难加工材料可加工性分析方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航天、核能、兵器、化工、电子工业及现代机械工业的发展,难加工材料如不锈钢、钛合金、高温合金等得到了越来越广泛的应用。这些材料所具有的高温高强度、高硬度、高的硬质点含量及多相性等性能特征使其能很好地满足使用要求。然而,难加工材料的这些特殊特性又使得在切削加工过程中产生高温和高应力,导致加工条件恶化,刀具寿命短,产品表面质量差,加工效率低等问题。因此,研究难加工材料的可加工性,掌握其切削规律,寻求技术措施是切削加工领域的一个重要课题,也是直接关系到我国汽车、航空航天、能源等重要工业部门的发展速度和制造业整体水平。
     材料的可加工性是指材料切削加工的难易程度,影响材料可加工性因素很多,如材料的物理机械性能、化学成分、微观组织等,而这些因素之间彼此又相互作用相互影响,同时评价材料可加工性的标准也随加工条件的不同而有所差异。正是由于加工条件的复杂性,影响材料可加工性因素的多样性使得如何科学地分析工件材料的可加工性成为一个机械制造领域的一个难点。
     本论文旨在探索一种基于相位图对难加工材料的可加工性进行分析研究的新方法。论文通过分析难加工材料的化学成分、物理机械性能及加工特点,确定了影响难加工材料可加工性的五个关键物理机械性能指标,即硬度、延展性、加工硬化、导热性及磨蚀性;通过对这些性能指标与切削参数和切削刀具、切削结果等之间的关联关系的定性分析,建立关系模型,结合相位图示法,提出了难加工材料可加工性分析的相位图表达方法;在建立该相位图的过程中,完成了上述关键性能指标对可加工性影响的数学模型,进而建立了典型难加工材料如钛合金、不锈钢等的可加工性相位图,并从理论上进行了分析和论证;同时,以典型难加工材料Inconel 718镍基高温合金为例,完成了相关的试验研究,验证了材料可加工性图与切削参数选择及切削过程输出如刀具磨损之间的关系。在这些研究基础上,结合实例推理与专家系统,建立了基于材料可加工性图的难加工材料切削参数选择的专家系统。在该系统中,通过计算新实例和已有实例之间的相似度,从实例库中找到与新实例相符的已有实例的加工经验,充分运用已有的经验指导新材料的加工,帮助工程技术人员进行切削参数的选择和确定。
     本文提出的用图示表达难加工材料可加工性的方法,能直观、综合地表达材料性能与材料可加工性之间的关系,同时将可加工性相位图应用到切削参数的选择,用于指导新材料或未知难加工材料试制条件的选择,可达到缩短试制周期和试制成本的目的。
Difficult-to-cut materials such as stainless steels, titanium alloys and super alloys, have been widely used in many industrial areas as aeronautics and astronautics, nuclear energy, chemical industry, weaponry, electronic industry and modern mechanical manufacturing. These materials always satisfy the actual application requirements due to their excellent properties like super strength at high temperatures, hardness, high contents of hard-inclusions and inhomogeneity. However, the high temperature and high stress occur in the cut machining processes, which could induce worse machining conditions and thus the short life of cutting tools, bad surface quality of products and low machining efficiency. Therefore, it is of great importance to investigate the machinability of difficult-to-cut materials, address the cutting performance and explore the related technical solutions. How to machine these super materials effectively is quite crucial to those key industries like automobile, energy, aeronautics and astronautics and also known as a challenge work in cutting fields.
     Machinability is the property of a material which can be machined easily or difficultly by a cutting tool. The machinability of materials is always influenced by many factors like the physical properties, chemical contents and microstructures. Due to the diversity and the complex interactions among these factors and even the uncertain evaluation stands for the machinability under various cutting conditions, scientific description and evaluation of machinability is a challengeable work in the mechanical manufacture areas in recent years.
     The present work aims to develop a novel method to evaluate and describe the machinability of difficult-to-cut materials using polar diagrams. Based on the analyzing of the chemical contents, the mechanical and physical properties and the machining characteristics of these materials, five key parameters, i.e., hardness, ductility, strain hardening, thermal conductivity and abrasiveness, have been employed to describe the machinability. The relationships between these properties and the cutting parameters, the cutting tools or cutting results, were investigated and the related formulas were obtained. The polar diagram method for the describing the machinability of difficult-to-cut materials has been developed and the models for the evaluation of the influence of those key proper parameters on the machinability have been proposed. By using this method, the polar diagrams of several typical stainless steels and titanium alloys, as examples, were obtained and the corresponding theoretical discussion and analysis were given. Furthermore, a nickel-based alloy, Inconel 718, was used as an example and industry experiments were conducted to demonstrate the relationships between the polar diagrams and the cutting parameters as well as the cutting results like the tool wear. By combining these related models and the case-based reasoning methodology, a novel intelligent expert system for the selection of proper cutting parameters according to machinability has been developed. By calculating the similarity degree between the machinability of a given material and those known materials, the expert system can help the engineers to determine the suitable cutting parameters for a given material by considering the machining experience of those known materials in the database.
     The present polar diagram method can give a direct and integrated description of the relationship between the material properties and the machinability and therefore, can be applied to guide the selection of cutting conditions for new materials or unknown difficult-to-cut materials, which certainly could decrease the trial-machining time and process cost in machining these materials.
引文
[1]Milton C. Shaw. Metal Cutting Principles. Oxford Science Publications,1984
    [2]E.O.Ezugwu, J.Bonney, Y.Yamane. An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology,2003,134:233-253
    [3]D. Dudzinski, A. Devillez, A. Moufki and etc. A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools & Manufacture 2004,44:439-456
    [4]宋智勇,牟文平,阮超.钛合金航空结构件的高效数控加工.航空制造技术,2009,19:42-45
    [5]E. Brinksmeier, A. Walter, R. Janssen and etc. Aspects of cooling lubrication reduction in machining advanced materials. Proceedings of the Institution of Mechanical Engineers, 1999,213 (Part B):769-778
    [6]C.E. Leshock, Kim Jin-Nam, Y.C. Shin. Plasma enhanced machining of Inconel 718: modelling of workpiece temperature with plasma heating and experimental results. International Journal of Machine Tools and Manufacture,2001,41:877-897
    [7]J.W. Nowak, Y.C. Shin, F.P. Incropera. Assessment of plasma enhanced machining for improved machinability of Inconel 718. Journal of Manufacturing Science and Engineering, 1997,119:119-129
    [8]Z.Y.Wang, K.P.Rajurkar. Cryogenic machining of hard-to-cut materials. Wear,2000,239: 168-175
    [9]S.Y.Hong, I.Markus, W.C.Jeong. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6A1-4V. International Journal of Machine Tool Manufacture,2001,41:2245-2260
    [10]Modern Metal Cutting. Sandvik Coromant.1994
    [11]周泽华.金属切削原理.上海:上海科学技术出版社,1993
    [12]陈垚,于爱兵,王敏.用灰关联分析法确定性能参数对金属材料切削加工性的影响.制造技术与机床,2006,9:61-64
    [13]杨志强、孔庆华.石油机械常用材料切削加工性的模糊综合评价.精密制造及自动化,2006,4:35-36
    [14]吴斌,夏伟,汤勇等.基于模糊理论和数据库技术材料切削加工性评价.机械设计与制造工程,2000,3:12-15
    [15]R.Venkata Rao. Machinability evaluation of work materials using a combined multiple attribute decision-making method. International Journal Advanced Manufacture Technology,2006,28:221-227
    [16]R. Venkata Rao, O.P. Gandhi. Digraph and matrix methods for the machinability evaluation of work materials. International Journal of Machine Tools & Manufacture,2002,42: 321-330
    [17]Nourredine Boubekri, Jaime Rodriguez, Shihab Asfour. Development of an aggregate indicator to assess the machinability of steels. Journal of Materials Processing Technology, 2003,134:159-165
    [18]Enache, E. Strijescu, C. Opran and etc. Mathematical model for the establishment of the materials machinability. CIRP,1995,44:79-82
    [19]Metcut Research Associates Inc. Machining Data Handbook, third edition. Cincinnati,1980, vols.1 and 2
    [20]S.V. Wong, A.M.S. Hamouda. A fuzzy logic based expert system for machinability data-on-demand on the Internet. Journal of Materials Processing Technology,2002,124: 57-66
    [21]J.Y. Tan, S.V. Wong, A.M.S. Hamouda and etc. Strategy for generalizing the development of alloy steel fuzzy model for machinability data selection. Journal of Materials Processing Technology,2004,155-156:2080-2086
    [22]Wen-Tung Chien, Chung-Yi Chou. The predictive model for machinability of 304 stainless steel. Journal of Materials Technology,2001,118:442-447
    [23]A. Stoic, J. Kopac, G Cukor. Testing of machinability of mould steel 40CrMnMo7 using genetic algorithm. Journal of Materials Processing Technology,2005,164-165: 1624-1630
    [24]王遵彤.基于实例推理的高速切削数据库系统.工具技术,2003,37:3-6
    [25]王殿龙.基于实例推理的难加工材料切削数据库.工具技术,2005,39:20-23
    [26]相克俊.混合推理高速切削数据库系统的研究与开发:[博士学位论文].山东:山东大学,2007
    [27]Rowewb LIY, CHENX and etal. Case-based reasoning for selection of grinding conditions. Computer Integrated Manufactruing System,1996,9:197-205
    [28]S.H. Yeo, M. Rahman, V.C. Venkatesh. Development of an expert system for machinability data selection. Journal of Mechanical Working Technology,1988,17:51-60
    [29]S.H.YEO. Towards enhancement of machinability data by mutilple regression. Journal of Mechanical Working Technology,1989,19:85-99
    [30]金属切削.山特维克可乐满.2009,9
    [31]Milton C. Shaw. Metal Cutting Principles. Oxford Science Publications,1984
    [32]Rainer Leppanen, Bengt-Erik Sjoo. Machinability, SKF Steel Technical Report 5,1984
    [33]B. Leffler, S. Gunnarsson, M. Svensson. Machining of stainless steels. Avesta Sheffield Research & Development,1999
    [34]Malkin, S., Anderson, R.B. Thermal aspects of grinding. Trans. of ASME, Series B,1973
    [35]陈日.金属切削原理.机械工业出版社,1985
    [36]X.J.Ren, R.D.James, E.J.Brookes and etc. Machining of high chromium hardfacing materials. Journal of Materials Processing Technology,2001,115:423-429
    [37]I.M.Hutchings. Friction and wear of engineering materials. Metallurgy and materials science,1999
    [38]N.H.COOK. Prediction of tool life and optimal machining conditions. Wear,1980,62: 223-231
    [39]K. OHGO, Peeling of the built-up edge of a cutting tool during the machining of a free cutting steel and its effect of on tool life, Wear,1977,45:365-374
    [40]S.K. Choudhury, I.V.K. Appa Rao. Optimization of cutting parameters for maximizing tool life. International Journal of Machine Tools & Manufacture,1999 39:343-353
    [41]I. V. Rao, G. K. Lal. Tool life at high cutting speeds. International Journal of Machining Tool Design and Research,1977,17:235-243
    [42]M. Kronenberg. Replacing the taylor formular by a new tool life equation, International Journal of Machine Tool Design and Research,1970,10:193-202
    [43]Katsundo Hitomi. Manufacturing Systems Engineering. Taylor & Francis publishers,2nd Edition,1987
    [44]Stahl J-E. Skarande bearbetning-Teori och modeller, del Ⅰ. Industrial Production LTH, Lund:Lunds Universitet,2007
    [45]SKF Steel. Technical Report 6/1984, Machining data. Rainer Leppanen Bengt-Erik Sjoo
    [46]SECO. Catalogue & Technical guide.2004
    [47]Serope Kalpakjian. Manufacturing Processes for Engineering Materials. Third Edition, Addison Wesley
    [48]J. Prohaszka. the Relationship between the strain-hardening coefficient and machinability. Annals of the CIRP,1983,32:105-107
    [49]P.L.B.Oxlye. Mechanics of Machining. Ellis Horwood Series in Mechanical Engineer, 1989
    [50]P.Mathew, L.B.Oxley. Allowing for the influence of strain hardening in determining the frictional conditions at the tool-chip interface in machining. Wear,1981,69:219-234
    [51]R.L.Jones. The effect of strain rate, temperature and impurity content on the strain hardening of α-titanium. Scripta Metalluragica,1968,2:345-349
    [52]H.Paruz, D.V.Edmonds. The strain hardening behavior of dual-phase steel. Materials Science and Engineering,1989,117:67-74
    [53]M. K. BRUN, M. LEE. Wera characteristics of various hard materials for machining Sic-reiforced aluminum alloy, Wear,1985,104:21-29
    [54]M. A. MOORE. A review of two-body abrasive wear, Wear,1974,27:1-17
    [55]H. A. Kishawy, S. Kannan, M. Balazinski. Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Annals-Manufacturing Technology,2005,54:55-58
    [56]Ibrahim Ciftci, Mehmet Turker, Ulvi Seker. Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Materials and Design,2004,25: 251-255
    [57]Y. Kevin Chou, Chris J. Evans. Tool wear mechanism in continuous cutting of hardened tool steels. Wear,1997,212:59-65
    [58]Euro inox. Materials and Application Series. Vol.5
    [59]www.MatWeb.com
    [60]韩荣第,金远强.航天用特殊材料加工技术.哈尔滨工业大学出版社,2007
    [61]成都钢铁网..htm
    [62]耿连福,高顺喜,李美岩.难加工材料的切削加工性研究与实践.煤矿机械,2009,7:97-99
    [63]赵秀芬,于在梅,庞继有.难加工材料航空零件的高效加工策略.工具技术,2009,43:91-93
    [64]王晓琴,艾兴,赵军等.Ti6A14V车削刀具磨损及切削力研究.组合机床与自动化加工技术,2007,7:14-16
    [65]王树鹏,刘献礼,胡景姝等.复合材料和钛合金的切削加工.航空制造技术,2008,23:20-23
    [66]E.O.Ezugwu, Z.M.Wang. Titanium alloys and their machinability-a review. Journal of Materials Processing Technology,1997,68:262-274
    [67]齐德新,赵树国,马光锋.切削BT20钛合金材料中刀具磨损研究.机械制造,2003,7:42
    [68]M. Rahman, W.K.H. Seah, T.T. Teo. The Machinability of Inconel 718. Journal of Materials Processing Teclmology,1997,63:199-204
    [69]黄传真,艾兴.加工镍基合金时切削力和切削温度的特点.工具技术,1995,29:35-37
    [70]D. O'Sullivan, M. Cotterell. Machinability of austenitic stainless steel SS303. Journal of Materials Processing Technology,2002,124:153-159
    [71]T. Akasawa, H. Sakurai, M. Nakamura and etc. Effects of free-cutting additives on the machinability of austenitic stainless steels. Journal of Materials Processing Technology, 2003,143-144:66-71
    [72]H.Shao, L.Liu, H.L.Qu. Machinability study on 3%Co-12%Cr stainless steel in milling. Wear,2007,263:736-744
    [73]http://www.outokumpu.com/
    [74]Eiselstein H.L. Metallurgy of a columbium-hardened nickel-chromium-iron alloy. ASTM, 1965,369:65-79
    [75]黄立新,许耀东.高温材料镍基合金的切削试验研究.新技术新工艺,热加工工艺技术与材料研究,2008,8:88-90
    [76]康志伯.镍基高温合金切削性能及切削参数优化:[硕士学位].北京:北方工业大学机电工程学院,2009
    [77]R. M. Arunachalam, M. A. Mannan, A. C. Spowage. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture,2004,1482-1491
    [78]E.A.Loria. Recent development in the progress of superalloy 718. JOM,1992,44:33-36
    [79]I.A. Choudhury, M.A. El-Baradie. Machinability of nickel-base super alloys:a general review. Journal of Materials Processing Technology,1998,77:278-284
    [80]D. Dudzinski, A. Devillez, A. Moufki and etc. A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools & Manufacture,2004,44:439-456
    [81]G Appa Rao, Mahendra Kumar, M. Srinivas and etc. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718. Materials Science and Engineering,2003, A355:114-125
    [82]G Appa Rao, M. Srinivas, D.S. Sarma. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718. Materials Science and Engineering,2006, A435-436:84-99
    [83]Sabita Ghosh, Sandip Yadav, Goutam Das. Study of standard heat treatment on mechanical properties of Inconel 718 using ball indentation technique. Materials Letters,2008,62: 2619-2622
    [84]M. Alauddin, M.A. ElBaradie. M.S.J.Hashmi, Modelling of cutting force in end milling Inconel 718. Journal of Materials Processing Technology,1996,58:100-108
    [85]T.Kitagawa, A.Kubo, K.Maekawa. Temperature and wear of cutting tools in high-speed machining of Incone1718 and Ti-6Al-6V-2Sn. Wear,1997,202:142-148
    [86]R.S. Pawade, Suhas S. Joshi, P.K. Brahmankar and etc. An investigation of cutting forces and surface damagein high-speed turning of Inconel 718. Journal of Materials Processing Technology,2007,192-193:139-146
    [87]I.A. Choudhury, M.A. El-Baradie. Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. Journal of Materials Processing Technology,1999,95:30-39
    [88]D.G Thakur, B.Ramamoorthy, L.Vijayaraghavan. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials and Design, 2009,30:1718-1725
    [89]Y.S.Liao, R.H.Shiue. Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear,1996,193:16-24
    [90]M.Rahman, W.K.H.Seah, T.T.Teo. The machinability of Inconel 718. Journal of Materials Processing Technology,1997,63:199-204
    [91]N.Narutaki, Y.Yamane, K.Hayashi and etc. High speed machining of Inconel 718 with ceramic tools. Annals of CIRP,1993,42:103-106
    [92]T.I.El-Wardany, E.Mohammed, M.A.Elbestawi. Cutting temperature of ceramic tools in high speed machining of difficult-tocut materials. International Journal of Machine Tools and Manufacture,1996,36:611-634
    [93]A. Altin, M. Nalbant, A. Taskesen. The e□ects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Materials and Design,2007,28: 2518-2522
    [94]E.O.Ezugwu, S.H.Tang. Surface abuse when machining cast iron (G-17) and nickel-base superalloy (Inconel 718) with ceramic tools. Journal of Materials Processing Technology, 1995,55:63-69
    [95]R.Komanduri, T.A.Schroeder. On shear instability in machining nickel-based superalloy. Jouranl of Engineering Inddusty Transaction, ASME,1986,108:93-100
    [96]A.Kaldos, I. F.Dagiloke, A.Boyle. Computer aided cutting process parameter selection for high speed milling. Journal of Materials Processing Technology,1996,61:219-224
    [97]Victor H.Y.Lo, Alice H.W.Yeung. Practical framework for strategic alliance in Pearl River Delta manufacturing supply chain:A total quality app roach. International Journal of Production Economics,2004,87:231-240
    [98]P. Balakrishnan, M.F. DeVries. A review of computerized machinability data base systems. Proc. NAMRC-X,1982,348-356
    [99]Linhong Xu, Zhengfeng Jiang, Jan-Eric Stahl. Machinability Prediction of Workpiece Material with a Diagraph Method.Advanced Materials Research,2010,97-101: 2072-2075
    [100]Linhong Xu.Machinability Data Selection by Using a Fuzzy Logic Expert System.The 2nd International Workshop on Education Technology and Computer Science, ETCS 2010,3: 256-259
    [101]S.V. Wong, A.M.S. Hamouda. Machinability data representation with artificial neural network. Journal of Materials Processing Technology,2003,138:538-544
    [102]V.Narayanan. Systems for the prediction of process parameters. Journal of Materials Processing Technology,1995,54:64-69
    [103]袁勇,董书杰,刘文梅.基于实例推理的钻井液配方设计系统.钻井液与完井液,2005,1:31-34
    [104]王友利,侯忠滨.基于规则推理的刀具材料智能选择系统.工具技术,2008,42:27-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700