高强度钢板热冲压过程的模具温度控制与数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热冲压工艺是一种基于模内淬火的高温板料成形技术,其技术特点是将板料在高温下冲压成形,并利用模具实现对成形工件的淬火处理。在热冲压工艺中,冲压过程板料处于奥氏体化温度以上,这将显著降低高强度钢对成形力的要求,提升单工序成形能力。冲压前,高温板料进行了充分的奥氏体均匀化,冲压后模具仍然要保持压力闭合一段时间,对成形零件进行快速冷却淬火,提升淬后零件的力学性能和组织性能。热冲压工艺可以有效的消除利用传统工艺对高强度钢成形时极易出现的断裂、回弹、变形抗力大等工艺问题,显著改善高强度钢的成形能力;有效提高了成形工序集合程度,降低了工艺复杂性,提高了生产效率。显然,热冲压工艺作为一种多种工艺、多种技术高度集合的新型工艺,极大地扩展了高强度钢的应用范围,具有广阔的应用前景和巨大的市场潜力。
     本文从工艺原理、工艺流程、硼钢材料的淬后性能、模具温度场控制、冷却系统的优化设计、材料模型的建立及相关关键技术研究等方面对热冲压成形工艺进行了系统的研究。
     针对硼钢材料的淬后性能,利用对比实验的方法,研究了淬后工件力学性能和微观组织形态,通过对比分析不同加热温度、不同保温时间、不同冷却介质(水、铜砧板、钢砧板)条件下淬后工件的抗拉强度、硬度、微观组织形态等性能指标,研究揭示了相关工艺参数对材料淬后性能的影响规律,并据此提出了该材料的热处理工艺参数推荐方案。
     分析了热冲压工艺原理和模具系统各部位热传递过程,构建了热冲压工艺热平衡分析模型,建立了热冲压成形过程数值模拟模型,利用数值模拟方法研究了热冲压模具温度场的分布形态和历史演变规律,并提出了需要重点关注的模具主要换热通道;建立了热冲压工艺实验模拟装置,制定了合理的实验模拟热冲压工艺流程,提出了平均温度、平均温增、温度极值、平均周期四个温度场考量指标,利用实验数据,分析了工艺过程中模具温度场的分布和变化规律,研究了成形温度、冷却介质和工艺周期对模具温度场考量指标的影响规律;将模拟结果与实验数据进行了对比分析,验证了所建模型及相关设置方案的可靠性。
     基于热力耦合数值模拟分析、响应曲面法和粒子群优化算法,研究了热冲压模具冷却系统相关参数对冷却效率、温度场均匀性和疲劳寿命的影响规律;利用最小二乘法的回归分析,建立了热冲压模具表面平均温度、表面温度的标准差和模具上最大等效应力的响应曲面膜型;通过变异数分析和随机试验,验证了响应曲面模型的有效性。提出了冷却效率优先、模具温度均匀性优先和疲劳寿命优先的三种优化设计策略,基于所建立的响应曲面计算模型,分别建立了相关优化模型,利用自主开发的优化设计程序目标函数进行了优化计算,扶得了模具冷却系统布局相关推荐参数,利用与原设计方案进行对比分析的方法,证明了优化结果的积极意义。
     基于相关实验测试,自主构建了热—力—组织三场耦合的的材料模型,实现了对热冲压工艺温度场、应力应变场和相变过程的耦合分析;根据热冲压工艺特点,建立了U型件热压工艺过程的数值模拟模型,利用自行开发的材料模型,研究了成形温度对板料厚度、回弹变形、残余应力场及相变过程的影响规律,建立了相关成形零件工艺指标随工艺条件的变化规律;通过对U型件的热冲压成形的实验研究,研究了成形温度和模具冷却方式等成形零件力学性能和微观组织形态的影响规律,为热冲玉成形零件工艺规范的设计提供了理论依据和科学指导。
Hot stamping process is a kind of sheet metal forming technology at high temperature which based on die quenching process, in which the sheet metal stamping is formed at high temperature, and the workpiece is quenched using the mould. In hot stamping process, the blank at pressing progression is heated up to austenitizing temperature and above. This will significantly reduce the requirement of the forming force and promote deformation ability in single process. Before pressing, the high temperature austenite has been fully homogenization. After pressing, the mould will be closed keeping pressure for a period of time, in order to rapidly cool and harden the forming part, improving the mechanical properties and microstructure morphology. Hot stamping process can effectively eliminate the technology problems such as fracture, springback, large deformation resistance which easily appear when forming high strength steel using traditional process, and greatly improve the high strength steel forming ability. Hot stamping process can effectively improve the collection of forming process, which has positive significance for reducing process complexity and improving the production efficiency. Obviously, hot stamping process is a new technology which highly collected variety of process and variety of technology. It greatly expands the scope of the application of high strength steel, making which won a wide application prospect and huge market potential.
     In this paper, hot stamping will be given a systematic and in-depth study in the aspects of technology principle, technological process, performance of boron steel after quenching, mold temperature control technology, mold cooling system optimization design and related key technology research.
     Aiming at the chosen boron steel material, the mechanical properties and microstructure morphology after quenching are selected as key points. The heat treatment parameters (austenitizing temperature, holding time) and cooling medium (water, copper block, steel block) has been made a permutation and combination. And series of experiments with simplified process are carried out. Then the mechanical property is tested and microstructure is observed. Through contrast analyzing the experiments results, the influence law of process parameters on the materials performance after quenching is studied. And recommended proposals for applicable heat treatment parameters are give out.
     By analyzing the technology principle and the heat transferring process between the different parts of mold, the reasonable experimental simulation of hot stamping is presented and the experimental device is set up. Based a U-part forming process, hot stamping experiments are carried out. Using the mold temperature data obtained in experiment, the mold temperature distribution pattern during the single process and the variation rule during continuous process are studied. Combined experimental situation, the numerical simulation model is built based the software ABAQUS. With appropriate settings of related interfacial property, the mold temperature distribution pattern and its history variation rule are simulated using numerical method. The reliability of numerical model is checked by contrast with the former experiment result.
     Based on thermal-mechanical coupled simulation, response surface method and PSO (Particle Swarm Optimization) optimization algorithm, the iniluence rule of mold cooling system parameters on cooling efficiency, temperature uniformity and fatigue life is analyzed. Using the regression analysis with least square method, the response surface models are set up including average temperature of mold surface, the standard deviation of mold surface temperature and the maximum equivalent stress on mold. By means of ANOVA and random experiment, the availability of these response surface models are proved. Three optimization design strategies are proposed including cooling efficiency first, mold average temperature first and fatigue life first. Based the established response surface model, the related optimal models are set up respectively. The optimal calculation of object function is carried out using self-developed optimal design program. As a result, recommend parameters of mold cooling system layout are obtained. It is experiment verified using numerical method. The optimal result is proved having positive significance on improve the related index such as cooling efficiency by comparing with the original design method.
     Based on experimental test result, a material model is self-developed which coupled the calculation of thermal-mechanical-phase field. Importing it into the numerical simulation process using the ABAQUS subroutine function, the three field coupled simulation of hot stamping is realized. According to the hot stamping technological characteristics, the numerical model for U-part hot stamping process is built. It is studied that the influence of forming temperature on blank thickness, on the springback deformation, on residue stress field and on the phase transformation. It is obtained that the variation rule of formed parts process index with process conditions. It is experimental studied on the U-part hot stamping process. With the experiment result, it is analyzed the influence rule of forming temperature and mold cooling method on the mechanical properties and microstructure morphology. This provided a theory basis and scientific instruction for process specification of hot stamping part.
引文
[1]Akerstrom P. Modelling and simulation of hot stamping [D]. Lulea tekniska universitet/Tillampad fysik, maskin-och materialteknik/Hallfasthetslara,2006.
    [2]隋海波.高强度钢板成形轿车B柱加强板的研究[D].燕山大学,2009.
    [3]叶平,沈剑平,王光耀,等.汽车轻量化用高强度钢现状及其发展趋势[J].机械工程材料,2006,30(3):4-7.
    [4]Lenze F J, Banik J, Sikora S. Applications of hot formed parts for body in white[J]. International Deep Drawing Research Group Proceedings,2008.
    [5]Lenze F J, Sikora S, Banik J, et al. Development tendencies as to processing of press hardening under application of coated steel[C]//1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany.2008:15-21.
    [6]Takahashi M. Development of high strength steels for automobiles[J]. Shinnittetsu Giho, 2003:2-6.
    [7]吴锦,徐志刚.汽乍新材料带来新挑战——超高强度钢冲压工艺及仿真技术的应用[J].现代零部件,2007(1):102-105.
    [8]Mori K, Akita K, Abe Y. Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press[J]. International Journal of Machine Tools and Manufacture,2007, 47(2):321-325.
    [9]Yanagimoto J, Oyamada K, Nakagawa T. Springback of high-strength steel after hot and warm sheet formings[J]. CIRP Annals-Manufacturing Technology,2005,54(1):213-216.
    [10]Mackenzie A C, Hancock J W, Brown D K. On the influence of state of stress on ductile failure initiation in high strength steels[J]. Engineering Fracture Mechanics,1977,9(1): 167-188.
    [11]Norrbottens Jaernverk A B. Manufacturing of a hardened steel article[J]. Patent GB1490535, Norrbottens Jarnverk AB, Sweden,1977.
    [12]Berglund G. The history of hardening of boron steel in northern Sweden[C]. First International Conference on Hot Sheet Metal Forming of High Performance Steel.2008: 175-177.
    [13]Aspacher J. Forming hardening concepts[C]. First International Conference on Hot Sheet Metal Forming of High Performance Steel.2008:77-81.
    [14]王洪俊,范海雁.轿车车身零件制造中的热成形技术[J].模具制造.2005,5(4),32-34.
    [15]Neugebauer R, Altan T, Geiger M, et al. Sheet metal forming at elevated temperatures [J]. CIRP Annals-Manufacturing Technology,2006,55(2):793-816.
    [16]Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations[J]. Journal of Materials Processing Technology,2006,177(1):396-400.
    [17]Merklein M, Lechler J. Investigation of the thermo-mechanical properties of hot stamping steels[J]. Journal of materials processing technology,2006,177(1):452-455.
    [18]Steinbeiss H, So H, Michelitsch T, et al. Method for optimizing the cooling design of hot stamping tools[J]. Production Engineering,2007,1(2):149-155.
    [19]Altan T. Hot-stamping boron-alloyed steels for automotive parts[J], Stamping Journal,2007, 19(2):10.
    [20]Lechler J, Merklein M, Geiger M, Determination of thermal and mechanical material properties of ultra-high strength steels for hot stamping[J]. Steel Research International, 2008,79(2):98.
    [21]Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations[J]. Journal of Materials Processing Technology,2006,177(1):396-400.
    [22]Geiger M, Merklein M, Hoff C. Basic investigations on the hot stamping steel 22MnB5[J]. Advanced Materials Research,2005,6:795-804.
    [23]Merklein M, Hoff C, Lechler J. EinflussgroBen im Presshartprozess[C]. Car Body Colloquium CBC, Chemnitz.2005:137-153.
    [24]Merklein M, Lechler J, Stoehr T. Characterization of tribological and thermal properties of metallic coatings for hot stamping boron manganese steels[C]. Proceedings of the Seventh International Conference on Coatings in Manufacturing Engineering.2008:1-3.
    [25]Merklein M, Lechler J, Geiger M. Characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5[J]. CIRP Annals-Manufacturing Technology,2006,55(1):229-232.
    [26]Bariani P F, Bruschi S, Ghiotti A, et al. Testing formability in the hot stamping of HSS[J]. CIRP Annals-Manufacturing Technology,2008,57(1):265-268.
    [27]谭志耀.超高强度钢板热冲压成形基础研究[D].同济大学,2006.
    [28]N.N.:USIBOR 1500 precoated, Arcelor,2003.
    [29]Naderi M, Klepaczko J R, Bleck W. WITHDRAWN:Constitutive modeling of the flow stress during isothermal and non-isothermal forming at high temperatures[J]. Journal of Materials Processing Technology,2007.
    [30]Akerstrom P, Oldenburg M. Austenite decomposition during press hardening of a boron steel-Computer simulation and test[J]. Journal of materials processing technology,2006, 174(1):399-406.
    [31]Xing Z W, Bao J, Yang Y Y. Numerical simulation of hot stamping of quenchable boron steel[J]. Materials Science and Engineering:A,2009,499(1):28-31.
    [32]Tekkaya A E, Karbasian H, Homberg W, et al. Thermo-mechanical coupled simulation of hot stamping components for process design[J]. Production Engineering,2007,1(1):85-89.
    [33]朱巧红.热成形模具热平衡分析及冷却系统设计优化[D].上海:同济大学,2007.
    [34]Eriksson M, Oldenburg M, Somani M C, et al. Testing and evaluation of material data for analysis of forming and hardening of boron steel components[J]. Modelling and Simulation in Materials Science and Engineering,2002,10(3):277.
    [35]Steinbeiss H, So H, Michelitsch T, et al. Method for optimizing the cooling design of hot stamping tools[J]. Production Engineering,2007,1(2):149-155.
    [36]Hoffmann H, So H, Steinbeiss H. Design of hot stamping tools with cooling system[J]. CIRP Annals-Manufacturing Technology,2007,56(1):269-272.
    [37]李辉平,赵国群,张雷,等.超高强度钢板热冲压及模内淬火工艺的发展现状[J].山东大学学报(工学版),2010,40(3):69-74.
    [38]Naderi M, Saeed-Akbari A, Bleck W. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel[J]. Materials Science and Engineering:A,2008, 487(1):445-455.
    [39]Aranda L G, Chaste I Y, Pascual J F. Experiments and simulation of hot stamping of quenchable steels[J]. Advanced Technology of Plasticity,2002,2:22-28.
    [40]Naderi M, Ketabchi M, Abbasi M, et al. Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping[J]. Journal of Materials Processing Technology,2011,211 (6):1117-1125.
    [41]Borsetto F, Ghiotti A, Bruschi S. Investigation of the High Strength Steel Al-Si coating during hot stamping operations[J]. Key Engineering Materials,2009,410:289-296.
    [42]Casas B, Latre D, Rodriguez N, et al. Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming[C].1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany.2008:23-35.
    [43]Mori K, Ito D. Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil[J]. CIRP Annals-Manufacturing Technology,2009,58(1):267-270.
    [44]朱德才,张立文,裴继斌,等.固体界面接触换热系数影响因素的实验研究[J].锻压技 术,2008,33(1):139-143.
    [45]Lechler J, Merklein M. Hot stamping of ultra high strength steels as a key technology for lightweight construction[J]. Materials Science and Technology (MS. T),2008:1698-1709.
    [46]Naderi M. Hot stamping of ultra high strength steels[D]. Universitatsbiblio-thek,2007.
    [47]Karbasian H, Tekkaya A E. A review on hot stamping [J]. Journal of Materials Processing Technology,2010,210(15):2103-2118.
    [48]Tekkaya A E, Karbasian H, Homberg W, et al. Thermo-mechanical coupled simulation of hot stamping components for process dcsign[J]. Production Engineering,2007,1(1):85-89.
    [49]王立影,林建平,朱巧红,等.热冲压成形模具冷却系统临界水流速度研究[J].机械设计,2008,25(4):15-18.
    [50]埃克特,德雷克,徐明德,等.传热与传质[M].科学出版社,1963.
    [51]侯镇冰,热传导.固体热传导[M].上海科学技术出版社,1984.
    [52]ABAQUS V.6.9.3 Documentation [J]. ABAQUS Inc.2006.
    [53]庄茁ABAQUS非线性有限元分析与实例[M].科学出版社,2005.
    [54]Bergman G, Oldenburg M. A finite element model for thermomechanical analysis of sheet metal forming[J]. International Journal for Numerical Methods in Engineering,2004,59(9): 1167-1186.
    [55]Forstner K, Strobich S, Buchmayr B. Heat transfer during press hardening[C]. Proceedings of the IDDRG 2007 International Conference. Cerca con Google.2007.
    [56]Merklein M, Lechler J. Determination of material and process characteristics for hot stamping processes of quenchenable ultra high strength steels with respect to a FE-based process design[J]. SAE International Journal of Materials & Manufacturing,2009,1(1): 411-426.
    [57]Li Y H, Sellars C M. Evaluation of interfacial heat transfer and its effects on hot forming processes[J]. Ironmaking & steelmaking,1996,23(1):58-61.
    [58]Li Y H, Sellars C M. Comparative investigations of interfacial heat transfer behaviour during hot forging and rolling of steel with oxide scale formation[J]. Journal of Materials Processing Technology,1998,80:282-286.
    [59]Abdulhay B, Bourouga B, Dessain C, et al. Experimental study of heat transfer in hot stamping process[J]. International Journal of Material Forming,2009,2:255-257.
    [60]Sleicher C A. Rouse M W. A convenient correlation for heat transfer to constant and variable property fluids in turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 1975,18(5):677-683.
    [61]Hein P. A global approach of the finite element simulation of hot stamping[J]. Advanced Materials Research,2005,6:763-770.
    [62]Geiger M, Merklein M, Hoff C. Basic investigations on the hot stamping steel 22MnB5[J]. Advanced Materials Research,2005,6:795-804.
    [63]Karbasian H, Brosius A, Tekkaya A E, et al. Numerical process design of hot stamping processes based on verified thermo-mechanical characteristics[J]. Materials Science and Technology,2008,10:1733-1743.
    [64]Geiger M, Merklein M, Lechler J. Determination of tribological conditions within hot stamping[J]. Production Engineering,2008,2(3):269-276.
    [65]Zhang L, Zhao G, Li H, et al. Influence of the Forming Temperature on Residual Stresses and Springback in Hot Stamping Process[J]. Advanced Science Letters,2012,5(2): 639-643.
    [66]李辉平,赵国群.黄传真,等.气体淬火工艺参数多目标优化方法[J].机械工程学报,2007,43(1):110-115.
    [67]郭幼丹,程晓农,吴春笃.装载机覆盖件热冲压成形传热与淬火冷却速度研究[J].中国工程机械学报,2012,9(4):462-466.
    [68]王允祥,吕风霞,陆兆新.杯伞发酵培养基的响应曲面法优化研究[J].南京农业大学学报,2004,27(3):89-94.
    [69]Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables[J]. Technometrics,1960,2(4):455-475.
    [70]王丹.基于响应曲面模型拟合优度的多响应优化方法[D].天津大学,2011.
    [71]Dessain C, Hein P, Wilsius J, et al. Experimental investigation of friction and wear in hot stamping of usibor 1500P[C].1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany.2008:217-227.
    [72]Hardell J, Prakash B. High-temperature friction and wear behaviour of different tool steels during sliding against Al-Si-coated high-strength steel[J]. Tribology International,2008, 41(7):663-671.
    [73]李国强,张后苏.学生化残差及其应用[J].中国有色金属学报,1992,2(005):45-48.
    [74]Kennedy J, Eberhart R. Particle swarm optimization[C]. Neural Networks,1995. Proceedings., IEEE International Conference on. IEEE,1995,4:1942-1948.
    [75]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. Micro Machine and Human Science,1995. MHS'95., Proceedings of the Sixth International Symposium on. IEEE,1995:39-43.
    [76]王桂龙.快速热循环注塑成型关键技术研究与应用[D].山东大学,2011.
    [77]Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures[J]. Materials Science and Engineering:A, 2008,478(1):130-139.
    [78]Oldenburg M, Akerstrom P, Bergman G. Simulation of the microstructure evolution in a press hardened component[C].1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany.2008:3-13.
    [79]Akerstrom P, Bergman G, Oldenburg M. Numerical implementation of a constitutive model for simulation of hot stamping[J]. Modelling and Simulation in Materials Science and Engineering,2007,15(2):105.
    [80]林建平,王立影,田浩彬,等.超高强度钢热流变行为[J].塑性工程学报,2009,16(2):180-183.
    [81]李辉平,赵国群,贺连芳,等.热冲压硼钢B1500HS高温本构方程的研究[J].机械工程学报,2012,48(8):21-27.
    [82]何宜柱,雷廷权.热变形动态软化本构模型[J].钢铁,1999,34(009):29-33.
    [83]Neugebauer R, Altan T, Geiger M, et al. Sheet metal forming at elevated temperatures[J]. CIRP Annals-Manufacturing Technology,2006,55(2):793-816.
    [84]Dieter G E, Bacon D. Mechanical metallurgy[M]. New York:McGraw-Hill,1986.
    [85]刘战英,陈连生,周满春,等.变形条件对30MnSiV钢动态再结晶行为的影响[J].钢铁研究学报.2004,16(1):49-52.
    [86]胡安民,孙祖庆.低碳钢多道次热变形中的应变强化和变与铁素体动态再结晶[J].金属学报,2000,36(11):1192-1196.
    [87]Hochholdinger B, Grass H, Lipp A, et al. Modeling and determination of flow curves for the simulation of hot forming[J]. International Deep Drawing Research Group IDDRG, Golden, CO, USA,2009:659-669.
    [88]Durrenberger L, Wilsius J, Hein P. Impact of the constitutive model on the hot-forming numerical predictions of usibor 1500P[C].2nd International Conference on Hot Sheet Metal Forming of High-Performance Steel, Lulea,Sweden.2009:51-58.
    [89]Davenport E S, Bain E C. Transformation of austenite at constant subcritical temperatures[J]. Metallurgical and Materials Transactions B,1970,1(12):3503-3530.
    [90]Grange R A, Kiefer J M. Transformation of austenite on continuous cooling and its relation to transformation at constant temperature[J]. Trans. ASM,1941,29(1):85.
    [91]Somani M C, Karjalainen L P, Eriksson M, et al. Dimensional changes and microstructural evolution in a B-bearing steel in the simulated forming and quenching process[J].ISIJ international,2001,41 (4):361-367.
    [92]Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth[J]. Trans. Aime,1939,135(8):396-415.
    [93]Avrami M. Kinetics of phase change. Ⅰ General theory[J]. The Journal of Chemical Physics, 1939,7:1103.
    [94]Avrami M. Kinetics of phase change. Ⅱ Transformation-time relations for random distribution of nuclei[J]. The Journal of Chemical Physics,1940,8:212.
    [95]Akerstrom P, Wikman B, Oldenburg M. Material parameter estimation for boron steel from simultaneous cooling and compression experiments[J]. Modelling and Simulation in Materials Science and Engineering,2005,13(8):1291.
    [96]刘庄,热处理.热处理过程的数值模拟[M].科学出版社,1996.
    [97]Hmina N, Scudeller Y. Thermal interface resistance and subsurface effusivity of submicron metallic films on dielectric substrates:an experimental method for simultaneous determination[J]. International journal of heat and mass transfer,1998,41(18):2781-2798.
    [98]Li X, Zhao G, Guan Y, et al. Research on thermal stress, deformation, and fatigue lifetime of the rapid heating cycle injection mold[J]. The International Journal of Advanced Manufacturing Technology,2009,45(3):261-275.
    [99]Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test[J]. CIRP Annals-Manufacturing Technology,2009,58(1):247-250.
    [100]孙树亮.中厚板塑性弯曲减薄规律的研究[D].大连交通大学,2010.
    [101]王立影,下芝斌.热冲压成形零件质量控制因素分析[J].锻压技术,2010(002):117-119.
    [102]Mori K, Maki S, Tanaka Y Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. CIRP Annals-Manufacturing Technology,2005,54(1): 209-212.
    [103]Merklein M, Lechler J, Stoehr T. Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping[J]. International Journal of Material Forming,2009,2:259-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700