高增益相对论速调管放大器自激振荡机理及抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率微波器件受其结构和功率容量的影响,其峰值功率受到限制。要实现更高的辐射功率,目前可行的技术路线是多台高功率微波器件的合成。由于相对论速调管放大器具有高增益、高功率以及相位和频率稳定的特点,因此强流相对论速调管放大器是目前实现该技术路线的优选微波器件之一,但这种器件在高增益条件下很容易产生自激振荡问题,严重影响器件的工作特性。论文基于一个四腔S波段强流高增益相对论速调管放大器进行了自激振荡产生机理及相关抑制技术的理论分析、粒子模拟和实验研究。
     论文根据单腔振荡和腔间耦合振荡的机理,(1)分析了单腔自激振荡的物理过程,并给出相对论速调管中各谐振腔的渡越角范围;(2)分析了腔间耦合导致自激振荡的物理过程,给出了高次模起振电流与器件结构参数之间的关系,并给出了提高起振电流抑制高次模产生的措施,该措施为:通过调节中间腔之间的漂移管长度(漂移管长度要同自激振荡模式谐振长度失配)、降低中间腔的Q值提高高次模起振电流和在漂移管中加载吸波材料截断高次模的传播途径来抑制自激振荡,从而实现腔间耦合的抑制,(3)通过PIC粒子模拟不仅验证了该措施的有效性,同时在kW注入微波条件下,模拟获得了增益大于60dB,功率3GW的高功率微波输出。
     关于强流相对论速调管放大器中回流电子问题,该问题主要涉及器件输出腔设计、注入微波功率和电子束等参数的优化,论文从四个方面进行研究:(1)从理论上推导出回流电子所受约束力的表达式,该式很好地解释了电子回流过程中容易发散的现象;(2)研究了回流电子产生的机理,给出了电子的回流与输出腔间隙电压、电子进入输出腔间隙时的初始相位和初始动能的关系;(3)分析了回流电子在末前腔引起自激振荡的回流电流强度和相位条件。(4)模拟分析了注入微波,电子束,器件结构等参数变化对电子回流的影响,给出了抑制回流电流引起的自激振荡的措施,即调节注入微波、腔体结构,电子束等等参数的控制回流电子强度,以及提高末前腔回流电流起振阈值抑制自己振荡,并在模拟中得到了验证。
     论文结合抑制自激振荡的措施,利用PIC程序完成了S波段3GW高增益强流RKA的模拟设计,在电子回流和腔间耦合自激振荡达到抑制的基础上,当注入微波2.3kW,电子束电压电流分别为1MV,12.5kA条件下模拟获得功率3GW,增益61dB,效率24%的稳定微波输出,同时将电子束参数900kW,8kA,1.3kW注入下获得2.05GW,效率28.5%,增益的RKA器件在LTD加速器平台开展了微波器件实验,(1)实验上验证了自激振荡抑制措施的有效性,(2)在注入微波功率为10kW级,电子束参数为900kV,7.8kA条件下,实验上获得GW级高功率微波输出,微波脉冲宽度为103ns,效率为26.5%,增益达到52dB。
As the technology of structure process and power capacity of high-power microwave devices are restricted, the output power of a single device is quite close to its limitation. To achieve higher output power at present, a feasible way is the combination of several high-power microwave devices. Because intense relativistic klystron amplifier (1RKA) has characteristics of high gain, high power, locking of phase and frequency, it was used for power combination. However self-oscillation will seriously affect the device's operating characteristics, espicially for the high gain cases. And the high gain devices need very lower rf input power to drive, so the technologhy pressure can be significantly decreased compared with the low gain cases. In order to accomplish a high gain (more than50dB) relativistics klystron ampilfier, an S-band1RKA with four cavities is chose to study self-oscillation mechanism and suppression technology through theory analyze, particle simulation and experimental research.
     The mechanism of monotron oscillation and couple between cavities are investigated for the suppression of the non-working modes'excitation as follows.(1) The physics mechanism of monotron oscillation is analyzed to give the transit angle's range for each caviy in the sturture;(2) Another kind of self-oscillation is also analyzed base on the couple between cavities, and the relationships between starting current of oscillation and structure parameters are given. So some methods of suppression high mode oscillation to increase the starting current of oscillation (such as adjusting length of drift tube between idle cavities and decreasing Q value of idle cavities) are proposed.(3)the validity of supressing method are not only proved in PIC simulation, but also under the condition of2.3kW input microwave power, output microwave with power of3GW, efficiency of24%, gain of61dB is obtained
     In intense relativist]c klystron amplifier, the raltion between the returning electrons and the design of output cavity, the parameter of beam and inject microwave is given. Four aspects are studied:(1) the radial force expressions of returning electrons is deduced, which well explained the phenomena of returning electronic easily diffusing and intercepted by drift tube;(2) the generating mechanism of returning electrons is studied, the study shows that the electronic reflux is closely related to voltage of output cavity gap, electronic initial phase and electronic initial kinetic energy;(3)the condition of current intension and phase of returning electron which excite oscillation in the upstream cavities is ananlyzed;(4)through simulationt to study how parameters of structure, input microwave power and electron beam affect the electronic returning, and then propose some restraining methods, these retraining measures is validated in simulation,the study found that output microwave with higher power,higher gain, phase and frequency locking,and higher efficiency can not be attained untill comprehensive suppressing measures are adopted.
     According to the self-oscillation supressing method,an S-band3GW high gain IRKA is designed through PIC simulation,an output microwave with power of3GW,efficiency of24%,gain of61dB is obtained.(?) the (?) time,an experiment research of(?)(?)(?)with the input microwave powe the of10kW level,the high power microweive with bandwidth of103ns,effiency of26.5%,gain of52dBand GW level output power is obtained.
引文
1. J. Benford, J. Swegle. High Power Microwave [M]. Norwood, MA:Artech House,1992,1-6.
    2. Barker R J, Schamiloglu E. High Power Microwave Sources and Technologies [M]. MA:Artech House,2001,2-9.
    3. ames Benford, John A. Swegle, Edl Schamiloglu着,江伟华,张驰译.高功率微波(第二版)[M],北京:国防工业出版社,2009,2-3.
    4. Robert J. B, Edl Schamiloglu,高功率微波源与技术[M],北京:清华大学出版社,2005.
    5.周传明,刘国治等,高功率微波源[M],北京:原子能出版社,2007:4-8.
    6. Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippled resonators:analytic theory and numerical simulation [J]. Phys Fluids,1985, 28:2882.
    7. Swegle J A. Starting conditions for relativistic backward wave oscillators at low currents [J]. Phys Fluids,1987,30:1201.
    8.文光俊,李家胤,梁正等.高功率相对论返波振荡器的研究[J].电子学报,1999,27:64.
    9. Li Z H. Investigation of an oversized backward wave oscillator as a high power microwave generator [J]. Appl Phys Lett,2008,92:054102.
    10. Ma Q S, Zhou C M, Wu Y. Theoretical investigation of a backward wave oscillator [J]. Chinese Physics C,2008,32:290.
    11. Marder B M, Clark M C, Bacon L D, et al. The split-cavity oscillator:a high-power e-beam modulator and microwave source [J]. IEEE Trans Plas Sci,1992,20:312.
    12.刘庆想。三腔渡越时间效应高功率微波振荡器研究。中国国防科学技术报告,中物院电子学研究所,1998.
    13.刘庆想。L波段长脉冲渡越管振荡器理论和实验研究。内部报告。1999
    14.范植开.渡越管振荡器的理论研究与原理性实验[D].北京:中国工程物理研究院研究生部,1999:19-24.
    15. Arman M J. Radial acceletron, a new low-impedance HPM source [J]. IEEE Trans Plas Sci,1996,24:964.
    16. Fan Z K, Liu Q X, Chen D B, Tan J, and Zhou H J. Theoretical and experimental researches on C-band three-cavity transit-time effect oscillator [J]. Science in China Series G:Physics Mechanics and Astronomy,2004,47:310.
    17. Sullivan D J. High power microwave generation from a virtual cathode oscillator (VIRCATOR) [J]. IEEE Trans Nuclear Sci,1983,30:3426.
    18. Shiffler D, Nation J A, et al. A high-power two stage traveling-wave tube amplifier [J]. J Appl Phys,1991,70:106.
    19. Naqvi S A, Nation J A, Schachter L, and Wang Q. High efficiency TWT design using traveling-wave bunch compression[J]. IEEE Trans Plasma Sci,1998,26:840.
    20. Naqvi S A, Kerslick G S, Nation J A. Axial extraction of high-power microwave from relativistic traveling wave amplifiers [J]. Appl Phys Lett,1996,69:1550.
    21. Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippled wall resonators:analytic theory and numerical simulation [J]. Phys Fluids,1985, 28:2882.
    22. Swegle J A. Starting conditions for relativistic backward wave oscillators at low currents [J]. Phys Fluids,1987,30:1201.
    23.王平山,黄华等。X波段三腔相对论速调管放大器实验[A]。第一届高功率微波学术研讨会论文集,西安,1994.
    24.黄华,王平山,吴忠发等。L波段单词短脉冲相对论速调管放大器的初步研究[J]。强激光与粒子束,1998,10(1):216-219
    25.刘振帮,金晓,黄华,陈怀璧.X波段长脉冲同轴多注相对论速调管放大器的分析与设计[J].物理学报,2012,12:128401
    26.吴洋,李正红,黄华,唐传祥,许州。C波段相对论行波结构放大器设计[J]。强激光与粒子束。2010,22(3):625-629.
    27.黄华,范植开,谭杰,等.长脉冲相对论速调管束流脉冲缩短的研究[J]。物理学报.2004.53(4):1129-1135.
    28. Pasour J. A., Fredman. An X-band RKA for Accelerator. Applications Bull[J]. Am. Phys.Soc.39 (1994):1029
    29. M. Friedman. Automodulation of an IREBs[J]. Phys. Rev. Lett.1974,32:92-94
    30. M. Friedman, Formation of a virtual cathode by a REB flowing throng a cavity. Appl. Phys[J]. Lett.1974,24:303-305
    31. M. Friedman. Modulation of intense relativistic electron beams by an external microwave source[J]. Phys. Rev. Lett.1985,55(26),:2860-2863
    32. M. Friedman, Externally modulated IREBs. J. Appl. Phys.1988,55(26):3353-337
    33. Friedman M, et al. The Triaxial Klystron [J]. American Institute of Physics,1999, CP474: 373-385.
    34. Carlsten B E, et al. Beam-cavity interaction physics for mildly relativistic, intense-beam klystron amplifiers [J]. IEEE Trans. Plasma Sci.1994,22(5):730-739.
    35. Y. Y. Lua, D. P. Chernin, Craig Wilsen, R.D.Gilgenbach. Theroy of Intermodulation in a Klystron[J]. IEEE Trans on PLASMA Science.42(4),1996,1249.
    36. George Caryotakis. High Power Klystron:Theory and Practice at the Stanford Linear Accelerator Center
    37. Allen M A, Callin R S, Deruyder H. Recent progress in relativistic klystron research. Particle Accelerators,1990,30:189.
    38.黄华,孟凡宝,常安碧,马乔生,张永辉,甘延青,罗敏,陈代兵.强流短脉冲相对论速调管放大器的初步研究[J].强激光与粒子束,200416(10):1219-129
    39.雷禄容,范植开,黄华,何琥.相对论速调管放大器双间隙输出腔的粒子模拟[J].强激光与粒子束,2007,19:1338.
    40. Moreland L D, et al. IEEE Transactions on Plasma Science,1994,22(5):554-565.
    41. Gunin A V, et al. IEEE Transactions on Plasma Science,1998,26(3):326-330.
    42. Bugaev S P, et al. IEEE Transactions on Plasma Science,1990,18:554-565
    43. M. Friedman. Self-modulation of an intense relativistic electron beam[J]. J. Appl. Phys.,1984,56(9):2459-2474.
    44. Sullivan D J. High power microwave generation from a virtual cathode oscillator (VIRCATOR) [J]. IEEE Trans Nuclear Sci,1983,30:3426.
    45. Jiang W H, Woolverton K, Dickens J, and Kristiansen M. High power microwave generation by a coaxial virtual cathode oscillator[J]. IEEE Trans Plas Sci,1999, 27:1538.
    46. Jiang W H, Dickens J, and Kristiansen M. Efficiency enchancement of a coaxial virtual cathode oscillator[J]. IEEE Trans Plas Sci,1999,27:1543.
    47. Varian R and Varian S. A high frequency Oscillator and amplifier [J]. J Appl. Phys,1939, 10:321.
    48. Friedman M, et al. X-Band Triaxial Klystron[J]. American Institute of Physics, 2003, CP691:
    49. Lee T D, Konrad G, Okaxaki Y. Design and performance of a 150-MW klystron at S-band [J]. IEEE Trans. Plasma Sci.,1985,13:545-552.
    50. Fredman M, serlin V, Lampe M, Hubbard R, Colombant D, S. inker S. Intense electron beams modulation by inductively loaded wide gaps for RKA [J]. Phys. Rev. Letter.1995,74(2): 322-325
    51. Fredman M, Fernsler R, Lampe M, Hubbard R, Colombant D, Slinker S. Efficient conversion of the energy of IREBS into RF wave[J]. Phys. Rev. Letter.1995,75(6):1214-1217
    52.黄华.S波段长脉冲相对论速调管放大器设计的理论与实验研究[博士学位论文].北京:中国工程物理研究院研究生部,2006.
    53. Agee FJ.黄华编译。窄带高功率微波源脉冲缩短短评[J]。高功率微波技术,2003,11(4):31-42
    54. Agree F J. Evolution of pulse shortening research in narrow band, high power microwave source [J]. IEEE Trans on plas. Sci,1998,26(3):235
    55. Benford J., G.benford. Surveyof pluse shortening in High-power microwave source[J]. IEEE TRANs. PlasmaSci.25(1997):311
    56.黄华,罗雄,雷禄容,等.长脉冲相对论速调管放大器杂频振荡的分析与抑制[J]。电子学报.2010.38(7):1473-14777.
    57. William T. Roybal, Bruce E. Carlsten.Dynamics of Retrograde Electrons Returning From the Output Cavity in Klystrons[J]. IEEE TRANACTION ON ELECTRON DEVICES,2006,53(8): 1922-1928.
    58.吴洋,许州,徐勇等.低功率驱动的高功率微波放大器实验研究[J].物理学报[J].2011,60(4):04102-1-5.
    59. Z. Fang, S. Fukuda, S. Yamaguchi. Spurious oscillation in klystron due to backing-going Electrons from collector[J]. Procceding of the25th Linear accelerator metting in japan Himeji.Japan (July 12-14,2000)
    60. Gegory nusinovich, michale read, liqunsong. Excitation of monotron oscillations in klystrons[J]. physicsof plasmas.2004 vol.11
    61. B. E. Carlsten, W. B. Haynes. Discrete Monotron Oscillator[J]. IEEE Trans on PLASMA Science.28(3),2000,959.
    62.李正红,孟凡宝,常安碧,黄华,马乔生.两腔高功率微波振荡器研究[J].物理学报,2005,54:3578.
    63.丁武.相对论速调管振荡器中两个调制腔耦合系数的计算[J].强激光与粒子束,2003,15:881.
    64.李正红,常安碧,鞠炳全等.准两腔振荡器的理论和实验研究[J].物理学报2007,56(5):
    65.全亚民,丁耀根,王树忠。双间隙耦合腔中自激振荡问题的分析和模拟[J].强激光与粒子束,2008,20(10)
    66. Roybal W T. Investigation of the effects of returning electrons on klystron performance [D]. University of New Mexico,2005.
    67. B. E. Carlsten, R. J. Faehl, M. v. fazio, WB. Hynes, R. D. Ryne, and R.M. stringfield. Beam-cavity interaction physics for mildly relativistic intense beam klystron amplifiers [J]. IEEE Trans. PLASMA Science.22(5),1994,730-739.
    68. Ramo S. Space charge and field waves in an electron beam [J]. Phys Review.1939, 56:276.
    69. B. E. Carlsten and S. Russell, Los Alamos National Laboratory, USPAS Course on Microwave Source, Course material.
    70. Uhm H S. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifiers [J]. Phys Fluids B,1993,5:190.
    71.陈洪亮,张峰,田社平.电路基础[M].北京:高等教育出版社,2007.
    72.王文祥.微波工程技术[M].北京:国防工业出版社北京2009.
    73. Carlsten B E, Ferguson P, and Sprehn D. Accuracy of the equivalent circuit model using a fixed beam impedance for klystron gain cavities [J]. IEEE Trans Plas Sci, 1998,26:1745.
    74.丁耀根.大功率速调管的理论与计算模拟[M].北京:国防工业出版社,2008.
    75.谢家麟,赵永翔,速调管群聚理论[M],北京:科学出版社,1966,24-43.
    76. Wu Y, Xu Z, Jin X, Li Z H, and Tang C X. Suppression of higher mode excitation in a high gain relativistic klystron amplifier [J]. Physics of Plasmas,2012, 19:023102-1-6.
    77.陈永东,金晓,李正红,黄华,吴洋.高增益相对论速调管放大器杂模振荡抑制研究[J].物理学报2012,61(22)
    78.吴鸿适.微波电子学原理[M].北京:科学出版社,1987
    79.张泽海,舒挺,张军,刘静,朱俊.相对论速调管放大器杂模振荡的抑制[J].强激光与粒子束.2011,23:2989.
    80. F.Paschke. on the nonlinear Behavior of Electron-Beam Devices[J]. RCA Review, 221-242 (June,1957)
    81.郭硕鸿.电动力学[M].北京:高等教育出版社,1997
    82.陈永东,金晓,李正红,吴洋,黄华.S波段3GW相对论速调管放大器的设计[J],强激光与粒子束.2012,24(8):2150-2154
    83. Uhm. H. S. A theory of two-beam klystron [J]. Phys. Fluids B. vol.5,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700