工艺参数对聚丙烯微圆柱阵列充填性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着微机系统(MEMS)和微系统(MST)技术的发展,微注塑成型作为一种重要的加工方法受到行业的高度重视,成型技术逐渐成熟。微注塑成型制品广泛应用在航空、医疗、自动化、汽车工业、光学以及日常生活等领域,其制造低成本、材料适应性广、几何形状和尺寸适应性好、可连续化和自动化生产等特点,具有很好的技术及应用前景。目前关于微注塑成型技术的研究主要集中在微注塑成型设备、微型模具的制造加工、微成型材料的选取、微成型过程中工艺的控制、微成型理论及数值模拟分析和微制品质量表征等方面。
     本文采用等规聚丙烯(iPP)为原料,以具有微圆柱阵列的微制品为研究对象,采用高聚物成型模拟技术与成型实验相结合的方法考察工艺参数对微结构制品充模时熔体流动规律的影响。主要研究内容及结论如下:
     (1)产品模型,运用Pro/E三维绘图软件设计和绘制出微圆柱阵列结构制品的三维模型,基板尺寸为16mm×12mm×3mm,微圆柱直径为500μm,圆柱之间的距离为2mm;运用Moldflow数值分析软件对制品进行充填过程的数值模拟,在进行模拟之前,先对制品进行网格划分,为了分析的准确性,网格划分的均匀性非常重要,因此采用Hypermesh网格处理软件对模型进行划分网格,对型腔和微结构采用不同的网格划分策略,基板网格边长为0.5mm,微圆柱网格边长为0.1mm,然后将模型导入Moldflow软件中进行浇注系统的创建以及模拟分析,通过制品的填充分析得出设定的浇注系统合理性,熔体在基板内的流动前沿成喷泉状,与传统注射成型的流动方式一致,微圆柱充填高度变化与注射速度关系比较大,随着注射速度的增加而增大。充填过程中产生的气穴主要分布在微圆柱顶端或基板边缘,因此微圆柱顶端的排气处理比较重要。熔体在微圆柱内流动前沿形状由斜坡状逐步转变为球冠状,网格划分节点分布限制了熔体流动前沿的推进位置和形状,微圆柱前沿形状变化受注射速率影响较小。
     (2)设计加工了微圆柱阵列制品的注塑成型模具,采用主体结构和镶块结构相分离的模式,便于镶块的更换及提高模具的整体使用寿命,考虑到型腔内残存气体对制品充填的影响,故在镶块的设计中增加了排气设置,使微注塑机在注塑时不需要提前对模具进行抽真空,在快速充模时,型腔内的残存气体迅速排除,避免了因型腔内压力迅速上升造成的微圆柱烧灼或存在气泡等缺陷,脱模方式为传统的顶出方式,模板和顶出机构可以用传统的金属加工方法制造,模架及镶块采用机加工和电火花加工完成,模具整体结构设计合理、简洁。
     (3)微圆柱阵列制品的实验研究,采用微注射成型机进行试样加工,用生物切片机制样,通过偏光显微镜观察微圆柱的形貌、测量微圆柱的高度。制品在注塑充填过程中,前期主要以充填基板为主,微圆柱高度变化比较稳定,当基板充填完成后,型腔压力增大导致微圆柱迅速充填完成:随着注射速度的增大,前期微圆柱的高度有所提高,同时相同充填阶段微圆柱的充填高度不断升高。首排微圆柱的高度变化不仅跟注射速度有关,还与熔体流动前沿流经微圆柱的距离有密切关系。熔体在流经微圆柱处,由于模壁、惯性、熔体速度等影响,产生了涡流现象,导致微圆柱的流动前沿呈现偏心的球冠状,注射速度越高,球冠的偏心程度增大,随着充填的不断进行,流动前沿逐渐恢复为球冠状。
With the development of MEMS and MST, Micro-injection molding (MIM) is obtaining more attention as an important micro forming process, which is becoming more and more mature. Micro injection molding products are widely used in the field of aerospace, medical, automation, automotive industry, optics as well as daily life. Micro-injection molding has many good features, such as, low production cost, widely adaptability of materials, applicability for complex geometry and size, continuously and automatly production and so on. Now, researchers are fouce on the aspects of the micro injection molding equipment, the micro-mold manufacturing and processing, the micro molding material selection, micro-molding process control, the micro-molding forming theory and numerical simulation analysis, the micro products quality characterization of the micro-injection molding technology.
     In this work, The influence of processing parameters on the filling behaviors of iPP microarray structural was investigated by numerical analysis and injection molding experiments. The main contents and conclusions are as follows:
     (1) Product Modle, The three-dimensional model of the product is drawed by the Pro/E3D graphics software, which size is16mm×12mm×3mm, the cylinder diameter is500μm, and there is2mm distance between columns. Before we use the Moldflow software to simulate the melted polymer filling process, we should first mesh the modle. In order to obtain the accuracy analysis and uniformity mesh, we use the Hypermesh software to mesh the product model, and the cavity and the micro-structure is meshed by different meshing strategies, the global edge length of the base and the cylindrical is0.5mm and0.1mm. Then the model is imported into Moldflow software to create the runners and then starting the simulation analysis. From the filling analysis result we know that the gating system is reasonable and the product is filled fully. The plastic melt flow front is similar to traditional injection molding which likes fountain. The injection speed has a great importance on the micro cylinder filling height, the filling height is increasing follow the injection speed increasing. The cavitations generate in the filling process distributing on the top of micro-cylindrical or the edge of the substrate. The shape of the melt flow in the micro-cylindrical is gradually becoming spherical crown, and is affected lessly by the injection rate, because the mesh node distribution limited the position and the shape of the melt flow front.
     (2) The mold for MIM is designed and manufactured, which contains main structure and micro cavities insert. It's convenient to replace the micro cavities and improve the overall service life of the mold. Considering the effects of the residual gas on the products filling, we added the exhaust settings in the micro cavities inser which let it easy to rule out the residual gas from the cavity, it is helpful to avoiding the burning orthe and bubbles, we don't need to make the mold vacuum advanced before the injection. Demould way is the traditional ejection, templates and ejection mechanism can be manufactured by the traditional method of metal processing, mould frame and insert are made by the machining and EDM processing. The design of mould structure is reasonable and simple.
     (3) The iPP microarray structural was made by micro-injection molding machine, cut by the bio-slicing mechanism. The morphology of the micro-cylinder was observed and the height of the micro-cylinder was measured by POM. In the injection filling process, it mainly fill the base in the earlier stage, the variation of micro-column height is relatively stable. After the completion of the base filling, the cavity pressure increases resulted in the micro cylindrical quickly filled; With the increasing of injection speed, the height of the cylinder in the early filling is increase, at the same time, micro cylindrical filling height is rising at the same filling stage. The first row micro cylindrical height change is not only associated with the injection speed, but also the distance of the melt flow and micro cylindrical. Because of the impact of the mold wall, inertia and melt velocity, turbulence was appeared when the melt front went through the micro cylindrical, the shape of the flow front is acentric ellipsoid crown, the higher is injection speed, the more serious of the acentric ellipsoid crown. The shape gradually developed into spherical accompanied with the filling was going on.
引文
[1]Piotter V, Holstein N, Plewa K, et al. Replication of Micro Components by Different Variants of Injection Molding [J]. Microsystem Technologies,2004,10(6-7):547~551.
    [2]Sha B C, Dimov S, Griffiths C, et al. Micro-injection Moulding:Factors Affecting the Achievable Aspect Ratios [J]. Adv Manuf Technol,2007,33(1-2):147~156.
    [3]Attia U M, Marson S, Alcock J. Micro-injection Moulding of Polymer Microfluidic Devices[J]. Microfluid Nanofluid,2009,7(1):1~28.
    [4]吴波,王保山,李合增.微注射成型技术的现状与发展[J].机电产品开发与创新.2008,21(4):17~21.
    [5]姜爱菊,吴宏武.微注塑成型技术的最新进展[J].塑料工业.2008,36(8):1~4.
    [6]Michaeli W, Spennemann A, Gartner R. New Plastification Concepts for Micro Injection Moulding Microsyst[J]. Technol,2002,8(1):55~57
    [7]侯建华.感应加热在注塑成型中的应用[D].[硕士学位论文].郑州:郑州大学,2010.
    [8]Lou C W, Chiang Y C, Cheng H C, et al. A Novel and Rapid Fabrication for Microlens Arrays Using Micro-injection Molding [J]. Poly Eng SCI,2011,51(2):391~402.
    [9]戴亚春,王匀,周建忠等.微齿轮注塑成型正交优化及数值模拟[J].材料工程.2007,(3):46~53.
    [10]Shen Y, Shie Y, Wu W. Extensin Method and Numerical Simulation of Micro-injection MoldingfJ]. International Communications in Heat and Mass transfer,2004,31(6):795~804.
    [11]Shen Y, Wu W. An Analysis of The Three-dimensional Micro-injection Molding[J]. International Communications in Heat and Mass transfer,2002,29(3):423~431.
    [12]Theilale U A, Hansen H N. Surface Microstructure Replication in Injection Molding[J]. IntJ. Adv. Manuf. Tech,2007,33(1-2):157~166.
    [13]Chen C S, Chen S C, Liao W H, et al. Micro Injection Molding of a Micro-fluidic Platform [J]. International Communications in Heat and Mass transfer,2010,37(9):1290-1294.
    [14]李志平,严正,陈占春.注射成型的微型化—微注射成型技术[J].塑料工业.2004,5(3):23~26.
    [15]Yoshii M, Kuramoto H, Kato K. Experimental Study of Transcription of Minute Width Grooves in Injection Molding[J]. Polymer Engineering& Science.2004,15(34):1211~ 1218.
    [16]Yoshii M, Kuramoto H, Ochiai Y. Experimental Study of Transcription of Minute Width Grooves by Injection Molding[J]. Polymer Engineering& Science.2004,9(38):1587~1593.
    [17]Liyong Y, Chee G K, James L, et al. Experimental Investigation and Numerical Simulation of Injection Molding With Micro-features[J]. Polymer Engineering& Science.2004,5(42): 871~888.
    [18]Huang C K, Chen S W, Yang C T. Accuracy and Mechanical Properties of Multiparts Produced in One Mold in Microinjection MoldingfJ]. Polymer Engineering& Science.2005, 11(45):1471~1478.
    [19]Despa M S. Molding Large Area Plastic Parts Covered with HARMs:[Dissertation]. Louisiana State University,2001.
    [20]Despa M S, Kelly K W. Injection Molding of Polymeric Liga Harms[J]. Microsystem Technologies,1999,6(2):60~66.
    [21]Kukla C, Laibl H, Detter H, et al. Micro-injection Moulding—he Aims of A Project Partnership[J]. Kunststoffe plast Europe,1998,88(9):6~7.
    [22]Shen Y K, Chang H J, Lin C T. Study on Optical Properties of Microstructure of Lightguiding Plate for Micro Injection Molding and Micro Injection—Compression Molding. Progress on Advanced Manufacture for Micro/Nano Technology 2005, PT 1 and 2 Materials Science Forum 2006,505~507:229~234.
    [23]Attia U M, Alcock J R. An Evaluation of Process-parameter and Part-geometry Effects on The Quality of Filling in Microinjection Moulding[J]. Microsyst Technol,2009, 15(12):1861-1872.
    [24]Yang C, Li L, Huang H X, et al. Replication Characterization of Microribs Fabricated by Combining Ultraprecision Machining and Microinjection Molding[J]. Polym Eng Sci,2010, 50(10):2021~2030.
    [25]Zhang K F, Zhen L. Analysis of Morphology and Performance of PP Microstructures Manufacture by Micro Injection Molding[J]. Microsyst Technolo,2008,14(2):209~214.
    [26]Zhen Lu, K F Zhang. Morphology and Mechanical Properties of Polypropylene Micro-arrays by Micro-injection MoIding[J]. Int J Adv Manuf Technol,2009,40(5-6):490~496.
    [27]张凯峰,王重阳,卢振.微注射成型聚丙烯微结构件缺陷分析[J].中国塑料,2007,8(21):66~69.
    [28]Li L, Yang C, Shi H Z, et al. Design and Fabrication of Affordable Polymer Micromixer Formedical and Biomedical Application[J]. Poly Eng Sci,2010,50(8):1594~1604.
    [29]Sha B C, Dimov S, Griffiths C, et al. Microinjection Moulding:Factor Affecting The Achievable Aspect Ratios[J]. Adv Manuf Technol,2007,33(1-2):147~156.
    [30]Su Y C, Shah J, Lin L W. Implementation and Analysis of Polymeric Microstructure Replication by Microinjection Molding[J]. Micromech Microeng,2004,14(3):415~422.
    [31]Tay B Y, Liu L, Loh N H, et al. Injection Molding of 3D Microstructures by Upim[J]. Microsystem Technologies,2005,11(2-3):210~213.
    [32]Song M C, Liu Z, Wang M J, et al. Research on Effects of Injection Process Parameters on The Molding Process for Ultra-thin Wall Plastic Parts[J]. Journal of Materials Processing Technology,2007,187~188:668~671.
    [33]庄俭,张建国,吴大鸣等.微注塑成型中工艺参数对微塑件成型质量影响的实验研究[J].塑性.工程学报,2009,16(6):139~143.
    [34]张攀攀,王建,杨卫民等.微注射成型与微分注射成型技术[J].中国塑料,2010.6(24):13~18.
    [35]刘方辉,钱心远,张杰CAD/CAE/CAM技术在现代塑料模设计制造中的应用[J].模具工业,2010,1(36):1-6.
    [36]李德群,张宜生.模具企业数字制造技术的现状与发展[J]CAD/CAM与制造业信息化,2003(7):10~15.
    [37]张政,党新安.基于Pro/E的制品及其3D模具设计[J].机机械设计与制造,2008(1):207~209.
    [38]奚建胜.基于Pro/E的注射模分模技术[J].模具工业,2008,34(8):26~28.
    [39]周大路,黄薇.基于Moldflow技术的绝缘盖注射成型分析[J].模具工业,2008,34(3):22~24.
    [40]韦小雄POLYFLOW软件在聚合物成型中的应用进展[J].上海塑料,2008,44(4):1-5.
    [41]罗小发CAD/CAE/CAM技术在模具设计制造的应用[J].橡塑技术与装备,2005,3(1):54~60.
    [42]李德群,肖祥芷.模具CAD/CAE/CAM的发展概况及趋势[J].模具工业,2005,31(7):9-12.
    [43]陈泽中.车灯罩模具侧花纹CAD/CAM关键技术及实现[J].模具工业,2008,34(9):37~40.
    [44]李德群.中国模协技术委员会,我国模具CAD/CAE/CAM/PDM发展现状及发展建议.
    [45]游余新,王东红.准LIGA技术的研究与发展[J].遥测遥控,1999,20(1):56~61.
    [46]姚劲松,王志勤等.准LIGA工艺技术在加工微金属齿轮中的应用[J].光学精密工程,1995,3(3):64~66.
    [47]Giuliano B, Hans N H, Peter T T, et al. Precision Manufacturing Methods of Inserts for Injection Modling of Microfluidic Systems[C]. Proceedings of the ASPE Spring Topical Meeting Columbus. Ohio:[sn],2005.
    [48]Sung-hwan Y, Chinanawat S, Junseok L, et al. Investigation Oftooling Surfaces on Injection Molded Nanoscale Features[C]. Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show. Boston:[sn],2004.460-463.
    [49]Werkmeister J, Gosalvez M A, Willoughby P, et al. Anisotropic Etching of Silicon as A Tool for Creating Injection Molding Tooling Sufaces[J]. Microelectromechanical Systems, 2006,15(6):1671~1680.
    [50]刘斌,赵春振.薄壁注塑成型中的变模温控制技术[J].塑料科技,2008,9(36):44~48.
    [51]韩志翔,刘文斌.气体式变模温控制技术应用[C]CAE Molding Conference 2007. Taiwan:Association of CAE Molding Technology,2007:A13.
    [52]王桂龙,赵国群,李辉平等.变模温注塑热响应模拟与模具结构优化[J].机械工程学报,2009,6(45):216~221.
    [53]连城林.电热式变模温注塑成型技术改善微结构复制度的试验研究[D].[硕士学位论文].大连:大连理工大学,2010.
    [54]申长雨,李海梅.塑料模具CAE技术概况及发展趋势[J].工程塑料应用,2001,2(29):40~43.
    [55]Machaeli W, Rogalla A, Spennemann A, et al. Design of Microstructured Shaped Components in Plastic, Feinwerktechnik, Mikrotechnik, Messtechnik,1998,106(9):642~ 645.
    [56]Su Y C, Shah J, Lin L. Implementation and Analysis of Polymeric Microstructure Replication by Micro Injection Molding[J]. Micromech Microeng,2004,14(3):415~422.
    [57]Hung W N P, Ngothai Y, Yuan S, et al. Micromolding of Three—imensional Components. ThelOth International Conference on Precision Engineering, Yokohama, Japan,2001: 142~146.
    [58]Wallrabe U, Dittrich H, Friedsam G, et al. Micromolded easy— assembly multi fiber Connector:RibCon. Microsys. Tech.,2002,8(2):83~87.
    [59]Mehta N M, Barry C M F. Validation of Flow Simulation for Micromolded Parts[C].SPE ANTEC Conference Proceedings, Nashville, USA,2003,3:3550~3554.
    [60]郑健,胡治流,何娟MOLDFLOW软件在注塑模设计中的应用[J].装备制造技术,2006,(4):43~45.
    [61]Wei C, Hassager O, Zhang Y W. Surface Tension Effect on Micro Injection Molding[C]. Proceeding of The Polymer Processing Society 24th Annual Meeting PPS.2008, (7).
    [62]Batchelor G K. An Introduction to Fluid Dynamics[M]. Cambridge University Press,1970.
    [63]Yao D G, Kim B. Simulation of The Filling Process in Micro Channels for Polymeric Materials [J]. J Micromesh and Microeng,2002,12(5):604~610.
    [64]Chun S C, Shia C C, Wei L L, et al. Rheological Behavior of POM Polymer Melt Flowing Through Micro-channels[J]. European Polymer Journal,2008,44(6):1891 ~ 1898.
    [65]Chun S C. Rheological Behavior of Low/High Density Polyethylene Melt Flowing Through Micro-channels[J]. E-Polymers,2008,39:1 ~ 14.
    [66]Eringen A C. Okada K. A Lubrication Theory for Fluids with Microstructure int[J]. J. Eng. sci.199533(2):2297~2308.
    [67]Yong W B. Simulation of The Filling Process in Molding Components with Micro Channels [J]. Microsystem Technologies,2005(11):410~415.
    [68]Jeggy C, Magotte O, Dupret F. Numerical Simulation of Micro-injection Molding Process[C]. Proceeding of the 2nd ESAFORM Conference.Guimaraes,1999:117~120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700