]. Annual Reliability and Maintainability Symposium, 2003: 89~95.
    [156] Bobbio A, Premoli A, Saracco O. Multi-State Homogeneous Markov Models in Reliability Analysis [J]. Microelectronics Reliability, 1980, 20(6): 875-880.
    [157]苏春,王圣金,许映秋.复杂系统动态可靠性建模及其数值仿真研究[J].机械设计,2007,24(2):4~6.
    [158]李丽萍.硬件式容错计算机系统可靠性仿真[D].哈尔滨:哈尔滨工程大学,2000.
    [159]杨宇航,冯允成.复杂可修系统可靠性维修性综合仿真研究[J].系统仿真学报,2002,14(8):978~982,986.
    [160] Moghaddass R, Zuo M J. Optimal design of a repairable k-out-of-n system considering maintenance [C]. Reliability and Maintainability Symposium, 2011: 1~6.
    [161] Boudali H, Crouzen P, Stoelinga M. Dynamic fault tree analysis using Input/Output interactive Markov chains [C]. International Conference on Dependable Systems and Networks, 2007: 708~717.
    [162] Mura I, Bondavalli A. Markov regenerative stochastic Petri nets to model and evaluate phased mission systems dependability [J]. IEEE Transactions on Computers, 2001, 50(12): 1337~1351.
    [163] Victor F N, Philip H, Perwez S. Uniformization and exponential transformation: Techniques for fast simulation of highly dependable non-Markovian systems [C]. Proceedings of the 22nd International Symposium on Fault-Tolerant Computmg, 1992: 130~139.
    [164] Victor F N, Perwez S, Marvin K N. Techniques for fast simulation of model of highly dependable systems [J]. IEEE Transactions on Reliability, 2001, 50(3): 246~264.
    [165] Cao X R. System representations and performance sensitivity estimates of discrete event systems [J]. Mathematics and Computers in Simulation, 1989, 31(1-2): 113~122.
    [166] Kaminskiy M P, Krivtsov, V V. G-Renewal process as a model for statistical warranty claim prediction [C]. Annual Reliability and Maintainability Symposium, 2000: 276~280.
    [167] Kaminskiy M P, Krivtsov V V. A Monte Carlo Approach to Repairable System Reliability Analysis [C]. Probabilistic Safety Assessment and Management, 1998: 1063~1068.
    [168] Kaminskiy M P, Krivtsov V V. A Statistical Estimation of the Cost Impact from Introducing a Mileage Limit in Automobile Warranty Policy [J]. Institute of Mathematical Statistics Bulletin, 1999, 28(2): 73~78.
    [169] Krivtsov V V. A Monte Carlo Approach to Modeling and Estimation of the Generalized Renewal Process in Repairable System Reliability Analysis [D]. Maryland: University of Maryland, 2000.
    [170] Jimenez P, Villalon R. Generalized Renewal Process as an Adaptive Probabilistic Model [C].Transmission & Distribution Conference and Exposition, 2006: 1~6.
    [171] Veber B, Nagode M, Fajdiga M. Generalized renewal process for repairable systems based on finite Weibull mixture [J]. Reliability Engineering and SystemSafety, 2008, 93(10): 1461~1472.
    [172] Ren Y, Dugan J B. Design of reliable systems using static and dynamic fault trees [J]. IEEE Transactions on Reliability, 1998, 47(3): 234~244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700