西瓜枯萎病拮抗芽孢杆菌HD-5菌株的筛选与发酵工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西瓜枯萎病又叫蔓割病,是一种世界性分布的土传病害,是由尖孢镰刀菌(Fusarium oxysporum)引起的。西瓜枯萎病的田间发病率一般为10%-30%,特别是重茬瓜田的发病率尤为严重,减产20%-50%,甚至绝收,造成了巨大的经济损失。目前,从土壤中筛选拮抗微生物来防治病害逐渐成为研究的热点课题。本研究旨在筛选到对西瓜枯萎病菌尖孢镰刀菌具有较好生物防治潜力的拮抗芽孢细菌,并对其进行相关研究,以便在西瓜种植业中用于西瓜枯萎病的防治。
     对土样中分离的产芽孢细菌进行初筛和复筛,得到3株具有较强抑菌活性的拮抗芽孢细菌HD-5、CZ-10、BY-1菌株,并对该3菌株进行了实验室西瓜枯萎病盆栽防治效果试验,最终获得了对西瓜枯萎病具有较好防治效果的拮抗芽孢细菌HD-5菌株。
     通过对HD-5菌株的形态特征、生理生化特征考察,以及16S rDNA全序列分析表明HD-5菌株与解淀粉芽孢杆菌(Bacillus amyloliquefaciens)的生理生化特征相符,与其16S rDNA序列同源性高达99.78%的。因此,判定HD-5菌株为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。
     通过对B. amyloliquefaciens HD-5菌株抗菌物质的性质分析,初步确定其分泌的抗菌物质为蛋白质或多肽;为了提高HD-5菌株发酵产抑菌活性物质的量,采用单因素法对HD-5菌株发酵培养基所需的碳源、氮源、无机盐进行了筛选,并采用正交试验对HD-5菌株的发酵培养基组成及培养条件进行了优化,最终确定产抑菌活性物质的最适发酵培养基及培养条件为:葡萄糖5.0%,大豆蛋白胨5.0%,MnSO4 0.05%,MgSO4·7H2O 0.05%,培养基初始pH7.5,种龄14-16 h,接种量8%,于30℃、200 r/min摇床培养48 h。经过优化拮抗细菌HD-5菌株的发酵产抑菌活性物质能力大大提高了,抑菌圈直径增加了65.0%。
     为了提高B. amyloliquefaciens HD-5菌株的芽孢形成率及芽孢数量,奠定芽孢菌剂的工业化生产基础,用摇瓶发酵对芽孢形成的主要影响因素进行了考察。通过单因素实验和正交实验对HD-5菌株产芽孢条件进行了分析,确定了摇瓶产芽孢最佳条件为:玉米粉0.5%,大豆蛋白胨0.5%,MgSO4·7H2O 0.05%,MnSO4 0.05%,初始pH 7.5,接种量5%,于37℃、180 r/min摇床培养48 h,最终可使HD-5菌株的芽孢形成率达到89.62%,生物量为1.2×10~9 cfu/mL。
     为了进行B. amyloliquefaciens HD-5菌株芽孢菌剂的田间应用试验与最终推广应用,研究HD-5菌株的大型发酵工艺参数,在2 m3发酵罐进行了产芽孢试生产,确立了该菌株在2 m3发酵罐中的发酵工艺参数。经过发酵,发酵液菌浓达到1.0×109 cfu/mL,芽孢形成率在85.0%以上。最后经过添加锯末固定、干燥,制备出的固体菌剂为140 kg。经过测定,其活菌含量为7.0×10~9 cfu/g。
Watermelon fusarium wilt also known as Fusarium wilt, a worldwide distributed of soil-borne disease, is caused by Fusarium oxysporum. The incidence of watermelon fusarium wilt is generally 10%-30%, particularly serious in successive cropping melonfield. The disease leads to 20%-50% yield reduction, and in severe cases even to complete loss in harvest, which causes huge economic losses. At present, the screening of antagonistic microorganisms from soil to prevent and treat Watermelon fusarium wilt caused by Fusarium oxysporum, has gradually become one hot topic of research. Research was done to screen Bacillus bacteria with better biological control potential of Watermelon fusarium wilt caused by Fusarium oxysporum, in order to prevent and treat Watermelon fusarium wilt in watermelon farming.
     In order to obtain antagonistic bacteria against Fusarium oxysporum, strains were isolated and screened with the improved agar plate diffusion method using the soil from different districts. The antagonistic activity of strain HD-5, strain CZ-10 and strain BY-1 against Fusarium oxysporum was tested via the pot test for preventing and treating of Watermelon fusarium wilt in the laboratory. A strain HD-5, exhibiting the strongest antagonistic activity against Fusarium oxysporum was obtained. The morphological characteristics, physiological and biochemical properties and 16S rDNA sequence of this strain were studied to determine the species. The similarity of the 16S rDNA sequences between strain HD-5 and Bacillus amyloliquefaciens was up to 99.78%. Finally, the strain HD-5 was identified as Bacillus amyloliquefaciens.
     In order to increase the quantity of antifungal protein from Bacillus amyloliquefacien HD-5, the strain was cultured under different conditions. Through single factor experiments, the suitable carbon source, nitrogen source and inorganic salt were chosen. The optimal composition of media was determined by orthogonal experiments. The optimization of fermentation factors, such as initial pH, fermentation temperature and fermentation time, was made by single factor experiments. By the orthogonal design, the optimal proportions of fermentation medium were glucose 5.0%, soybean peptone 5.0%, MnSO4 0.05% , MgSO4·7H2O 0.05%. By single factor experiments, the optimal fermentation condition was initial pH 7.5 and inoculum age of 14~16 hours, shaking flask fermentation temperature is 30℃for 48 hours, under the listed conditions, the highest quantity of antifungal protein was obtained. After optimization, diameter of inhibition zone was increased by 65.0%
     In order to improve the production rate and spore quantity of antagonistic strain HD-5 of Bacillus amyloliquefacien against Fusarium oxysporum. The main factors influencing sporulation were investigated using shake-flask fermentation method. Through the single factor experiment and orthogonal experiment, the optimal shaking flask fermentation condition was determined as follow: media composed of 0.5% corn meal, 0.5% soybean peptone, 0.05% MgSO4·7H2O, 0.05% MnSO4, initial pH at 7.5, 5% of inoculum size, fermentation for 48h at 37℃with rotating speed 180r/min. Under this optimum condition, the spore quantity was 1.2×10~9 spore /mL, and spore production rate achieved 89.62%.
     For field application testing and extension application of B. amyloliquefaciens strain HD-5, fermentation parameters of strain HD-5 in large-scale production were investgated and obtained by trial production in 2 m3 fermenter. After fermentation, the fermentation broth of bacteria concentration was up to 1.0×109 cfu/mL and the sporulation rate up to 85.0%. Finally, 140 kg inocula solids was prepared by drying through adding sawdust. The viable cell number was determined to be 7.0×10~9 cfu/g.
引文
[1]朱育菁,车建美,肖荣凤.尖孢镰刀菌(Fusarium oxysporum Schl)的生长特性[J].中国农学通报, 2007, 23(8): 373-376.
    [2] Hayakawa M, Nonomura H. Humic acide vitamin agar, a new medium for the selective isolation of soil actinoe mycetes[J]. J Fermemt Bio, 1978, 65: 501-509.
    [3]姜成林,徐丽华.土壤放线菌区系研究用的分离方法[J].微生物学通报, 1985, 12(5): 218-220.
    [4] Hayakawa M, Kajiura T, Nonomura H. New methods for the highly selective isolation of Streptosporangium and Dactylosporangium from oil[J]. J Fermemt Bio,1991, 72: 327-333.
    [5]郝晓娟,刘波,谢关林.植物枯萎病生物防治研究进展[J].中国农学通报, 2005, 21(7): 319-322, 337.
    [6]史怀,朱育菁,李芳,等.淡紫拟青霉NH-PL-03菌株的多糖及其对尖孢镰刀菌的抑制作用[J].中国植保导刊, 2006, 26(9): 5-8.
    [7]谢大森,陈家旺.西瓜枯萎病研究进展[J].江西农业大学学报, 1997, 19(4): 42-45.
    [8]高军,高增贵,赵世波,等.甜瓜枯萎病菌的抗药性及致病力测定[J].江苏农业科学, 2006(4): 39-40.
    [9]王昌家,孙毅民.大豆枯萎病的发生与防治[J],大豆通报, 2000, 24(4): 16.
    [10]高军,高增贵,赵世波,等.瓜类枯萎病及其防治研究进展[J].长江蔬菜, 2006(1): 35-38.
    [11]饶雪琴,李人柯.苦瓜枯萎病菌滤液鉴定苗期抗病性的初步探讨[J].江西农业大学学报, 1999, 21(3): 367–369.
    [12]肖荣凤,刘波,朱育菁,等.西瓜枯萎病原菌鉴定及其生物学特性的研究[J].武夷科学, 2004, 20: 70-73.
    [13]苏成军.西瓜枯萎病的发生与防治[J].中国瓜菜, 2006, 2: 37-38.
    [14]杨秀云.西瓜枯萎病的发生特点及防治措施[J].现代农业科技, 2005, 8: 16.
    [15]王德旭,李兵川.西瓜枯萎病的诊断与防治[J].农机安全监理, 2002, 1: 13.
    [16]于天祥,张明方.西瓜枯萎病研究进展[J].中国西瓜甜瓜, 2004 (1): 17-19.
    [17] Davis D. Fusaric acid in selective pathogenicity of Fusarium oxysporum[J]. Phytopathol, 1967, 57: 808.
    [18] Barna B. The influence of nitrogen on the sensitivity of tomato plants to culture filtrates of Fusariumto fusaric acid[J]. Physiol PlantPathol, 1983, 23: 257-263.
    [19]赵艳茹,杨德岐,陈春秀.西瓜枯萎病抗性品系鉴定与筛选[J].北京农业科学, 1999, 13(4): 25-28.
    [20]马国斌,王鸣,郑学勤.西瓜和甜瓜镰刀菌抗性变异体的诱导[C].园艺学进展(第六辑).西安:陕西科学技术出版社, 2004: 351-357.
    [21]许勇,朱其杰,陈晓莉,等.镰刀菌酸对黄瓜不同品种的致萎力与枯萎病致病力的相关性[J].中国蔬菜, 1993(1): 19-20.
    [22]魏惠军,杜胜利,张历.黄瓜枯萎病菌滤液对黄瓜毒性初步研究[J].天津农业科学, 1997(1): 5-6.
    [23]朱天圣,戚佩坤.苦瓜枯萎病病原菌研究[J].华南农业大学学报, 1998, 19(4): 14-18.
    [24]肖昌华,余席茂,何玉英,等.苦瓜枯萎病菌的生物学特性研究[J].植物保护, 2008, 34(2): 83-86.
    [25]谢大森,何晓明,何素娟.冬瓜与节瓜枯萎病菌人工接种技术研究[J].广西农业生物科学, 2003, 22(2): 92-95, 121.
    [26]田黎,王克荣,陆家云.葡柄霉对尖孢镰刀菌生长及微菌核形成的影响[J].中国生物防治, 1998, 14(1): 14-17.
    [27]王伟,赵谦,杨微.木霉属对土传病原尖孢镰刀菌的拮抗作用[J].中国生物防治, 1997, 13(1): 46-47.
    [28]北京农业大学主编.农业植物病理学[M].北京:农业出版社, 1979.
    [29]李宏科.水稻重要害虫的病原微生物考察[J].微生物通报, 1984, 11(1): 3-6.
    [30]吴学宏,卢志军,王品品,等.西瓜枯萎病综合防治研究进展[J].植物保护, 2011, 37(4): 27-32.
    [31]齐三魁.中国甜瓜[M].北京:科学普及出版社, 1991.
    [32]李增智.菌物在害虫植病和杂草治理中的现象和未来[J].中国生物防治, 1999, 1(1): 35-40.
    [33]张世平.棉花枯黄萎病生物防治新途径[J].中国棉花, 1996, 23(7): 4-6.
    [34]燕嗣皇,陆德清,杨雨环.木霉防治辣椒枯萎病应用技术研究[J].贵州农业科学, 1999, 27(5): 1-4.
    [35]陈三凤,李季伦.作物根际和叶围中产几丁质酶微生物的分布及其抑制真菌作用[J].生物防治通报, 1994, 10(2): 58-61.
    [36]吴加志, Shlomo P.植物土传、根际和内生细菌用于植物病害生物防治潜力的研究[J].中国微生态学杂志, 1996, 8(2): 4-13.
    [37]李敏,孟祥霞,姜吉强,等. AM真菌与西瓜枯萎病关系初探[J].植物病理学报, 2000, 30 (4): 327-331.
    [38]严叔平.哈茨木霉防治西瓜枯萎病试验初报[J].中国西瓜甜瓜, 1999, (2): 18.
    [39]徐宗刚,宋立美,蔡梅红.丛枝泡囊根菌对西瓜枯萎病发生情况的影响[J].中国西瓜甜瓜, 2003, (7): 23.
    [40] Alabouvette C, Couteaudier Y. Biological control of Fusarium wilt with nonpathogenic fusaria [A]. Tjamos E C, Cook R J Biological Control of Plant Disease [C]. New York: Plenum Press. 1992, 26(25): 415-426.
    [41] Mouradam, Abouls, Byungwy, et al. Transformation of F. oxysporum by particle bombardment and characteri-sation of the resulting transformants expressing a GFP transgene[J]. Mycopathologia, 2003, 60: 18.
    [42] Miguel A, Maroto J V, San Bautista A, et al. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 2004, 103: 9-17.
    [43]崔堂兵,刘清香.尖孢镰刀菌生产蒽醌色素的液体发酵条件研究.中国生物工程杂志, 2010, 30(9): 56-61.
    [44] Nowak Z, Thompson B, Chaney N, et al. Journal of Bacteriology[J], 1999, 181: 2166-2174.
    [45] Bolwerk A, Lagopodi A L, Wijfjes A H M, et al. The American Phytopathological Society[J], 2003, 16: 983-993.
    [46]陈双雅,张永祥,蔡向群.中国生物防治[J], 2003, 19(1): 11-15.
    [47]魏海雷,王烨,张力群.植物病理学报[J], 2004, 31(1): 80-85.
    [48] Powell J F, Vargas J M, Nair M G, et al. Plant Disease[J], 2000, 84: 19-24.
    [49] Buysens S, Heungens K, Poppe J, Hêfte M. Applied and Environmental Microbiology[J], 1996, 62: 865-871.
    [50] Valois D, Fayad K, Barbasubiye T, et al. Applied and Environmental Microbiology[J], 1996, 62: 1630-1635.
    [51]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导.中国生物防治[J], 2004, 20(3): 187-189.
    [52] Van Loon L C. Induced resistance in plants and the role of pathogenesis-related proteins[J]. European Journal of Plant Pathology, 1997, 103: 753-765.
    [53]刘波,朱育青,周涵韬,等.农作物枯萎病的研究进展[J].厦门大学学报(自然科学版), 2004, 43(2): 47-58.
    [54]徐美娜,王光华,靳学慧.土传病害生物防治研究进展[J].吉林农业科学, 2005, 30(2): 39-41.
    [55]徐同, PEER. R.香石竹镰刀菌枯萎病的生物防治[J].科技通报, 1989, 5(1): 32-33.
    [56]徐同, PEER. R.萤光假单胞细菌根部定殖对水培系统中香石竹镰刀菌枯萎病的作用[J].植物病理学报, 1989, 19(3): 179-183.
    [57]包建中,张乃鑫.美国生物防治的科研与应用[J].世界农业, 1981, (1): 26-29.
    [58]于淑池.植物真菌病害生防芽孢杆菌的研究进展[J].通化师范学院学报, 2007, 28(8): 52-54.
    [59]路鹏鹏,门欣.枯草芽孢杆菌BSK1对尖孢镰刀菌(Fusarium oxysporum)拮抗作用的研究.陕西农业科学, 2010, 3: 15-17.
    [60]张世平.棉花枯黄萎病生物防治新途径[J].中国棉花, 1996, 23(7): 4-6.
    [61]黎起秦,陈永宁,林纬,等.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学, 2000, 19(2): 81-84.
    [62] Ozaktan H. Bora T. Biological control of Fusurium oxysporum f.sp.melonis by the formulations fluorescent pseudomonads[J]. Journal of Turkish Phytopathology, 2000, 29(2): 133-149.
    [63]陈保林,王青云.西瓜枯萎病发生规律与综合防治技术[J].农业科学, 2009, (9): 53-54.
    [64]纪明山,王英姿,程根武,等.西瓜枯萎病拮抗菌株筛选及田间防效试验[J].中国生物防治, 2002, 18(2): 71-74.
    [65]宗兆锋,武建华.西瓜枯萎病的筛选研究[J].西北农业大学学报, 1995, 23(2): 60-64.
    [66]黄琼,毛忠顺,李杨苹,等.两株细菌分离物对镰刀菌的拮抗作用[J].云南大学学报. 2003, 25(增刊): 42-44.
    [67]张克诚,李研学,贾恩宽.等.拮抗链霉属S-5对棉花病害的防治作用[J].中国农学通报,2002, 18(2): 26-29.
    [68]史娟,邱艳,王红玲,等.黄瓜几丁酶活性与其对枯萎病抗性的关系[J].宁夏农学院学报, 2001, 22(4): 4-5.
    [69]邓小龙,颜继烂,李艳君,等.西瓜枯萎病的发生及防治.安徽农学通报[J]. 2011, 17(08): 115-116.
    [70]张存松,霍治邦,李相涛.瓜类枯萎病的发生与防治措施[J].北方园艺, 2002, (3): 68.
    [71]马艳,赵江涛,常志州,等.西瓜内生枯草芽孢杆菌BS211的拮抗活性及盆栽防效[J].江苏农业学报, 2006, 22(4): 388-393.
    [72]庄敬华,杨长成,高增贵,等.枯草芽孢杆菌(Bacillus subtilis)B6对甜瓜枯萎病的生防作用[J].果树学报, 2008, 25(6): 891-895.
    [73]张明山,王英姿,程根武,等.西瓜枯萎病拮抗菌株筛选及田间防效试验[J].中国生物防治, 2002, 18(2): 71-74.
    [74]王刚,王俊芳,张颖,等.西瓜内生细菌C18的内生定殖及对西瓜枯萎病的生防作用[J].植物保护学报, 2007, 34(1): 109-110.
    [75]戴水莲,林警,高丽. PDA培养基中加入青霉素、链霉素的抗菌作用试验简报[J].中国食用菌, 2007, 26(4): 53-54.
    [76]杨宇,吴元华,郑亚楠,等.瓜类枯萎病拮抗放线菌的筛选[J].北方园艺, 2006, (4): 177-179.
    [77]高苇,李宝聚,孙军德,等.绿色木霉对黄瓜立枯丝核菌和尖孢镰刀菌的拮抗作用[J].中国蔬菜, 2008, (6): 9-12.
    [78]苏世鸣,任丽轩,杨兴明,等.西瓜专化型尖孢镰刀菌的分离鉴定及水稻根系分泌物对其生长的影响[J].南京农业大学学报, 2008, 31(1): 57-62.
    [79] Hwang S C, Kow H. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan[J]. Plantdisease, 2004, 88(6): 580-588.
    [80]李伟,胡江春,王书锦.海洋细菌3512A对黄瓜枯萎病的防治及促进植株生长的效应[J].沈阳农业大学学报, 2008, 39(2): 182-185.
    [81]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001.
    [82]布坎南R. E.,吉本斯N. E.伯杰细菌鉴定手册[M].第8版.北京:科学出版社, 1984.
    [83] Sambong Kim, Jung Yoon, hongik Kim, et al. A Phylogenetic Analysis of the Genus Saccharomonospora Conducted with 16S rRNA Gene Sequences[J]. International Journal of Systematic Bacteriology, 1995,45(2): 351-356.
    [84] Fred A. Rainey, Nanmi Ward Rainey, Reiner M. Kroppenstedt, et al. The Genus Nocardiopsis Represents a Phylogenetically Coherent Taxon and a Distinct Actinomycete Lineage: Proposal of Nocardiopsaceae fam. Nov[J]. International Journal of Systematic Bacteriology, 1996, 46(4): 1088-1092.
    [85] Lane, D. J. 16S/23S rRNA sequencing, p. 115-147. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics[M]. John Wiley and Sons Ltd., New York, N.Y. 1991.
    [86] Saitou N, Nei M. The Neighbour-joining Method: a New Method for Reconstructing PhylogeneticTrees[J]. Mol Biol Evol, 1987, 4: 406-425.
    [87]郝华昆,韩俊华,李为民,等.棉花黄、枯萎病拮抗菌株B110的鉴定及其抑菌作用方式[J].植物保护学报, 2007, 33(2): 77-80.
    [88]裴炎,李先碧,彭红卫,等.抗真菌多肽APS-1的分离纯化与特性[J].微生物学报, 1999, 39(4): 344-349.
    [89] Charles B, Dorothy H, Maurice S. Control of Toxic Endophytic Fungi of Corn, Tall Fescue and Other Grasses[J]. Toxicology and Mycotoxin Research, 2005, 95(6): 55.
    [90]陶然,杨朝晖,曾光明.微生物絮凝剂产生菌的筛选、鉴定及培养条件和工艺的优化研究[D].湖南:湖南大学硕士学位论文, 2006, 25-36.
    [91]唐丽娟,纪兆林,徐敬友,等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中国生物防治, 2005, 21(3): 203-205.
    [92] Sarah Savchuk, W. G. Dilantha Fernando. Effect of timing of application andpopulation dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists[J]. Microbiology Ecology, 2004, 49: 379-388.
    [93] G. Y. Yu, J. B. Sinclair, G. L. Hartman, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biology & Biochemistry, 2002, 34: 955-963.
    [94]贾菊生,马德英,羌松,等.放线菌R1号菌株防治农作物病害的研究初报[J].新疆农业大学学报, 2001, 24(1): 55-59.
    [95]宋晓妍,陈秀兰,孙彩云,等.棉花黄萎病菌拮抗木霉的筛选及其抑菌机制的研究[J].山东大学学报:理学版, 2005, 40(6): 98-102.
    [96]刘海波,田世平,秦国政,等.罗伦隐球酵母对葡萄采后病害的拮抗效果[J].中国农业科学, 2002, 35(7): 831-835.
    [97]周艳芬,杜红方,袁洪水,等.棉花黄萎病拮抗蛋白的分离与纯化[J].棉花学报, 2007, 19(2): 98-101.
    [98]林福呈.枯草芽孢杆菌产生的拮抗物质对西瓜枯萎孢子萌发的影响[J].浙江农业大学学报, 1990, 16(增刊2): 235-240.
    [99]程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报, 2003, 25(5): 732-736.
    [100]夏正俊,顾本康,吴蔼民.植物体内生及根际土壤内生细菌诱导棉花对大丽轮枝菌抗性的研究[J].中国生物防治, 1996, 12(1): 7-10.
    [101]李术娜,杜红方,袁洪水,等.棉花黄萎病拮抗细菌LC-04菌株的抗菌蛋白产生条件研究[J].棉花学报, 2006, 18(4): 233-237.
    [102]雷白时,张冬冬,王全,等.大丽轮枝菌拮抗细菌多粘芽孢杆菌7-4菌株发酵产抗菌蛋白条件的优化[J].河北农业大学学报, 2009,32(4): 60-65.
    [103]袁洪水,马平,李术娜,等.棉花黄萎病拮抗细菌的筛选与抗菌物分析[J].棉花学报, 2007, 19(6): 436-439.
    [104]沈萍,范秀容,李广武.微生物学实验[M].第三版.北京:高等教育出版社, 1999.
    [105] Byung C K. Enhanced spore production of Bacillus turinggiensis by fed-batch culture. Biotechnol. lett. 1992, 14(8): 721-726.
    [106]路程,周长海,于红梅,等.凝结芽孢杆菌T50产芽孢条件优化的研究.中国酿造, 2009, 7(33): 93-95.
    [107]李术娜,王树香,王占利,等.大丽轮枝菌拮抗细菌B.subtilis LZ2-70产芽孢条件优化.棉花学报, 2009, 4(12).
    [108]郭荣君,王步云,李世东.营养对生防菌株BH1芽孢产量的影响研究[J].植物病理学报, 2005, 35(3): 283-285.
    [109]郭秀君,郑平,王蔚,于昕.蜡质芽孢杆菌(Bacillus cereus)芽孢的形成与PHB的关系.山东大学学报(自然科学版), 1994, 29(1): 101-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700