纳米磺酸钙镁复合清净剂的合成、性能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有良好使用性能的纳米有机酸钙盐是目前应用最广的润滑油金属清净剂。近年来碱值高、灰分低、酸中和能力强的镁盐清净剂得到了快速发展。钙盐和镁盐复配具有良好的协同作用,因此在实际应用过程中两者经常采用复配的形式使用。磺酸盐是目前用量最大的一类润滑油清净剂,水杨酸盐是目前使用最多的一类无硫润滑油清净剂,两者也常采用复配的方式使用。而不同清净剂在复配过程中有时会出现沉淀现象。针对上述情况,本课题开展了直接合成纳米磺酸钙镁复合清净剂和磺酸水杨酸混合基质钙镁的研究工作。以玉门炼油化工总厂生产的轻质和重质磺酸铵及兰州石化公司生产的水杨酸为原料,采用单因素和正交实验,对两种磺酸铵合成纳米钙镁复合清净剂的合成工艺条件及重质磺酸水杨酸混合基质钙镁复合清净剂合成工艺中主要物料的加入量进行优化,并对纳米钙镁复合清净剂组成结构对其性能的影响进行了研究。最后对磺酸钙镁复合清净剂的合成机理进行了初步研究。研究内容及结论如下:
     (1)轻质和重质磺酸铵原料性质及组成结构的分析表明,两种磺酸铵都可用于合成润滑油清净剂,而重质磺酸铵更是一种理想的用于合成润滑油清净剂的原料。
     (2)轻质磺酸铵合成钙镁复合清净剂的最佳工艺条件为:在轻质磺酸铵为65g的条件下,氧化镁加入量22g、水加入量10mL、甲醇加入量16mL、碳酸化反应温度42℃、反应时间4h、二氧化碳通入速率120mL·min-1。可制备出碱值大于320mgKOH·g-1、运动粘度小于140mm2·s-1的高碱值纳米磺酸钙镁复合清净剂产品,产品中胶粒的平均粒径约为50nm,粒度分布较均匀。加入润滑油后能较好的改善润滑油的使用性能。
     (3)重质磺酸铵合成钙镁复合清净剂的最佳工艺条件为:在重质磺酸铵为80g的条件下,氧化镁加入量24g、水加入量12mL、甲醇加入量18mL、尿素加入量4g、碳酸铵加入量4g、碳酸化反应温度45℃、反应时间3h、二氧化碳通入速率为120mL·min-1可制备出碱值大于410mgKOH·g-1、运动粘度小于150mm2·s-1的超碱值纳米磺酸钙镁复合清净剂产品,产品中胶粒的平均粒径约为40nm,粒度分布较均匀,加入润滑油后能明显提高润滑油的使用性能。产品组成结构的表征表明,产品中金属磺酸正盐为磺酸钙,过碱性组分主要为碳酸镁,这与目的产品的组成结构是一致的。
     (4)重质磺酸铵与水杨酸合成混合基质钙镁复合清净剂工艺中主要反应物料的最佳加入量为:氧化镁量24g,水10mL,甲醇18mL,磺酸铵与水杨酸混合原料中水杨酸含量25%。可合成出碱值大于400mgKOH·g-1、运动粘度小于140mm2·s-1的超碱值磺酸水杨酸混合基质钙镁复合清净剂产品,产品中胶粒粒度分布均匀,平均粒径约为30m。加入润滑油后能明显提高润滑油的各项使用性能。
     (5)纳米钙镁复合清净剂组成结构对其性能的影响表明:①对于纳米磺酸钙镁复合清净剂,其正盐采用磺酸钙、适当增加产品中钙的含量、减小碱性组分中氢氧化物占碱值份额越小、提高产品碱值、采用较大分子量的磺酸基质,都可有利于提高产品的综合性能。②对于磺酸水杨酸混合基质钙镁复合清净剂,适宜的磺酸盐水杨酸盐比例,能够最大程度地提高混合基质钙镁复合清净剂的综合性能。③和国内外同类产品相比,轻质磺酸钙镁复合清净剂除碱值相对较低外其他性能相当;重质磺酸钙镁复合清净剂综合性能稍优于国内外同类产品;重质磺酸水杨酸混合基质钙镁复合清净剂的各项性能都达到或超过国内外同类产品,其综合性能明显好于同类产品。④磺酸钙镁复合清净剂的综合性能优于磺酸镁清净剂,而磺酸水杨酸混合基质钙镁复合清净剂的综合性能又优于磺酸钙镁复合清净剂,说明钙镁复合能够提高同基质的镁盐清净剂产品的综合性能,而选用合适的混合基质也可改善单一基质产品的综合性能。
     (6)通过对钙镁复合清净剂合成过程中反应体系化学组成、电导率、碱值变化情况的研究和分析确定了合成过程的宏观化学反应历程。对碳酸化反应过程动力学的初步研究表明,碳酸化反应过程受扩散控制。促进剂甲醇通过降低反相胶束界面膜的强度和磺酸钙正盐的临界胶束浓度来提高碳酸化反应的速度和最终产品的碱值。尿素和氨水通过提高水对氢氧化物的溶解度来加快碳酸化反应的速度。适宜的水量、合理的二氧化碳通入速率有益于碳酸化反应的顺利进行和最终产品碱值的提高。
As lubricant metal detengents, possessing fairly good performance, calcium salts have been widely used at present. With higher total base number, lower ash content, stronger neutralization capability, magnesium salt detergents have been developing quickly in recent years. Because these two kinds of detengents have good synergistic effect, they are usually taken in a compound form in practical application. Presently, the most widely used lubricant detengents are sulfonates, while the sulfur-free lubricant detengents are salicylates. These two kinds of detengents are also taken in a compound form in practice. The sedimentation phenomena sometimes occur when detengents are compounded with each other. In view of the above circumstance, studies on direct synthesis of calcium-magnesium sulfonate composite detergents and calcium-magnesium sulfonate/salicylate composite detergents are carried out. Using the ammonium sulfonate(light and heavy) from Yumen petrochemical factory and the salicylic acid from Lanzhou petrochemical company as raw materials, the synthesis process conditions of the calcium-magnesium sulfonate(light and heavy) composite detergents and the calcium-magnesium sulfonate/salicylate composite detergents are optimized by single-factor and orthogonal experiments. The influence of composition and structre of calcium-magnesium composite detergents on their performance is studied. Finally, the synthesis mechanism of calcium-magnesium sulfonate composite detergents is investigated. The main contents and conclusions are summarized as follow:
     (1) The analytical results of chemical composition and properties of ammonium light sulfonate and ammonium heavy sulfonate indicated that they can be used to synthesize lubricant detengents. The ammonium heavy sulfonate is a good raw material for synthesis lubricant detengents.
     (2)The optimum conditions of synthesis calcium-magnesium light sulfonate composite detergents should be:ammonium light sulfonate 65g, magnesium oxide 22g, water 10ml, methanol 16ml, carbonation temperature 42℃, carbonation time 4 hours, carbon dioxide 120ml·min-1. The base number of product synthesized by the optimum conditions is higher than 320mgKOH·g-1, and its viscosity is lower than 140mm2·s-1. The distribution of colloidal particles in product is homogeneous. The average diameter of colloidal particles is about 50nm. The product can effectively improve the properties of the lubricating oil.
     (3) The optimum conditions of synthesis calcium-magnesium heavy sulfonate composite detergents is determined as follow:ammonium heavy sulfonate 80g, magnesium oxide 24g, water 12ml, methanol 18ml, urea 4g, ammonium carbonate 4g, carbonation temperature 45℃, carbonation time 3 hours, carbon dioxide 120ml·min-1. The base number of product synthesized by the optimum conditions is higher than 410mgKOH-g"1, and its viscosity is lower than 150mm2·s-1. The distribution of colloidal particles in product is homogeneous. The average diameter of colloidal particles is about 40nm. The properties of the lubricating oil can be improved obviously after addding this product. The composition and structure of the product are characterized. It is proved that the neutral salt is neutral calcium sulfonate and the overbasic components is mainly magnesium carbonate.
     (4) The optimal dosage of main materials in synthesis calcium-magnesium heavy sulfonate/salicylate composite detergents is determined as follow:magnesium oxide 24g, water 10ml, methanol 18ml, ammonium heavy sulfonate 60g, salicylic acid 20g. The base number of product synthesized by the optimum conditions is higher than 400mgKOH·g-1, and its viscosity is lower than 140mm2·s-1. The colloidal particles in product have even distribution of particle size and they are about 30nm of average diameter. The properties of the lubricating oil can be improved obviously after adding this product.
     (5) The influence of composition and structure on performance of calcium-magnesium composite nanodetergents is researched. The results show:①By using the neutral calcium sulfonate as neutral salt, appropriately increasing the content of calcium, decreasing the content of hydroxide in the basic component, enhancing the base number and using large molecular sulfonate, the comprehensive properties of calcium-magnesium sulfonate composite detergents can be improved.②Taking suitable ratio of sulfonate and salicylate in the calcium-magnesium sulfonate/salicylate composite detergents, the performance of products will be greatly improved.③Comparing with the same type of lubricant detergents, the calcium-magnesium light sulfonate composite detergents has equivalent performance except the base number, the calcium-magnesium heavy sulfonate composite detergents has better performance and the calcium-magnesium sulfonate/salicylate composite detergents has superior performance.④The comprehensive property of calcium-magnesium sulfonate composite detergents is superior to that of magnesium sulfonate detergents, while the comprehensive property of calcium-magnesium sulfonate/salicylate composite detergents is superior to that of calcium-magnesium sulfonate composite detergents. This indicates that calcium-magnesium composite detergents can improve the performance of magnesium salt detergents and the mixed substrate detergents can further improve the performance of single substrate detergents.
     (6) By researching and analyzing the changes of chemical structure, conductivity and the base number of the reaction solution, the reaction mechanism of synthesis calcium-magnesium composite detergents is definited. The studies of carbonation kinetics show that the diffusion was the control step of the carbonation process. The methanol, used as promoter, can increase the carbonation rate and improve the base number of product by lowering the interfacial film strength of reverse micelles and the criticalmicellar concentration of the calcium sulfonate. The urea and ammonia, used as co-promoters, can accelerate the carbonation rate by increasing the solubility of magnesium hydroxide in water. The fitting amount of water and the feasible flow rate of carbon dioxide are beneficial to carbonation process and to improving the base number of products.
引文
[1]张景河.现代润滑油与燃料添加剂[M].北京:中国石化出版社,1992:1-82
    [2]姚文钊,李建民,刘雨花,等.内燃机油添加剂的研究现状及发展趋势[J].润滑油,2007,22(3):1-4
    [3]付兴国,孟言俊,马安.润滑油及添加剂技术进展与市场分析[M],北京:石油工业出版社,2004:228-294
    [4]Leslie R.Rudnick.润滑油添加剂化学与应用[M].李华峰,李春风,赵立涛,等译.北京:中国石化出版社,2006:81-90
    [5]付兴国,匡奕九,曹镭.高碱性金属清净剂的发展[J].现代化工,1995(2):24-27
    [6]付兴国,匡奕九,曹镭.金属清净剂研究的最新进展[J].润滑油,1994,9(5):43-46
    [7]Hudson L K, Eastoe J, Dowding P J. Nanotechnology in action:Overbased nanodetergents as lubricant oil additives[J]. Advances in Colloid and Interface Science, 123-126 (2006):425-431
    [8]许汉立.内燃机润滑油产品与应用[M].北京:中国石化出版社,2005:203-212
    [9]Fyfe K E. High fuel economy passenger car engine oil[P]. USP:5906969,1999-05-25
    [10]Ripple D E. Oil additive package useful in diesel engine and transmission lubricants[P]. USP:5328620,1994-07-12
    [11]Bloch R A, Lapinas A T, Outten E F, et al. Crankcase lubricant for modern heavy duty diesel and gasoline fueled engines[P]. USP:6004910,1999-12-21
    [12]Locke C J, MacDonald I P. Lubricating oil compositions[P]. USP:6423670,2002-07-23
    [13]伏喜胜,姚文钊,张龙华,等.润滑油添加剂的现状及发展趋势[J],汽车工艺与材料,2005(5):1-6
    [14]姚文钊,薛卫国,刘雨花,等.低硫酸盐灰分、低磷和低硫发动机油添加剂发展现状及趋势[J],润滑油,2009,24(1):48-53
    [15]刘文君,徐延齐,姜立军.国内外润滑油添加剂市场概况及发展[J].齐鲁石油化工,2004,32(2):112-114
    [16]姚文钊,刘雨花,魏存荣.复合金属型清净剂的制备及性能研究[J].纳米科技,2006,3(2):17-20
    [17]姚文钊,刘雨花,华秀菱,等.钙镁钠复合金属型清净剂的基本性能与应用研究[J].润滑油,2008,23(4):43-47
    [18]Bakunin V N, Suslov A Y, Kuzmina G N, et al. Synthesis and application of inorganic nanoparticles as lubricant components-a review[J]. Journal of Nanoparticle Research, 2004, (6):273-284
    [19]ZHANG Jing-he, FU Xing-guo. Study of the unique neutralization behaviours of various overbased magnesium salts as lubricating oil detergents [A]. Proceedings of the international tribology conference[C]. Japan:Yokohama.1995:765-770
    [20]付兴国,匡奕九,曹镭.润滑油清净剂胶体结构与性能关系的研究[J].石油炼制与化工,1996,27(3):58-63
    [21]姚文钊,刘维民,付兴国.纳米级润滑油清净剂的结构与性能关系研究[J].润滑与密封,2005,172(6):79-83
    [22]Roman J P, Hoornaert P, Faure D, et al. Formation and structure of carbonate particles in reverse microemulsion[J]. J Colloid Interface Sci,1991,144 (2):324-339
    [23]石油化工科学研究院701组.磺酸盐添加剂的结构分析[J].石油炼制,1980,(6):40-50
    [24]刘彬彬.超高碱值环烷酸镁胶体粒子微观结构的研究[J].石油与天然气化工,1996,5(2):67-69
    [25]鲁静,苏克曼,严正泽,等.石油磺酸盐类清净分散剂的组成和结构分析[J].润滑油,1996,11(3):44-48
    [26]张峥,韦刚,苏克曼,等.过碱度重烷基苯磺酸钙清净剂烃基结构的研究[J].精细石油化工,2002,(2):19-22
    [27]O'Sullivan T P, Vickers M E, Heenan R K. Characterization of oil-soluble calcium carbonate dispersions using small-angle X-ray scattering(SAXS) and small-angle neutron scattering(SANS)[J]. Journal of Applied Crystallography,1991,24 (5):732-739
    [28]Markovic I, Ottewill R H, Cebula D J, et al. Small angle neutron scattering studies on non-aqueous dispersions of calcium carbonate. part Ⅰ. the guinier approach[J]. Colloid and Polymer Science,1984,262(8):648-656
    [29]Markovic I, Ottewill R H. Small angle neutron scattering studies on nonaqueous dispersions of calcium carbonate, part 2. determination of the form factor for concentric spheres[J]. Colloid and Polymer Science,1986,264(1):65-76
    [30]Markovic I, Ottewill R H. Small angle neutron scattering studies on non-aqueous dispersions of calcium carbonate. part Ⅲ. Concentrated dispersions[J]. Colloid and Polymer Science,1986,264(5):454-462
    [31]Ottewill R H, Sinagra E, MacDonald I P, et al. Small-angle neutron-scattering studies on nonaqueous part 5:magnesium carbonate dispersions in hydrocarbon media[J]. Colloid and Polymer Science,1992,270(6):602-608
    [32]Mishunina 11, Romanyutina L V, Fialkovskii R V, et al. Electron microscope studies of overbased sulfonates with various cations[J]. Chemistry and Technology of Fuels and Oils,1982,18(7-8):369-371
    [33]陈恒馥,张景河,陈明霞,等.润滑油清净剂胶体结构冷冻蚀刻电镜观测研究[J].西安石油学院学报,1993,8(2):58-64
    [34]周亚斌,蒋生祥.X-ray光电子能谱研究烷基水杨酸盐金属清净剂中金属化合物的存在形式[J].石油炼制与化工,2007,38(12):54-57
    [35]梁生荣,张君涛,何力,等.润滑油金属清净剂中碳酸盐含量的测定方法[J].石油炼制与化工,2005,36(8):65-68
    [36]Bearchell C A, Heyes D M. Molecular modelling studies of calcium carbonate and its nanoparticles[J]. Molecular Simulation,2002,28(6-7):517-538
    [37]Cizaire L, Martin J M, Le M T, et al. Chemical analysis of overbased calcium sulfonate detergents by coupling XPS, ToF-SIMS, XANES, and EFTEM[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,238(1-3):151-158
    [38]孙枫,徐宏坤,宋美卿.清净剂晶型分布对碱值分析的影响[J].润滑油,2005,20(5):35-37
    [39]Cunningham I D, Courtois J P, Timothy N, et al. Synthesis and characterisation of calixarene-stabilised calcium carbonate overbased detergents [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,229(1-3):137-147
    [40]徐先盛.中国石油添加剂大全[M].大连出版社,大连,1999:15-18
    [41]朱(?)瑶,赵振国.界面化学基础[M].化学工业出版社,北京,1996:105
    [42]张大华.内燃机油沉积物生成趋势研究进展[J].润滑与密封,2007,32(1):185-188
    [43]候祥麟.中国炼油技术[M].中国石化出版社,北京,2001:514-523
    [44]李群芳,姚文钊,付兴国.润滑油金属清净剂(钙盐)的抗磨作用概述[J].润滑油,2001,16(1):54-57
    [45]Noriyuki N, Gen O, Takashi K, et al. Mechanism for the needle crystal formation from magnesium detergents in engine oils[J]. JSAE Review,1996,17(2):121-125
    [46]Hone D C, Robinson B H, Steytler D C, et al. Mechanism of acid neutralization by overbased colloidal additives in hydrocarbon media[J]. Langmuir,2000,16(2):340-346
    [47]Giasson S, Espinat D, Palermo T, et al. Small angle X-Ray scattering (SAXS) on calcium sulfonate dispersions:effects of friction on micro structure [J]. Journal of Colloid and Interface Science,1992,153(2):355-367
    [48]Najman M, Kasrai M, Bancroft G M, et al. Combination of ashless antiwear additives with metallic detergents:interactions with neutral and overbased calcium sulfonates[J]. Tribology International,2006,39(4):342-355
    [49]Topolovec-Miklozic K, Forbus T R, Spikes H. Film forming and friction properties of overbased calcium sulphonate Detergents [J]. Tribol Lett,2008, (29):33-44
    [50]Costello M T, Riff 11. Study of hydroforming lubricants with overbased sulfonates and friction modifiers[J]. Tribology Letters,2005,20(3-4):201-208
    [51]Cizaire L, Martina J M, Gresser E, et al. Tribochemistry of overbased calcium detergents studied by ToF-SIMS and other surface analyses[J]. Tribology Letters,2004,17(4): 715-721
    [52]张建华,杜大昌,刘菲菲,等.钙、镁型发动机油复合剂的抗磨性能[J].润滑与密封,2001,(3):21-22
    [53]史佩京,许一,徐滨士,等.高碱值磺酸镁清净剂的摩擦学性能研究.精细石油化工,2004,(2):20-22
    [54]陈文君,文庆珍,李金玉.油酸镁的制备及抗磨性能研究[J].润滑与密封,2007,32(6):93-95
    [55]万勇,Kasrai M, Bancroft G M.高碱值硫化烷基酚钙盐摩擦膜的XANES研究[J].真空科学与技术学报,2009,29(1):78-81
    [56]Giasson S, Palermo T, Buffeteau B, et al. Study of boundary film formation with overbased calcium sulfonate by PM-IRRAS spectroscopy[J]. Thin Solid Films,1994, 252(2):111-119
    [57]Kubo T, Fujiwara S, Nanao H, et al. Boundary film formation from overbased calcium sulfonate additives during running-in process of steel-DLC contact[J]. Wear,2008, 265(3-4):461-467
    [58]Kubo T, Fujiwara S, Nanao H, et al. TOF-SIMS analysis of boundary films derived from calcium sulfonates[J]. Tribology Letters,2006,23(2):171-176
    [59]Chinas-Castillo F, Spikes H A. Film formation by colloidal overbased detergents in lubricated contacts[J]. Tribology Transactions,2000,43(3):357-366
    [60]Costello M T, Kasrai M. Study of surface films of overbased sulfonates and sulfurized olefins by X-Ray Absorption Near Edge Structure (XANES) spectroscopy[J]. Tribology Letters,2006,24(2):163-169
    [61]Costello M T, Urrego R A. Study of surface films of the ZDDP and the MoDTC with crystalline and amorphous overbased calcium sulfonates by XPS[J]. Tribology Transactions,2007,50(2):217-226
    [62]颜皓,梁海萍,张法智.高碱值硫化烷基酚钙抗磨机制分析[J].润滑与密封,2007,32(9):100-102
    [63]訾立钧,陈锡功.硼化磺酸盐添加剂的研制及性能评定[J].润滑油,1998,13(1):40-46
    [64]Normand V, Martin T M, Ponsonnet L, et al. Micellar calcium borate as an antiwear additive[J]. Tribology Letters,1998, (5):235-242
    [65]袁洋,段天平,杨生荣,等.高碱值(性)硼化磺酸盐清净剂的研究应用[J].润滑与密封,2002,
    [66]徐小红,付兴国.高碱值硼化烷基水杨酸镁的研制及性能评定[J].润滑油,2000,15(2):47-49
    [67]李仙粉,任福民,许兆义,等.柴油清净剂改善柴油机有害排放的研究[J].石油学报(石油加工),2002,18(6):84-88
    [68]谢诚冰,袁晓东,郭和军.柴油清净剂的研究进展[J].清洗世界,2007,23(04):28-31
    [69]俞巧珍,刘枫林.国内外润滑油添加剂产业概况[J].石油商技,2010,(1):8-12
    [70]汤仲平,孙丁伟,文斌,等.通用内燃机油的国内外发展情况和趋势[J].润滑油,2005,20(5):1-5
    [71]孔劲媛.国内外润滑油基础油市场分析及展望[J].国际石油经济,2009,(10):49-53
    [72]段庆华,徐未.中国润滑油复合剂的现状及发展趋势[J].石油商技,2005,(1):20-22
    [73]钱铮,张海兵,颜桂珍.制备高碱值石油磺酸钙清净剂的旋转填充床和搅拌鼓泡釜工艺比较[J].石油学报(石油加工),2009,25(6):861-867
    [74]高秀芬.高碱性合成磺酸镁清净剂的研制[J].润滑油,1995,8(6):28-33
    [75]姜建卫,雷宁红.润滑油馏分的磺化和酸精制工艺研究[J].精细石油化工,2002,(6):8-10
    [76]孟明扬,马瑛,谭立哲,等.磺化新工艺与设备[J].精细与专用化学品,2004,12(12):8-10
    [77]Dickey C R. Overbased magnesium sulfonate process[P]. USP:3761411,1973-9-12
    [78]Dickey C R. A process for preparing overbased alkaline earth metal, particularly magnesium lubricant additives, and a process for determining the critical carbonation rate for such process[P]. EP:0005337,1979-11-14.
    [79]Sabol A R. Process for the manufacture of overbased magnesium sulfonates[P]. USP: 4137186,1979-1-30
    [80]Sabol A R, Petrille D G, Heffern E W. Method of preparing overbased magnesium sulfonates[P]. USP:4201682,1980-5-6
    [81]Muir R J. Succinic anhydride promoter overbased magnesium sulfonates and oils containing same[P]. USP:4647387,1987-3-3
    [82]Marsh J F, Vernet M R M, Hamey G W. Overbased magnesium sulphonate composition[J]. USP:5089155,1992-2-18.
    [83]Cleverley J A, Wardle R A, Swietlik J M, et al. Preparation of overbased magnesium sulphonates[P]. USP:5534168,1996-7-9
    [84]Cease V J, Kirk G R. Preparation of overbased magnesium sulfonates[P]. USP:4148740, 1979-4-10
    [85]Van Zon A. Process for the preparation of a basic salt, such a salt and lubricating oil compositions containing such a salt[P]. EP:0248465,1987-11-22
    [86]C J亚当斯,P J道丁.[P].过碱性金属磺酸盐清净剂[P].中国专利:200810165981.X,2008-10-06
    [87]段连春.低碱值合成磺酸钙的开发研制[J].辽宁化工,2007,38(1):43-46
    [88]Fialkovskii R V, Romanyutina L V, Korbut L F, et al. Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates[J]. Chemistry and Technology of Fuels and Oils,1981,17(3-4):135-137
    [89]Fialkovskii R V, Vipper A B, Korbut L F, et al. Magnesium sulfonate additives[J]. Chemistry and Technology of Fuels and Oils,1983,19(3-4):146-149
    [90]Celik A, Besergil B. Determination of synthesis conditions of neutral calcium sulfonate, so-called detergent-dispersant[J]. Industrial Lubrication and Tribology,2004,56(4): 226-230
    [91]Montanari L, Palmieri E, Tinucci L, et al. Molecular features of sulfonic acids used for synthesis of overbased detergent additives[J]. Lubrication Science,2006,18(3):173-185
    [92]Besergil B, Celik A. Determination of synthesis conditions of alkali calcium sulfonate[J]. Industrial Lubrication and Tribology,2004,56(3):188-194
    [93]Besergil B, Akin A, Celik S. Determination of synthesis conditions of medium, high, and overbased alkali calcium sulfonate[J]. Industrial and Engineering Chemistry Research, 2007,46(7):1867-1873
    [94]Rolfes A J, Jaynes S E. Process for making overbased calcium sulfonate detergents using calcium oxide and a less than stoichiometric amount of water[P]. USP:6015778, 2000-01-18
    [95]Rolfes A J, Jaynes S E. Process for making overbased calcium sulfonate detergents using calcium oxide and a less than stoichiometric amount of water[P]. USP:6268318, 2001-07-31
    [96]Gergel W C. Process for preparing an overbased detergent[P]. USP:3629109, 1971-12-20.
    [97]Skinner P, Lenack A L P. Process for preparing an overbased metal containing detergents[P]. USP:6281179,2001-8-28
    [98]段天平,薛群基,桑运超,等.高碱值硼化石油磺酸钙硼化工艺优化研究[J].石油炼制与化工,2004,35(11):70-73
    [99]Inoue K. Calcium borate overbased metallic detergent[J]. Lubrication Engineering,1993, 49(4):263-268
    [100]姜皓,曹镭.高碱度硫化烷基酚钙添加剂(兰-115B)的合成[J].石油炼制,1981, (12):38-49
    [101]姜皓,曹镭,杨德恩,等.硫化烷基酚钙高碱度化工艺研究[J].石油学报(石油加工),1992,8(3):67-76
    [102]刘依农,付兴国,刘维民.两种超高碱值烷基水杨酸钙的对比研究[J].石油学报(石油加工),2000,16(1):47-52
    [103]姚文钊.超高碱值烷基水杨酸钙盐的制备与性能研究[J].石油炼制与化工,1999,30(12):6-9.
    [104]兰州炼油厂研究所.兰109烷基水杨酸钙添加剂的制备研究[J].石油炼制,1974,(1):39-44
    [105]付兴国,牛成继,魏存荣,等.高碱度烷基水杨酸镁合成研究[J].甘肃科学学报,1994,6(2):7-12
    [106]杜军,付兴国,魏存荣.高碱性烷基水杨酸镁性能评定及应用研究[J].润滑油,1994,9(3):19-23
    [107]付兴国,牛成继,曹镭.烷基水杨酸盐系列产品的研制[J].润滑油,1996,11(3):38-43
    [108]姚文钊,付兴国,李群芳.超高碱值烷基水杨酸镁盐的制备与性能研究[J].石油炼制与化工,2001,32(11):32-36
    [109]姚文钊,汤仲平,刘雨花,等.烷基水杨酸盐作为柴油机油清净剂的性能特点研究[J].润滑油,2006,21(2):47-52
    [110]刘依农,付兴国,刘维民.老化反应对高碱度烷基水杨酸钙胶体结构及抗磨性能的影响[J].摩擦学学报,2000,20(1):26-29
    [111]刘依农,付兴国,刘维民.高碱度烷基水杨酸钙制备中的溶剂效应[J].润滑油,2000,15(4):16-18
    [112]刘依农,牛彩娥,赵锁奇,等.甲醇对高碱度烷基水杨酸钙胶体结构及性能的影响[J].石油化工,2001,30(10):773-776
    [113]Johnson D. Light scattering in the study of colloidal and macromol Systerms [J]. Int.Rev.Phys.Chem.,1993,12(1):61-87
    [114]Jane G, Steve H, Duncan H. Oil-soluble colloidal additives [J]. Current Opinion in Colloid Interface Science,2000,(5):274-279
    [115]Riegelhuth R D, Watkins R C. Measurement of microdispersed particles in overbased additives[J].JIP,1972,58(562):188-192
    [116]姚文钊,魏存荣,付兴国.中碱值硫化烷基水杨酸钙的制备及性能研究[J].石油炼制与化工,2003,33(4):12-15
    [117]徐燕,华伦松,王朝雨,等.超高碱值环烷酸镁研制[J].润滑油,2003,18(5):45-48
    [118]代敏,白生军,雷兵,等.超高碱值环烷酸钙的研制[J].应用化工,2008,37(6):599-601
    [119]代敏,欧阳斌,陈晓东.超高碱值环烷酸钙的合成及添加剂间的相互作用[J].石油天然气学报,2008(8):1-2
    [120]姜皓,李恪,张景河,等.高碱度环烷酸镁润滑油清净剂的合成[J].西安石油学院学报(自然科学版),2001,16(2):32-35
    [121]王凌,李群芳.混合基质型金属清净剂的发展现状[J].润滑油,2001,16(4):18-21
    [122]丁丽芹,张景河,何力,等.润滑油清净剂金属化工艺规律的研究进展[J].润滑油,2003,18(6):13-17
    [123]Muir R J. Process for the preparation of overbased magnesium sulfonates[P]. USP: 4617135,1986-10-14
    [124]Muir R J, Eliades T I. Overbased magnesium deposit control additive for residual fuel oils[P]. USP:6197075,2001-3-6
    [125]Muir R J. Method for producing lubricant detergents[P]. USP:7009072,2006-03-07
    [126]Allain R J, Fong D W. Process for preparing overbased magnesium sulfonates[P]. USP: 4347147,1982-08-31
    [127]Allain R J, Fong D W. Process for preparing overbased magnesium sulfonates[P]. USP: 4306983,1981-12-22
    [128]顾军慧,彭伟.高碱石油磺酸镁的研制[J].润滑油,1996,11(5):20-23
    [129]朱海英,王桂明,陆国飞.超高碱值石油磺酸钙的合成及应用[J].润滑油,2001,16(2):46-48
    [130]梁生荣,何力,张景河.超碱值石油磺酸镁合成工艺研究[J].润滑油,2003,18(1):51-54
    [131]丁丽芹,张景河,何力,等.Mg盐清净剂金属化工艺的纳米化学微反应机理[J].石油学报(石油加工),2009,25(1):96-101
    [132]罗来龙,牛春革,韩韫.高碱值石油磺酸镁清净剂的研制与应用[J].新疆石油科 技,2006,16(4):63-65
    [133]裴宏斌,曲江.超高碱值合成磺酸镁的研制与生产[J].辽宁化工,2004,33(10):568-570
    [134]吕梅.F重烷基苯一步法制备高碱值合成磺酸钙[J].润滑油,2006,21(3):25-28
    [135]程辉杰,马建江,曹民,等.TBN400超高碱值合成磺酸钙清净剂的研制[J].润滑油,2006,21(5):47-53
    [136]张颖,田桂芝,王茹,等.高碱值烷基苯磺酸钙的制备研究[J].应用化工,2006,35(11):897-899
    [137]郑东海,程辉杰,王发质.超高碱性大分子合成磺酸钙清洁剂合成工艺研究[J].石油天然气学报,2005,27(1):275-277
    [138]白生军,代敏,欧阳斌,等.超高碱值清净剂的合成过程研究[J].新疆石油科技,2008,18(1):67-68
    [139]陈新德,颜涌捷.蜡裂解α烯烃制备高碱性烷基苯磺酸钙的研究[J].润滑与密封,2007,32(7):136-139
    [140]Powers Ⅲ W J, Matthews L A. Process for preparing overbased calcium sulfonates[P]. USP:4929373,1990-03-29
    [141]Papke B L, Bartley, Jr Leonard S. Process for producing an overbased sulfonate[P]. USP:5011618,1991-04-30
    [142]Jao T C, Vaccaro J M, Matthews L A. Process for preparing improved overbased calcium sulfonate[P]. USP:4997584,1991-03-05
    [143]Jao T C, Vaccaro J M, Powers Ⅲ W J. Overbased calcium sulfonate[P]. USP:5578235, 1996-11-26
    [144]Arnold D, Fair H J, Fair L V, et al. Overbased magnesium sulfonate process[P]. USP: 4225446[P].1980-09-30
    [145]Dickey C R, Williamson P M. Overbased magnesium sulfonate process[P]. USP: 4192758,1980-03-11
    [146]孙向东,孙旭东,王庆,等.中碱值合成磺酸钙清净剂的合成研究[J].化工生产与技术,2004,11(3):7-9
    [147]孙向东,孙旭东,王庆,等.高碱性合成磺酸钙清净剂的研制[J].润滑与密封,2004,164(4):92-94
    [148]Kocsis J A, Baumann A F, Karn J L. Process for Preparing an Overbased Detergent[P]. USP:20060178278,2006-08-10
    [149]姚文钊,刘维民,付兴国.表面活性剂在烷基水杨酸钙盐制备中的应用[J].石油炼制与化工,2004,35(8):54-58
    [150]姚文钊,付兴国.一种烷基水杨酸钙的制备方法[P].中国专利:200410029720.7,2005-09-28
    [151]姚文钊,付兴国.复合金属型润滑油清净剂的制备方法[P].中国专利:02104392.2,2002-11-06
    [152]罗来龙,陈建峰,毋伟,等.一种制备润滑油金属清净剂的方法[P].中国专利:200710178673.6,2009-06-10
    [153]罗来龙,陈建峰,钱铮,等.高碱值磺酸钙润滑油清净剂的制备方法[P].中国专利:200410037885.9,2005-11-16
    [154]白生军,代敏,马忠庭,等.超重力法合成高碱值石油磺酸钙的研究[J].当代化工,2008,37(4):378-381
    [155]白生军,代敏,韩韫,等.清净剂的合成工艺条件及稳定性试验研究[J].当代化工,2008,154(7):4-6
    [156]白生军,代敏,雷兵,等.润滑油清净剂超重力合成过程的自动化控制技术研究[J].润滑与密封,2008,33(9):74-76
    [157]周波.重烷基苯磺酸合成超高碱值磺酸钙的研究[J].应用化工,2007,26(3):248-251
    [158]Belle C, Gallo R, Jacquet F, et al. The overbasing of detergent additives:behaviour of promoters and determination of factors controlling the overbasing reaction[J]. Lubrication Science,1992,4(5):11-30
    [159]Bray U B, Dickey C R, Voorhees V. Dispersions of insoluble carbonates in oils[J]. Ind. End. Chem. Prod. Res. Dev.,1975,14(4):295-298
    [160]张景河.润滑油清净分散剂金属化工艺方法的发展[J].石油炼制,1978(10):44-50
    [161]Marsh J F. Colloidal lubricant additives[J]. Chemistry and Industry,1978(7):470-473
    [162]Roman J P, Hoornaert P, Faure D, et al. Formation and st ructure of carbonate particles in reverse microemulsion[J]. Journal of Colloid and Interface Science,1991,144 (2): 324-339
    [163]Bandyopadhyaya R, Kumar R, Gandh K S. Modelling of CaCO3 nanoparticle formation during overbasing of lubricating oil additives[J]. Langmuir,2001,17(4): 1015-1029
    [164]张景河,丁丽芹,何力,等.润滑油清净剂金属化反应机理的新概念[J].石油学报(石油加工),2006,22(1):54-59
    [165]梁生荣,张君涛,丁丽芹,等.润滑油金属清净剂合成机理的剖析[J].石油炼制与化工,2005,36(7):50-54
    [166]常建华,董绮功.波普原理及解析[M].第二版.北京:科学出版社,2005:59-124
    [167]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2005:127-121,429-442
    [168]邹华生,陈江凡,陈文标.油包水微乳液体系的稳定性分析[J].华南理工大学学报(自然科学版),2008,36(3):32-36
    [169]李玲.表面活性剂与纳米技术[M].化学工业出版社,北京,2004:104-109
    [170]王世敏,许祖勋,傅晶.纳米材料制备技术[M].化学工业出版社,北京,2002:88-93
    [171]魏刚,黄海燕,熊蓉春.微反应器法纳米颗粒制备技术[J].功能材料,2002,33(5):471-472
    [172]成国祥,沈锋,姚康德,等.反相胶束微反应器特性与ZnS纳米微粒制备[J].功能材料,1998,29(2):183-187
    [173]陈文君,李干佐,周国伟,等.作为微反应器的微乳液体系研究进展[J].日用化学工业,2002,32(2):57-60
    [174]成国祥,沈锋,张仁柏,等.反相胶束微反应器及其制备纳米微粒的研究进展[J].化学通报,1997,(3):14-19
    [175]Reading K. The study of lubricating oils and additives by FFRTEM[A]. Crump GB. Petroanalysis'87[C]. John Wiley Sons.1988:239-251
    [176]梁生荣,樊君,张君涛,等.润滑油清净剂金属化工艺研究进展[J].化工进展,2010,29(8):1451-1456
    [177]蒋明俊,郭小川,董浚修.内燃机油添加剂之间相互作用的研究[J].润滑油,1998,13(6):49-53
    [178]张景河,徐成东,付兴国,等.润滑油清净剂胶体结构及其与性能关系的研究[Z]. 科研成果报告,1998:1-79
    [179]梁生荣,何力,张景河.水对超碱值石油磺酸镁合成的影响[J].石油炼制与化工,2003,34(12):26-29
    [180]刘依农,付兴国,刘维民.高碱度烷基水杨酸钙碳酸化反应过程研究[J].石油学报(石油加工),2000,16(4):26-30
    [181]郝平,黄风林,丁丽芹.镁盐润滑油清净剂合成机理的初步研究[J].西安石油大学学报(自然科学版),2008,23(2):144-147
    [182]崔正刚,殷福珊.微乳化技术及应用[M].中国轻工业出版社,北京,1999:292-244
    [183]黄建彬.工业气体手册[M].化学工业出版社,北京,2002:92-94
    [184]马洪超,袁杰,于丽,等.水相和特殊介质中有序聚集体的结构、性质和应用(Ⅵ)—反相胶束/微乳液、反相溶致液晶和囊泡[J].日用化学工业,2010,40(2):128-139
    [185]郑建东,杨慧慧,温志远.TX-100反相微乳液体系稳定性的研究[J].应用化工,2010,39(5):675-678
    [186]王风贺,姜炜,夏明珠,等.电导法研究丙烯酰胺反相微乳液聚合体系的稳定性[J].分析测试学报,2005,24(3):110-112
    [187]王文清,顾国兴.电导法研究水/十二烷基苯磺酸钠/正戊醇/正庚烷体系反胶束和W/O型微乳液的导电机理[J].铀矿冶,1997,16(4):252-258
    [188]马维平,孙洪巍,苗芳,等.十六烷基三甲基溴化铵/正丁醇/环己烷/水微乳液制备纳米粉体的研究[J].硅酸盐通报,2008,27(3):645-648
    [189]何从林,王伯初.W/O型微乳液相行为的分析[J].重庆大学学报,2003,26(5):52-54
    [190]徐寿昌.有机化学[M].高等教育出版社,北京,1987:286-307
    [191]姚文钊,刘雨花,刘玉峰.纳米级合成磺酸钙制备技术与产品浊度的关系研究[J].材料工程,2008,32(7):132-136
    [192]周相廷,刘百年,刘志贤.氧化镁浆液碳化机理的研究[J].有色金属,1991,43(2):49-54
    [193]翟学良,周相廷,刘百年,等.Mg(OH)2的结晶性和粒度对碳酸化的影响Ⅲ碳酸化反应机理的研究[J].无机盐工业,1996,(7):7-9
    [194]朱炳辰.化学反应工程[M].第三版.北京:化学工业出版社,2001:17-21
    [195]王箴.化工辞典[M].第二版.北京:化学工业出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700