汽油品质对发动机性能影响的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽油品质对发动机性能尤其是排放性能有重要影响,燃用清洁汽油可有效控制汽油机的排放。许多国家已根据本国汽车行业和石化行业的特点进行了相关研究,并制定了严格的清洁汽油标准。我国炼油工艺与国外存在较大差异,同时缺乏汽油品质与排放相关性的研究工作积累。因此有必要开展相关研究,为制定符合我国国情的汽油标准提供依据。
     本文首先对国际上典型“汽车—燃油”(Auto-Oil)项目及汽油品质相关研究进展进行了系统地综述分析,总结了其主要研究结果、研究方法以及不足之处,在此基础上确定了本研究的主要技术路线。
     试验研究中,在不同排放水平的汽油发动机上,通过发动机台架性能试验、催化器快速硫老化试验和冷起动模拟试验研究了汽油的辛烷值、挥发性、烯烃、芳烃和硫含量对动力性、燃油经济性和排放特性的影响规律;并通过燃烧分析对试验现象进行了深入解析。结合本研究结果和相关研究进展阐述了汽油品质与排放的相关性,提出了适合我国国情的清洁汽油相关建议。试验结果表明,汽油辛烷值过高,会使燃烧持续期加长,导致燃油经济性和排放特性恶化;烯烃易于燃烧,可缩短着火落后期和燃烧持续期,显著降低THC排放,烯烃含量每增加1%v,THC排放降低1%;芳烃含量在35~45%v范围内变化对燃烧和排放的影响不明显;硫对三效催化剂(TWC)的初始活性没有影响,但对其耐久性有严重影响,硫含量增加,TWC老化后的起燃温度显著升高,同时TWC硫中毒具有一定可逆性,高温下催化剂活性可得到部分恢复;汽油挥发性提高,对改善冷起动燃烧和THC排放有利,对CO排放的影响则与具体发动机相关。
     针对汽油多组分燃料的特点,通过燃油热重分析试验合理确定了三组分汽油模型中的替代组分和比例,据此开发了三组分油滴蒸发模型和油膜蒸发模型,该模型较好地体现了汽油不同组分蒸发特性的差异。基于所开发的三组分汽油蒸发模型,模拟分析了汽油喷雾蒸发的规律,并应用所建立的发动机CFD数值模型研究了汽油挥发性对冷起动首循环中混合气形成和燃烧过程的影响,为理解汽油品质对燃烧和排放的影响提供了理论依据。
Gasoline quality has an important role in the engine performance, especially the emissions characteristics. Exhaust emissions can be effectively controlled with clean gasoline. Many countries have performed research on gasoline quality based on the characteristics of their own automobile and oil industries, and enacted stringent gasoline specifications. The oil refinery is quite different from foreign countries and it is lack of the research on the relationships between gasoline qualities and emissions in China. Therefore, it is necessary to conduct relevant research and supply data and suggestions to Chinese or Beijing government for the stipulation of gasoline requirements.
     The typical international“Auto-Oil”programs and progress of relevant research on gasoline quality were investigated and analyzed, and the conclusions, research methods and the weakness in this research field were summarized. Based on the analysis, the main research contents and reasonable methods were proposed.
     The effects of octane number, olefins content, aromatics content, sulfur content and volatility on power output, fuel consumption and engine-out emissions were studied on two gasoline engines with different emissions level. Engine performance tests, rapid catalyst sulfur aging tests and simulated cold-start tests were conducted. Combustion characteristics were analyzed and were used to investigate the phenomenon and trends in the tests. The proposal of clean gasoline specifications to meet the 4th stage emissions standard in China was brought forward through detailed discussions on the results in this study and relevant results in previous research. Test results showed that too high octane number resulted in the prolonged combustion duration, high fuel consumption and emissions. Olefins resulted in the short combustion duration and low THC emissions. 1%v increment in olefins content resulted in 1% less THC emissions. Aromatics content had no significant effect on emissions and combustion process as it increased from 35%v to 45%v. Sulfur had little influence on catalyst initial activity. It had a great effect on catalyst aging performance. The aging light off temperature lifted significantly as sulfur content increased. Sulfur poisoning was somewhat reversible and the catalyst activity could be partially recovered through high temperature running. High volatility could improve the combustion process and reduce THC emissions during cold start. The effect of volatility on CO emissions was related to engines.
     Considering the multi-component characteristics of gasoline, three representative species and their fractions in the substituted gasoline model was determined by thermogravimetry analysis tests. The multi-component vaporization models for droplet and fuel film were developed, which can capture the differences of the vaporization between different gasoline components. Based on the developed vaporization models, the spray evaporation process of gasoline and the influence of gasoline volatility on mixture formation and combustion of an engine during cold start were numerically studied, which provided a theoretical explanation for understanding the effect of the gasoline quality on combustion and emissions.
引文
[1]姚国欣.从清洁燃料发展趋势看我国提高油品质量的途径.国际石油经济, 2001, 9(5):16-21
    [2] ACEA, Alliance, EMA, et al. Worldwide Fuel Charter. 1998
    [3] AQIRP auto/oil air quality improvement research program-program final report. Coordinating Research Council, 1997
    [4] Nakata K, Uchida D, Ota A, et al. The impact of RON on SI engine thermal efficiency. SAE Paper 2007-01-2007
    [5] Hattori H, Yanagisawa N, Hosoya M, et al. Unregulated emissions evaluation of gasoline combustion systems (lean burn / stoichiometric DISI and MPI), state of the art diesel aftertreatment technologies (DPF, urea-SCR and DOC), and fuel qualities effects (EtOH, ETBE, aromatics and FAME. SAE Paper 2007-01-4082
    [6] Stradling R J, Zemroch P J, Loke E B, et al. Fuel effects on emissions from gasoline vehicles for the asian market. SAE Paper 2008-01-1765
    [7] Stradling R, Zemroch P J, Thompson N, et al. Fuel effects on regulated emissions from modern gasoline vehicles. SAE Paper 2004-01-1886
    [8]刘家琏.世界油品标准发展趋势及中国相关问题思考.炼化广角, 2008(5):16~20
    [9] Ayoub N S, Reitz R D. Multidimensional modeling of fuel effects and split injections on diesel engine cold-starting. Journal of Propulsion and Power, 1997, 13(1):123-130
    [10] Zeng Yangbing, Lee C F. Computations of air/fuel preparation process in a port-injected spark-ignition engine during cold-starting phase. Journal of Engineering for Gas Turbines and Power, 2004, 126(3):635-644
    [11] Tonini S, Gavaises M, Arcoumanis D, et al. Multi-component fuel evaporation and its effect on spray development and air-fuel mixing in GDI engine. ICE-2003 International Conference, Italy, 2003
    [12]北京市质量技术监督局. DB 11/238-2004车用汽油北京市地方标准.北京:北京市质量技术监督局, 2004
    [13] Neligan R E, Mader P P, Chambers L A. Exhaust composition in relation to fuel composition. Journal of the Air Pollution Control Association, 1961, 11(4):178-186
    [14] Black F M, High L E, Lang J M. Composition of automobile evaporative and tailpipe hydrocarbon emissions. Journal of the Air Pollution Control Association, 1980, 30(11):1216-1221
    [15] Wigg E E. Reactive exhaust emissions from current and future emission control systems. SAE Paper 730196
    [16] Wigg E E. Fuel–exhaust compostional relationship in current and advanced emissions control systems. 37th Midyear Meeting of the American Petroleum Institute’s Division of Meeting, 1972
    [17] Wigg E E, Campion R J, Petersen W L. The effect of fuel hydrocarbon composition on exhaust hydrocarbon and oxygenate emissions. SAE Paper 720251
    [18] Morris W E, Dishart K T. Influence of vehicle emission control systems on the relationship between gasoline and vehicle exhaust hydrocarbon composition. ASTM Spec Tech publ 487 (symp presented at 73rd annual meeting, 1970, 63-93
    [19] Hosaka K, Onodera T, Wigg E E. The effect of fuel hydrocarbon composition on exhaust emissions from Japanese vehicles. SAE Paper 780625
    [20] Quader A A. How injector, engine, and fuel variables impact smoke and hydrocarbon emissions with port fuel injection. SAE Paper 890623
    [21] Schleyer C H, Koehl W J. Comparison of gasoline and methanol vehicle emissions using VOC reactivity. SAE Paper 902095
    [22] Gething J A. Distillation adjustment: an innovative step to gasoline reformulation. SAE Paper 910382
    [23] Dimitriades B, Eccleston B H, Hurn R W. Evaluation of the fuel factor through direct measurement of photochemical reactivity of emissions. Journal of the Air Pollution Control Association, 1970, 20(3):150-160
    [24] Krause B, Bouffard R A, Karmilovich T, et al. Critical factors affecting automotive sulfate emissions. SAE Paper 760091
    [25] Gottberg I, Hargberg E, Weber K. Sulphur storage and hydrogen sulphide release from a three-way catalyst equipped car. SAE Paper 890491
    [26] Truex T J, Windawi H, Ellgen P C. The chemistry and control of H2S Emissions in three-way catalysts. SAE Paper 872162.
    [27] Beck D D, Krueger M H, Monroe D R. The impact of sulfur on three-way catalysts: storage and removal. SAE Paper 910844
    [28] Japan petroleum energy center. JCAP Overview [C/OL]. [2009-4-2]. http://www.pecj.or.jp/english/jcap/jcap1/jcap1_3rd.html
    [29] MacKinven R, Hublin M. European programme on emissions, fuels, and engine technologies - objectives and design. SAE Paper 961065
    [30] Hamasaki M, Yamaguchi M, Hirose K. Japan clean air program (JCAP) -step I study of gasoline vehicle and fuel influence on emissions. SAE 2000-01-1972
    [31] Saitoh K, Hamasaki M. Effects of sulfur, aromatics, T50, T90 and MTBE on mass exhaust emission from vehicles with advanced technology-JCAP gasoline wg step II report. SAE Paper 2003-01-1905
    [32] Japan petroleum energy center. The 5th JCAP conference [C/OL]. [2009-4-2]. http://www.pecj.or.jp/english/jcap/jcap2/The5thJCAP.pdf
    [33] Japan petroleum energy center. General overview of JCAPⅡresearch activities [C/OL]. [2009-4-2]. http://www.pecj.or.jp/english/jcap/jcap2/jcap2_5th.html
    [34] Sugaware Y, Akasaka Y, Kagami M. Effect of gasoline properties on acceleration performance of commercial vehicles. SAE Paper 971725
    [35] Japan petroleum energy center. Gasoline WG report [C/OL]. [2009-4-2]. http://www.pecj.or.jp/english/jcap/jcap2/pdf/5th/1-2_koseki.pdf
    [36]赵明,王桂明,朱军.汽油辛烷值对车辆性能的影响.汽车工艺与材料, 2005(2):38-40
    [37] Cenk S, Ibrahim K, Mustafa C, et al. An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions. Applied Thermal Engineering, 2005, 25:1315-1324.
    [38] Kalghatgi G T. Fuel anti-knock quality-part II vehicle studies-how relevant is motor octane number (MON) in modern engines? SAE Paper 2001-01-3585
    [39] Kalghatgi G T. Fuel anti-knock quality- part I engine studies. SAE Paper 2001-01-3584
    [40] Duchaussoy Y, Barbier P, Schmelzle P. Impact of gasoline RON and MON on a turbocharged MPI SI engine performances. SAE Paper 2004-01-2001.
    [41] Fukui H, Komoriya H, Shimizu T. Effects of octane number on stratified charge combustion in a direct- injection gasoline engine. SAE Paper 2001-01-1964
    [42] Hochhauser A M, Benson J D. The effect of aromatics, MTBE, olefines and T90 on mass exhaust emissions from current and older vehicles-the auto/oil air quality improvement research program. SAE Paper 912322
    [43] Thummadetsak T, Wuttimongkolchai A, Tunyapisetsak S. Effect of gasoline compositions and properties on tailpipe emissions of currently existing vehicles in Thailand. SAE Paper 1999-01-3570
    [44] Ansomboon J, Wuttimongkolchai A, Pannoi S. Characterization of deposits and effects of detergent additive, olefin content and engine oil on intake valve deposit formation. SAE Paper 2000-01-2856
    [45] Van den Brink P J, McDonald C R. The influence of the fuel hydrocarbon composition on NO conversion in 3-way catalysts: the NOX/aromatics effect. SAE Paper 952399
    [46] Takei Y, Uehara T, Hoshi H. Effects of California phase 2 reformulated gasoline regulations on exhaust emission reduction: part 2. SAE Paper 952502
    [47] Ashida T, Takei Y, Hosi H. Effects of fuel properties on SIDI fuel injector deposit. SAE Paper 2001-01-3694
    [48] Aradi A A, Imoehl B. The effect of fuel composition and engine operating parameters on injector deposits in a high-pressure direct injection gasoline (DIG) research engine. SAE Paper 1999-01-3690
    [49] Carlisle H W, Frew R W. The effect of fuel composition and additivecontent on injector deposits and performance of an air-assisted direct injection spark ignition (DISI) research engine. SAE Paper 2001-01-2030
    [50]刘文俊,李文华.汽油对发动机进气系统沉积物的影响.汽车工艺与材料, 2003(11): 27-30
    [51] Bennett P J, Beckwith P, Bjordal S D, et al. Relative effects of vehicle technology and fuel formulation on gasoline vehicle exhaust emissions. SAE Paper 961901
    [52] Bjordal S D, Goodfellow C L. Relative effects of catalyst and fuel formulation on gasoline vehicle exhaust emissions. SAE Paper 961902
    [53]田肃宁.汽油烃组分对排放的影响[硕士学位论文].天津:天津大学, 2005
    [54]郭和军,方茂东,杜传进.汽油品质对车辆尾气排放影响的试验研究.武汉理工大学学报, 2005, 27(9):64-66
    [55]葛蕴珊,尤可为,韩秀坤,等.低烯烃汽油在汽车发动机中的应用研究.车用发动机, 2007(5):90-92
    [56] Pentik?inen J, Rantanen L, Aakko P. The effect of heavy olefins and ethanol on gasoline emissions. SAE Paper 2004-01-2003
    [57] Pentik?inen J, Wensing M. Gasoline: Influence of fuel-oxygen on NOX emissions. SAE Paper 981366
    [58] Diana S, Giglio V, Iorio B, et al. The influence of fuel composition on pollutant emission of premixed spark ignition engines in presence of EGR. SAE Paper 982621
    [59] Hashimoto K, Inaba O, Akasaka Y. Effects of fuel properties on the combustion and emission of direct-injection gasoline engine. SAE Paper 2000-01-0253
    [60] Schifter I, Díaz L, Vera M, et al. Fuel formulation and vehicle exhaust emissions in Mexico. Fuel, 83(14/15):2065-2074
    [61] Yeong K K, Olivier E. Emissions response of a European specification direct-injection gasoline vehicle to a fuels matrix incorporating independent variations in both compositional and distillation parameters. SAE Paper 1999-01-3663
    [62] Koehl W J, Benson J D. Effects of gasoline composition and properties on vehicles emissions: a review of prior studies-auto/oil air quality improvement research program. SAE Paper 912321
    [63] Goodfellow C L, Jr.Gorse R A, Hawkins M J. European programme on emissions, fuels and engine technologies (EPEFE) -gasoline aromatics/E100 study. SAE Paper 961072
    [64] Kunitake K, Watanabe T, Uchida K. Analyses of exhaust hydrocarbon compositions and ozone forming potential during cold start. SAE Paper 961954
    [65] Uehara T, Takei Y, Hoshi H, et al. Study on combustion chamber deposit formation mechanism--influence of fuel components and gasoline detergents. SAE Paper 971722
    [66] Mcdonald C R, Morgan T DB. The independent effects of fuel aromatic content and mid-range volatility on tailpipe emissions from current technology European vehicle fleets. SAE Paper 962026
    [67]徐小红,薛群基,周旭光,等.汽油组成以及汽油清净剂对燃烧室沉积物的影响.润滑油与燃料, 2008, 18(86):1-5
    [68]刘泉山,徐小红.汽油烃组成与排放的研究.石油商技, 2000, 22(5):14-19.
    [69] Osman M M. Relationship between gasoline anti-knock agents, gasoline aromatics content and SI engine emissions. SAE Paper 961225
    [70] Golombok M, Kalghatgl G T. Heat release and knock in pareffinic and aromatic fuels and the effect of an ashless anti-knock additive. SAE 952405
    [71] Kelemen S R, Siskin M, Homan H S, et al. Fuel, lubricant and additive effects on combustion chamber deposits. SAE Paper 982715
    [72] Wedekind B, Bennett P J .The independent effect of mid-range, back-end volatility and aromatics on emissions from two European gasoline engines. SAE Paper 952522
    [73] Williamson W B, Gandhi H S, Heyde M E, et al. Deactivation of three-way catalysts by fuel contaminants-lead, phosphorus and sulfur. SAE Paper 790942
    [74] Henk M G, White J J, Denison G W. Sulfur storage and release from automotive catalysts. SAE Paper 872134
    [75] Diwell A F, Hallett C, Taylor J R. The impact of sulphur storage on emissions from three-way catalysts. SAE Paper 872163
    [76] Morgan T D B. Factors influencing hydrogen sulphide production from gasoline-fuelled cars equipped with three-way catalysts. SAE Paper 932662
    [77] Bending R G, Albert M R, D’Aniello M J, et al. Nickel-free hydrogen sulfide control technology for European applications. SAE Paper 930777
    [78]王志光.三效催化剂抗硫中毒的探索性研究[硕士学位论文].北京:石油化工科学研究院, 2004
    [79] Truex T J. Interaction of sulfur with automotive catalysts and the impact on vehicle emissions-a review. SAE Paper 1999-01-1543
    [80] Summers J C, Skowron J F, Williamson W B, et al. Fuel sulfur effects on automotive catalyst performance. SAE Paper 920588
    [81] Thoss J E, Rieck J. The impact of fuel sulfur level on FTP emissions-effect of PGM catalyst type. SAE Paper 970737
    [82] Leppard W R, Hochhauser A M. Effects of gasoline properties (T50, T90 and sulfur) on exhaust hydrocarbon emissions of current and future vehicles: modal analysis - the auto/oil air quality improvement research program. SAE Paper 952504
    [83] Rutherford J A, Hochhauser A M, Rapp L A. Effects of gasoline properties on emissions of current and future vehicles-T50, T90, and sulfur effects-the auto/oil air quality improvement research program. SAE Paper 952510
    [84] Koehl W J, Painter L J, Reuter R M, et al. Effects of gasoline sulfur level on mass exhaust emissions. SAE Paper 912323
    [85] Petit A, Jeffrey J G. European programme on emissions fuels and engine technologies (EPEFE)-emissions from gasoline sulphur study. SAE Paper 961071
    [86] Takei Y, Okada M, Fujimoto Y. Fuel property requirement for advanced technology engines. SAE Paper 2000-01-2019
    [87] Takei Y, Uehara T, Sugiyama S. Effect of California phase 2 reformulated gasoline specifications on exhaust emission reduction; part 3. SAE Paper 972851
    [88] Kivi J, Kokko J, Aakko P, et al. The first reformulated gasoline in Europe. SAE Paper 952501
    [89] Sztenderowicz M L, Brandy W J. Effects of fuel sulfur level on emissions from transitional low emission vehicles. SAE Paper 952561
    [90] Bjordal S D, Goodfellow C L. An evaluation of the long term effects of gasoline sulphur level on three-way catalyst activity. SAE Paper 952421
    [91] Schleyer C H, Gorse R A, Eng K D, et al. Reversibility of sulfur effects on emissions of California low-emission vehicles. SAE Paper 1999-01-1544
    [92] Bartley G J J, Bykowski B B, Lax D H, et al. Effects of catalyst formulation on vehicle emissions with respect to gasoline fuel sulfur level. SAE Paper 1999-01-3675
    [93] Koseki K, Uchiyama T, Kawamura M, et al. A study on the effects of sulfur in gasoline on exhaust emissions. SAE Paper 2000-01-1878
    [94] Effects of gasoline properties (T50, T90, and sulfur) on exhaust hydrocarbon emissions of current and future vehicles: speciation analysis - the auto/oil air quality improvement research program. SAE Paper 952505
    [95] Shibata Y, Omata T, Hayashi A, et al. Results of JCAP I studies and outline of JCAP II program. SAE Paper 2003-01-1902
    [96] Akimoto J, Kaneko T, Ichikawa T, et al. The effects of sulfur on emissions from a SI engine. SAE Paper 961219
    [97] Santavicca D A, Tong Kun, Quay B D, et al. Fuel volatility effects on mixture preparation and performance in a GDI engine during cold start. SAE Paper 2001-01-3650
    [98] Bennett P J, Beckwith P, Goodfellow C L, et al. The effect of gasoline RVP on exhaust emissions from current European vehicles. SAE Paper 952526
    [99] Sickler R S, Pezda S A. The effect of increasing fuel volatility on exhaust emissions. SAE Paper 860533
    [100] Hoekman S K, Macarthur R, Naylor M, et al. RVP reduction for control of wintertime CO. SAE Paper 981373
    [101] Rutherford J A, Eng K D, Gronowski B, et al. Effects of RVP reduction on vehicle CO emissions during Las Vegas and Los Angeles winter conditions--petroleum environmental research forum project number 95-06. SAE Paper 971726
    [102] Koseki K, Matsumoto T, Morita K, et al. RVP dependence of evaporative emissions for Japanese current and older vehicles and U.S. vehicles using typical Japanese gasoline. SAE Paper 2000-01-1170
    [103] Quader A A, Sloane T M, Sinkevitch R M, et al. Why gasoline 90% distillation temperature affects emissions with port fuel injection and premixed charge. SAE Paper 912430
    [104] Mayotte S C, Lindhjem C E, Rao V, et al. Reformulated gasoline effects on exhaust emissions: phase II: continued investigation of the effects of fuel oxygenate content, oxygenate type, volatility, sulfur, olefins and distillation parameters. SAE Paper 941974
    [105] Kanehara K, Sasajima N, Nakada M, et al. Analyzing the influence of gasoline characteristics on transient engine performance. SAE Paper 912392
    [106] Gallopoulos N E. Bridging the present to the future in personal transportation--the role of internal combustion engines. SAE Paper 920721
    [107] Dukowicz J K. Quasi-steady droplet change in the presence of convection. Informal report Los Alamos Scientific Laboratory LA7997-MS, 1979
    [108] Abramzon B, Sirignano W A. Droplet vaporization model for spray combustion calculations. International Journal of Heat and Mass Transfer, 1988, 32(9):1605-618
    [109] Zhu Guangsheng, Aggarwal S K. Fuel droplet evaporation in a supercritical environment. Journal of Engineering for Gas Turbines and Power, 2002, 124(4):762-770
    [110] Givler S D, Abraham J. Supercritical droplet vaporization and combustion studies. Progress in Energy and Combustion Science, 1996, 22(1):1-28
    [111] AVL List GmbH. FIRE Version 8.4 Release Notes. Graz, 2005
    [112]蒋勇,朱宁,陈军,等.喷雾过程液滴蒸发计算研究.火灾科学, 2001, 10(1): 20-23
    [113]高剑,蒋德明,廖世勇,等.直喷汽油机中空锥形燃油喷雾的雾化和蒸发模型.燃烧科学与技术, 2004, 10(3):212-218
    [114]金国栋.一个简化的柴油喷雾两相流蒸发混合模型.内燃机学报, 1986, 4(2):143-149
    [115]刘红艳,许伯彦.液态LPG自由喷雾过程的计算机数值解析.山东建筑工程学院学报, 2005, 20(2):57-61
    [116]李云清,王宏楠,王德福.丁烷—空气超临界燃烧中温度对迁移过程的影响.内燃机学报, 2008, 26(2):168-172
    [117] Nagaoka M, Ohsawa K, Crary B, et al. Numerical analysis of fuel behavior in a port-injection gasoline engine. SAE Paper 970878
    [118] Nagaoka M, Kawazoe H, Nomura N. Modeling fuel spray impingement on a hot wall for gasoline engines. SAE Paper 940525
    [119] Schurov S M, Collings N. A numerical simulation of intake port phenomena in a spark ignition engine under cold starting conditions. SAE Paper 941874
    [120] Gonzalez M A D, Lian Z W, Reitz R D. Modeling diesel engine spray vaporization and combustion. SAE Paper 920579
    [121]姚春德,倪培永,宋金瓯.汽油机冷启动时燃油蒸发多参数影响研究.环境科学学报, 2007, 27(4):688-692.
    [122]汪淼. PFI汽油机喷雾碰壁及混合气形成三维数值模拟[硕士学位论文].北京:清华大学, 2006
    [123] Tamim J, Hallett W L H. Continuous thermodynamic model for multicomponent droplet vaporization. Chemical Engineering Science, 1995, 50(18):2933-2942
    [124] Lippert A M, Reitz R D. Modeling of multicomponent fuels using continuous distributions with application to droplet evaporation and sprays. SAE Paper 972882
    [125] Zhu Guangsheng, Reitz R D. Characteristics of vaporizing continuous multi-component fuel sprays in a port fuel injection gasoline engine. SAE Paper 2001-01-1231
    [126] Ra Y, Reitz R D. A vaporization model for discrete multi-component fuel sprays. International Journal of Multiphase Flow, 2009, 35(2):101-117
    [127] Ra Y, Reitz R D. The application of a multicomponent droplet vaporization model to gasoline direct injection engines. International Journal of engine research, 2003, 4(3):193-219
    [128] Zeng Yangbing, Lee C F. A preferential vaporization model for multicomponent droplets and sprays. Atomization Sprays, 2002, 12(1/2/3):163-186
    [129] Abraham J, Magi V. A model for multicomponent droplet vaporization in sprays. SAE Paper 980511
    [130] Landis R B, Mills A F. Effect of internal diffusional resistance on the evaporation of binary droplets. International Heat Transfer Conference, Japan, 1974:345-349
    [131] Law C K. Recent advances in droplet vaporization and combustion. Progress in Energy and Combustion Science, 1982, 8(2):171-201
    [132] Renksizbulut M, Bussmann M. Multicomponent droplet evaporation at intermediate Reynolds numbers. International Journal of Heat and Mass Transfer, 1993, 3:2827-2835
    [133] Miyagawa H, Nagaoka M, Ohsawa K, et al. Spray vaporization model for multi-component gasoline. JSAE review, 1998, 19(4):299-304
    [134] Zeng Yangbing, Lee C F. A model for multicomponent spray vaporization in a high-pressure and high-temperature environment. Journal of Engineering for gas turbine and power, 2002, 124(3):717-724
    [135]陈虎.乙醇柴油的喷雾燃烧与排放特性研究[博士学位论文].北京:清华大学, 2006
    [136]黄露.甲醇汽油机冷起动混合气形成与燃烧的三维瞬态数值模拟[硕士学位论文].北京:清华大学, 2008
    [137]田章福,陶玉静,苏凌宇,等.多组分液滴蒸发过程的理论模型及试验研究.推进技术, 2006, 27(6):568-571
    [138] O’Rourke P J, Amsden A A. A particle numerical model for wall film dynamics in port-injected engines. SAE Paper 961961
    [139] Stanton D W, Rutland C J. Modeling fuel film formation and wall interaction in diesel engines. SAE Paper 960628
    [140]魏明锐,刘斐,文华,等.二甲醚喷雾碰壁数值模拟与试验研究.内燃机工程, 2006, 27(2):5-10
    [141]贺萍,刘永长,宋军,等.高背压下燃油喷雾倾斜碰壁数值模拟.内燃机工程, 1997, 18(2):33-39
    [142]蒋勇,廖光煊,王清安,等.喷雾过程液滴碰撞-聚合模型研究.火灾科学, 2002, 9(2):27-30
    [143] Lindgren R, Denbratt I. Modelling gasoline spray-wall interactions and comparison to experimental data. SAE Paper 2004-01-3003
    [144] Himmelsbach J. Zweiphasenstr?mung mit schubspannungsgetriebenen, welligen Flüssigkeitsfilmen in turbulenter Hei?luftstr?mung– Me?technische Erfassung und numerische Beschreibung [D]. Germany: University of Karlsruhe, 1992
    [145] Sill K H. W?rme- und Stoffübergang in turbulenten Str?mungsgrenz-schichten l?ngs verdunstender welliger Wasserfilme [D]. Germany: University of Karlsruhe, 1982
    [146] Zeng Yangbing, Lee C F. Multicomponent-fuel film-vaporization model for multidimensional computations. Journal of Propulsion and Power, 2000, 16(6):964-973
    [147] Torres D J, O’Rourke P J, Amsden A A. A discrete multi-component fuel model. Atomization and sprays, 2003, 13(2/3):131-172
    [148] Miyagawa H, Nagaoka M, Akihama K, et al. Numerical analysis on multi-component fuel behaviors in a port-injection gasoline engine. SAE Paper 1999-01-3642
    [149] Wang Dongyao, Lee C F. Continuous multicomponent fuel film vaporization model for multidimensional engine modeling. SAE Paper 2005-01-0209.
    [150]成晓北,黄荣华,王志,等.喷雾撞壁油膜流动的研究.内燃机学报, 2002, 20(3):205-210
    [151]马崴.汽油机低温冷启动排放特性及控制策略研究[硕士学位论文].北京:清华大学, 2005
    [152]何学良,詹永厚,李疏松.内燃机燃料.北京:中国石化出版社, 1999
    [153] Dukowicz J K. A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 1980, 35(2):229-253
    [154] Bai Chengxin, Gosman A D. Development of methodology for spray impingement simulation. SAE Paper 950283
    [155] Bird R B, Stewart W E, Lightfoot E N. Transport phenomena. Wiley-India edition, 2007
    [156]童景山.流体的热物理性质.北京:中国石化出版社, 1996
    [157] Da?f A, Bouaziz M, Chesneau X, et al. Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model. Experimental Thermal and Fluid Science, 18(4):282-290
    [158] Daubert T E, Danner R P. Physical and thermodynamic properties of pure chemicals: data compilation. Hemisphere Publication Corporation, New York, 1989
    [159] Pichon C, Risoul V, TrouvéG, et al. Study of evaporation of organic pollutants by thermogravemetric analysis: experiments and modeling. Thermochimica Acta, 1997, 306(1/2):143-151
    [160]胡宗杰,李理光,于水.燃料油膜蒸发的热重分析法研究.科学通报, 2006, 51(11):1353-1358
    [161] Pieterse N, Focke W W. Diffusion-controlled evaporation through a stagnant gas: estimating low vapour pressures from thermogravimetric data. Thermochimica Acta, 2003, 406(1/2):191-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700