纳米复合荧光化学传感材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类活动和全球经济的快速发展,我们赖以生存的环境遭到了前所未有的破坏。工业化污染的加剧,不但导致空气质量逐年下降,而且使各种重金属污染物,特别是高毒性的汞离子,通过不同的渠道进入水体中,给人类的生产、生活带来了巨大的危害。因此,对衡量空气质量主要指标的氧浓度和痕量汞离子的测定对于分析化学、生物化学、医疗诊断、环境监测等研究领域均有着十分重要的意义。近年来,以荧光作为检测信号的荧光化学传感器被广泛应用于检测氧和汞离子的浓度。本论文就是从荧光探针分子和纳米基质材料的设计、制备两方面入手,利用简单的静电纺丝、水热等方法制备了多种纳米复合传感材料,并详细研究了纳米复合传感材料的结构、传感性能、稳定性及重复使用性。本论文取得的主要成果如下:
     (1)设计合成了一种发光性能优异的铜(Ⅰ)配合物,并首次利用简单的静电纺丝方法将其制备成为复合纳米纤维氧传感材料。该材料具有高的灵敏度(I_0/I_(100) = 15.56),短的响应及还原时间(t↓(s) = 7 and t↑(s) = 14)和近乎线性的Stern–Volmer关系曲线。这是目前基于廉价金属配合物氧传感材料报道的最佳性能。该材料优异的传感性能、低廉的价格、简单的制备方法以及环境友好等特点使其具有潜在的商业应用价值。
     (2)设计合成出了一种新颖的稀土铕(Ⅲ)配合物,并利用简单的静电纺丝方法将其制备成为复合纳米纤维氧传感材料。该材料具有短的响应及还原时间(t↓(s) = 5 and t↑(s) = 8),好的稳定性和重复使用性。该材料大的比表面积、及多孔的结构,有利于氧气的扩散及与配合物的碰撞,显著提高了材料的灵敏度。其灵敏度由几乎没有应用价值的不足2,提高至可实用化的3.38,为目前国际上基于稀土配合物类光学氧传感器的最高值。
     (3)利用化学键合的方法将芘的衍生物组装到介孔分子筛SBA~(-1)5中,将其制备成为纳米复合传感材料(Py-SBA~(-1)5)。该材料对重金属汞离子具有好的选择性、短的响应时间和高的灵敏度,检测限可达1.7×10~(-7) gmL~(-1)。并且其荧光强度表现出对汞离子的线性响应,可以实现即时的检测汞离子浓度。另外,该材料可以实现多次的重复使用。基于以上原因,该材料有望应用于检测水中的汞离子浓度。
     (4)设计合成了一种新颖的罗丹明类衍生物,该材料不但可以用于检测重金属汞离子,还可以利用其对重金属汞离子和铜离子的不同荧光响应,将其构建成为分子键盘锁。只有输入正确的密码时,体系呈现强的荧光,键盘锁被打开;密码错误时,体系无荧光,且出现警告信号。该键盘锁不但实现了分子水平的信息保护,而且还可以应用到未来分子计算机的安全器件上,用于授权用户、识别产品身份等领域。
     (5)利用溶胶-凝胶的方法制备了一系列有机改性的有机-无机杂化的稀土材料,并研究了该系列材料的光学性质。通过改变有机改性硅酸酯和正硅酸乙酯的比例,荧光强度迅速增加,当VTES:TEOS = 4:6时,该材料的荧光强度是纯铕配合物的2.4倍,是未改性材料的3.3倍。同时,材料的量子效率和发光热稳定性也显著提高。
With the rapid development of global economy, our living environment has been severely destroyed. The increase of industrial pollution, not only leads to air quality decline, but also makes sorts of heavy metal pollutants enter into the water through different ways, especially high toxic mercury ion, which resulted in tremendous harm to human life. Therefore, the determination of oxygen and trace mercury ions concentration has important significance in the field of analytical chemistry, biochemistry, medical diagnosis and environmental monitoring. In recent years, chemosensors utilizing fluorescence intensity as their response signal have been developed to be useful tools for sensing various analytes, such as oxygen and mercury ions. Surrounding the design and synthesis of the ?uorescent probes and nanomatrix materials, this dissertation presents a systematic research about the synthesis of the nanocomposite sensing materials by electrospinning or hydrothermal synthesis method. Detailed analyses on the structure, stability, regenerative ability and sensing performances of the final obtained nanocomposite sensing materials are investigated. The major achievement obtained is as follow:
     (1) A novel Cu(Ⅰ) complex [Cu(POP)phencarz]BF4 was design and synthesized. Then it was incorporated into polystyrene (PS) matrixes and electrospun into composite nanofibrous membranes using the simple electrospinning method. The optical oxygen sensing properties of [Cu(POP)phencarz]BF_4/PS composite nanofibrous membranes were investigated. They showed high sensitivity (I_0/I_(100) = 15.56), good linear Stern-Volmer characteristics (R~2 = 0.9966) and short response and recovery time (t↓(s) = 7 and t↑(s) = 14). These results represent the best values reported for oxygen sensors based on Cu(Ⅰ) complexes. The outstanding performances, the simple and versatile preparing method and environmental-friendly and economical attraction endow this kind of composite nanofibrous membrane with the potential for commercial application in oxygen sensors.
     (2) A novel Eu(Ⅲ) complex of [Eu(TTA)3phencarz] was design and synthesized. Then it was incorporated into polystyrene (PS) matrixes and electrospun into composite nanofibrous membranes using the simple electrospinning method. These materials showed good operational stability, reproducibility and short response and recovery time (t↓(s) = 5 and t↑(s) = 8). The sensitivity is up to 3.38, which represents the best values reported for oxygen sensors based on Eu(Ⅲ) complexes. The high surface area-to-volume ratio and porous structure of the electrospun nanofibrous membranes are urged to be responsible for the outstanding performances.
     (3) A novel nanocomposite sensing material was prepared through the functionalization of mesoporous silica (SBA-15) covalently grafted with a pyrene derivative. The obtained material (Py-SBA-15) demonstrates a high selectivity for Hg~(2+) ions in the presence of other metal ions. A good linearity between the fluorescence intensity of Py-SBA-15 and the concentration of Hg~(2+) ions is constructed, and a satisfactory detection limit of 1.7×10~(-7) gmL~(-1) is obtained. More importantly, Py-SBA-15 shows good regenerative ability. These results indicate that this nanocomposite sensing material could be a promising ?uorescence chemosensor for detecting Hg~(2+) ions.
     (4) A novel fluorescent chemosensor based on rhodamine derivative has been designed and synthesized for detection of Hg~(2+) ions. Moreover, this‘Off–On’-type fluorescent sensor could successfully mimic a molecular level keypad lock in the presence of Cu~(2+) ions. Only a specific sequence of inputs, i.e. the correct password, results in strong fluorescence emission at 555 nm, which can be used to“open”this molecular keypad lock. Therefore, this molecular keypad lock has the potential for applying in security devices, which would be used to authorize a user, to verify authentication of a product, or to initiate a higher process.
     (5) A series of novel organic-inorganic hybrid materials with a Eu(Ⅲ) complex covalently bonded into the vinyl modified silica networks have been successfully assembled through a sol-gel process. The luminescence properties of VTES/TEOS composite hybrid materials were systematically studied. The results indicate that the luminescence intensity of VTES/TEOS composite hybrid material by optimizing the molar ratio of VTES to TEOS (VTES:TEOS = 4:6) is enhanced by 3.3 and 2.4 times compared with TEOS-derived hybrid material and pure [(C_2H_5)_4N][Eu(DBM)_4], respectively. In addition, the thermal stability of the emission was also improved considerably.
引文
[1] B.R.Eggins. Chemical Sensors and Biosensors[M]. Analytical Techniques in the Sciences, John Wiley & Sons Ltd, Chichester, UK, 2002.
    [2] X.Wang, C.Drew, S.H.Lee, et al. Electrospun nanofibrous membranes for highly sensitive optical sensors[J]. Nano Lett., 2002, 2(11):1273–1275.
    [3] R.Métivier, I.Leray, B.Valeur. Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores[J]. Chem.–Eur. J., 2004, 10(18):4480–4490.
    [4] E.Palomares, R.Vilar, J.R.Durrant. Heterogeneous colorimetric sensor for mercuric salts[J]. Chem. Commun., 2004, 362–363.
    [5] J.Liu, Y.Lu. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb~(2+) detection[J]. J. Am. Chem. Soc., 2004, 126(39):12298–12305.
    [6] J.Liu, Y.Lu. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor[J]. Anal. Chem., 2004, 76(6):1627–1632.
    [7] J.M.Nam, C.S.Thaxton, C.A.Mirkin. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins[J]. Science, 2003, 301:1884–1886.
    [8] J.R.Lakowicz. Fluorescence sensing. In principles of fluorescence spectroscopy[M]. Springer Science & Business Media, New York, 3rd edn, 2006, 19:623–673.
    [9] A.P.de Silva, H.Q.N.Gunaratne, T.A.Gunnlaugsson, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chem. Rev., 1997, 97(5):1515-1566.
    [10] L.Basabe-Desmonts, D.N.Reinhoudt, M.Crego-Calama. Design of fluorescent materials for chemical sensing[J]. Chem. Soc. Rev., 2007, 36(6):993–1017.
    [11] J.Homola. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chem. Rev., 2008, 108(2):462–493.
    [12] J.Lopez-Gejo, A.Arranz, A.Navarro, et al. Microsensors based on GaN semiconductors covalently functionalized with luminescent Ru (Ⅱ) complexes[J]. J. Am. Chem. Soc., 2010, 132(6):1746–1747.
    [13] W.S.Han, H.Y.Lee, S.H.Jung, et al. Silica-based chromogenic and ?uorogenic hybrid chemosensor materials [J]. Chem. Soc. Rev., 2009, 38(7):1904–1915.
    [14] S.A.El-Safty, D.Prabhakaran, A.A.Ismail, et al. Nanosensor design packages: A smart and compact development for metal ions sensing responses[J]. Adv. Funct. Mater, 2007, 17(18):3731–3745.
    [15] S.J.Lee, J.E.Lee, J.Seo, et al. Optical sensor based on nanomaterial for the selective detection of toxic metal ions[J]. Adv. Funct. Mater., 2007, 17(17):3441–3446.
    [16] C.T.Kresge, M.E.Leonowicz, W.J.Roth, et al. Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism[J]. Nature, 1992, 359: 710–712.
    [17] J.L.Shi, Z.L.Hua, L.X.Zhang. Nanocomposites from ordered mesoporous materials[J]. J. Mater. Chem., 2004, 14(5):795–806.
    [18] H.J.Kim, S.J.Lee, J.H.Jung, et al. Detection of CuⅡby a chemodosimeter- functionalized monolayer on mesoporous silica[J]. Adv. Mater., 2008, 20(17):3229-3234.
    [19] M.H.Lee, S.J.Lee, J.H.Jung, et al. Luminophore-immobilized mesoporous silica for selective Hg~(2+) sensing[J]. Tetrahedron, 2007, 63(48):12087-12092.
    [20] E.Kim, H.J.Kim, D.R.Bae, et al. Selective fluoride sensing using organic-inorganic hybrid nanomaterials containing anthraquinone[J]. New J. Chem., 2008, 32(6):1003-1007.
    [21] L.P.Heng, X.Y.Wang, Y.Q.Dong, et al. Bio-inspired fabrication of lotus leaf like membranes as fluorescent sensing materials[J]. Chem. Asian J. 2008, 3(7):1041-1045.
    [22] J.H.Jung, Y.Ono, S.Shinkai. Novel preparation method for multi-layered, tubular silica using an azacrown-appended cholesterol as template and metal-deposition into the interlayer space[J]. J. Chem. Soc., Perkin Trans. 2, 1999, 1289-1292.
    [23] J.H.Jung, Y.Ono, S.Shinkai. Sol-Gel polycondensation of tetraethoxysilane in a cholesterol-based organogel system results in chiral spiral silica[J]. Angew. Chem. Int. Ed., 2000, 39(10):1862-1865.
    [24] J.H.Jung, Y.Ono, K.Hanabusa, et al. Creation of both right-handed and left-handed silica structures by Sol-Gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives[J]. J. Am. Chem. Soc., 2000, 122(20):5008- 5009.
    [25] J.H.Jung, M.Amaike, S.Shinkai. Sol–gel transcription of novel sugar-based superstructures composed of sugar-integrated gelators into silica: creation of a lotus-shaped silica structure[J]. Chem. Commun., 2000, 2343-2344.
    [26] J.H.Jung, Y.Ono, S.Shinkai. Sol-Gel polycondensation in a cyclohexane-based organogel system in helical silica: creation of both right-andleft-handed silica structures by helical organogel fibers[J]. Chem.–Eur. J., 2000, 6(24):4552-4557.
    [27] J.H.Jung, H.Kobayashi, M.Masuda, et al. Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription[J]. J. Am. Chem. Soc., 2001, 123(36):8785-8789.
    [28] J.H.Jung, K.Yoshida, T. Shimizu. Creation of novel double-helical silica nanotubes using binary gel system[J]. Langmuir, 2002, 18(23):8724-8727.
    [29] J.H. Jung, S.Shinkai, T.Shimizu. Nanometer-level Sol-Gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica[J]. Chem. Mater., 2003, 15(11):2141-2145.
    [30] S.J.Lee, S.S.Lee, M.S.Lah, et al. Organic–inorganic hybrid nanomaterial as a new fluorescent chemosensor and adsorbent for copper ion[J]. Chem. Commun., 2006, 4539-4541.
    [31] T.H.Kim, J.H.Jung, J.K.Choi, et al. Fluorescent calix [4] arene-appended silica nanotubes as selective chemosensor and adsorbent for Pb~(2+) ion[J]. Chem. Lett., 2007, 36(3):360-361.
    [32] C.Preininger, I. Klimant, O.S.Wolfbeis. Optical fiber sensor for biological oxygen demand[J]. Anal. Chem., 1994, 66(11):1841-1846.
    [33] E.R.Carraway, J.N.Demas, B.A.DeGraff, et al. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes[J]. Anal. Chem., 1991, 63(4):337-342.
    [34] B.G.Healey, D.R.Walt. Improved fiber-optic chemical sensor for penicillin[J]. Anal. Chem., 1995, 67(24):4471-4476.
    [35] H.M.Yan, G.Kraus, G.Gauglitz. Detection of mixtures of organic pollutants in water by polymer film receptors in fibre-optical sensors based on reflectometric interference spectrometry[J]. Anal. Chem. Acta., 1995, 312(1):1-8.
    [36] D.A.Skoog. Fundamentals of analytical chemistry (5th ed)[M]. New York, Saunder College Publishing, 1988, 344-348.
    [37] M.C.Hitchman. Measurement of dissolved oxygen[M]. Wlley, New York, 1978, 130-135.
    [38] Jr.L.C.Clark. Monitor and control of blood and tissue oxygen tensions[J]. Trans. Am. Soc. Artif. Intern. Organs., 1956, 2:41-48.
    [39] D.W.Lubbers, N.Opitz. Opticl fluorescence sensors for continuous measurement of chemical concentrations in biological systems[J]. Sens. Actuators, 1983, 4:641-654.
    [40] H.W.Kronies, H.J. Marsoner. A fluorescence-based sterilizable oxygen probe for use in bioreactors[J]. Sens. Actuator, 1983, 4:587-592.
    [41] E.D.Lee, T.C.Werner, R.Seitz. Luminescence ratio indicators for oxygen[J]. Anal. Chem., 1987, 59(2):279-283.
    [42] A.Sharma, O.S.Wolfbeis. Fiberoptic oxygen sensor based on fluorescence quenching and energy transfer[J]. Appl. Spectrosc., 1988, 42:1009-1011.
    [43] M.E.Diaz-Garcia, R.Pereiro-Garcia, N.Velasco-Garcia. Optical oxygen sensing materials based on the room-temperature phosphorescence intensity quenching of immobilized erythrosin B[J].Analyst, 1995, 120(2):457-461.
    [44] A.Sharma, A.O.S.Wolfbeis. Unusually efficient quenching of the fluorescence of an energy transfer-based optical sensor for oxygen[J]. Anal. Chem. Acta, 1988, 212(1-2):261-265.
    [45]李伟,陈曦,庄峙厦等.基于荧光猝灭原理的光纤化学传感器在线监测水中溶解氧[J].北京大学学报, 2001, 37(2):226-230.
    [46] P.Y F.Li, R.Narayanaswamy, Oxygen-sensitive optical fiber transducer[J]. Analyst, 1989, 114(10):1191-1195.
    [47] A.Morin, W.Y.Xu, J.N.Demas, et al. Oxygen sensors based on quenching of tris (4, 7-diphenyl-1, 10-phenanthroline) ruthenium (Ⅱ) in fluorinated polymers[J]. J. Fluoresc., 2000, 10(1):7-12.
    [48] Y.Amao, I.Okura. Optical oxygen sensing materials: chemisorption film of ruthenium (Ⅱ) polypyridyl complexes attached to anionic polymer[J].Sens. Actuators B, 2003, 88(2):162-167.
    [49] Z.J.Fuller, W.D.Bare, K.A.Kneas, et al. Photostability of luminescent ruthenium(Ⅱ) complexes in polymers and in solution[J]. Anal. Chem., 2003, 75(11):2670-2677.
    [50] M.Florescu, A.Katerkamp. Optimisation of a polymer membrane used in optical oxygen sensing[J]. Sens. Actuators B, 2004, 97(1):39-44.
    [51] C.Huo, H.D.Zhang, H.Y.Zhang, et al. Synthesis and assembly with mesoporous silica MCM-48 of platinum (Ⅱ) porphyrin complexes bearing carbazyl groups: Spectroscopic and oxygen sensing properties[J]. Inorg. Chem., 2006, 45(12):4735-4742.
    [52] S.M.Borisov, C.Krause, S.Arain, et al. Composite material for simultaneous and contactless luminescent sensing and imaging of oxygen and carbon dioxide[J]. Adv. Mater., 2006, 18(12):1511-1516.
    [53] T.Yeh, C.Chu, Y.Lo. Highly sensitive optical fiber oxygen sensor using Pt (Ⅱ) complex embedded in sol-gel matrices[J]. Sens. Actuators B, 2006, 119(2): 701-707.
    [54] W.Y.Xu, K.A.Kneas, J.N.Demas, et al. Oxygen sensors based on luminescence quenching of metal complexes: Osmium complexes suitable for laser diode excitation[J]. Anal. Chem., 1996, 68(15):2605-2609.
    [55] M.E.K?se, R.J.Crutchley, M.C.DeRosa, et al. Morphology and oxygen sensor response of luminescent Ir-labeled poly(dimethylsiloxane)/polystyrene polymer blend films[J]. Langmuir, 2005, 21(18): 8255-8262.
    [56] J.F.Fernandez, T.Roth, R.Cannas, et al. Novel oxygen sensitive complexes for optical oxygen sensing[J]. Talanta, 2007, 71(1):242-250.
    [57] A.Mills, A.Lepre, B.R.C.Theobald, et al. Use of luminescent gold compounds in the design of thin-film oxygen sensors[J]. Anal. Chem., 1997, 69(14):2842-2847.
    [58] M.T.Miller, T.B.Karpishin. Oxygen sensing by photoluminescence quenching of heteroleptic copper (Ⅰ) bis(phenanthroline) complex immobilized in polystyrene[J]. Sens. Actuators B, 1999, 61(1-3):222-224.
    [59] M.K.Eggleston, D.R.McMillin, K.S.Koenig, et al. Steric effects in the ground and excited states of Cu(NN)~(2+) systems[J]. Inorg. Chem., 1997, 36(2):172-176.
    [60] S.M.Kuang, D.G.Cuttell, D.R.McMillin, et al. Synthesis and structural characterization of Cu(Ⅰ) and that Ni(Ⅱ) complexes that contain the bis[2-(diphenylphosphino)phenyl]ether ligand. Novel emission properties for the Cu(Ⅰ) species[J]. Inorg. Chem., 2002, 41(12):3313-3322.
    [61] D.G.Cuttell, S.M.Kuang, P.E.Fanwick, et al. Simple Cu(Ⅰ) complexes with unprecedented excited-state lifetimes[J]. J. Am. Chem. Soc., 2002, 124(1):6-7.
    [62] T.McCormick, W.L.Jia, S.N.Wang. Phosphorescent Cu(Ⅰ) complexes of 2-(2' -pyridylbenzimidazolyl)benzene: Impact of phosphine ancillary ligands on electronic and photophysical properties of the Cu(Ⅰ) complexes[J]. Inorg. Chem., 2006, 45(1):147-155.
    [63] L.F.Shi, B.Li, S.M.Yue, et al. Synthesis, photophysical and oxygen-sensing properties of a novel bluish-green emission Cu(Ⅰ) complex[J]. Sens. Actuators B, 2009, 137(1):386-392.
    [64] L.F.Shi, B.Li. A Series of CuI complexes containing 1, 10-phenanthroline derivative ligands: synthesis, characterization, photophysical, and oxygen- sensing properties[J]. Eur. J. Inorg. Chem., 2009, 15, 2294-2302.
    [65]张慧东.发光分子/介孔分子筛组装体传感材料的研究[D].吉林:吉林大学,2005.
    [66] B.F.Lei, B.Li, H.R.Zhang, et al. Mesostructured silica chemically doped with Ru(Ⅱ) as a superior optical oxygen sensor[J] Adv. Funct. Mater., 2006, 16(14): 1883-1891.
    [67] B.F.Lei, B.Li, H.R.Zhang, et al. Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous SBA-15 and MCM-41 with a covalently linked ruthenium(Ⅱ) complex[J]. J. Phys. Chem. C, 2007, 111(30):11291-11301.
    [68] A.M.Costero, R.Andreu, E.Monrabal, et al. 4,4 -Bis(dimethylamino)biphenyl containing binding sites. A new fluorescent subunit for cation sensing[J]. J. Chem. Soc., Dalton Trans., 2002, 1769-1775.
    [69] X.J.Zhu, S.T.Fu, W.K.Wong, et al. A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin[J]. Angew.Chem. Int. Ed., 2006, 45(19):3150-3154.
    [70] Z.Wu, Y.Zhang, J.S.Ma, et al. Ratiometric Zn~(2+) sensor and strategy for Hg~(2+) selective recognition by central metal ion replacement[J]. Inorg. Chem., 2006, 45(8):3140-3142.
    [71] Y.H.Kim, J.S.Youk, S.Y.Moon, et al. Hg~(2+)-selective fluorogenic chemosensor derived from 8-aminoquinoline[J]. Chem. Lett., 2004, 33(6):702-703.
    [72] M.H.Ha-Thi, M.Penhoat, V.Michelet, et al. Highly selective and sensitive phosphane sulfide derivative for the detection of Hg~(2+) in an organoaqueous medium[J]. Org. Lett., 2007, 9(6):1133-1136.
    [73] J.Yoon, N.E.Ohler, D.H.Vance, et al. A fluorescent chemosensor signalling only Hg (Ⅱ) and Cu (Ⅱ) in water[J]. Tetrahedron Lett., 1997, 38(22):3845-3848.
    [74] A.B.Descalzo, R.Martínez-Má?ez, R.Radeglia, et al. Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg~(2+)-responsive probe, operating above 500 nm[J].J. Am. Chem. Soc., 2003, 125(12):3418-3419.
    [75] G.Hennrich, H.Sonnenschein, U.Resch-Genger. Redox switchable fluorescent probe selective for either Hg(Ⅱ) or Cd(Ⅱ) and Zn(Ⅱ)[J]. J. Am. Chem. Soc., 1999, 121(21): 5073-5074.
    [76] G.Hennrich, W.Walther. U.Resch-Genger, et al. Cu(Ⅱ)- and Hg(Ⅱ)-induced modulation of the fluorescence behavior of a redox-active sensor molecule[J]. Inorg. Chem., 2001, 40(4):641-644.
    [77] K.Rurack, U.Resch-Genger, J.L.Bricks, et al. Cation-triggered switching on of the red/near infra-red (NIR) fluorescence of rigid fluorophore-spacer-receptor ionophores[J]. Chem. Commun., 2000, 2103-2104.
    [78] K.Rurack, M.Kollmannsberger, U.Resch-Genger, et al. A selective and sensitive fluoroionophore for HgⅡ, AgI, and CuⅡwith virtually decoupled fluorophore and receptor units[J]. J. Am. Chem. Soc., 2000, 122(5):968-969.
    [79] M.Kadarkaraisamy, A.G.Sykes. Selective luminescence detection of cadmium(Ⅱ) and mercury(Ⅱ) utilizing sulfur-containing anthraquinone macrocycles (part 2) and formation of an unusual Hg2~(2+)-crown ether dimer via reduction of Hg(Ⅱ) by DMF[J]. Polyhedron, 2007, 26(6):1323-1330.
    [80] L.Prodi, C.Bargossi, M.Montalti, et al. An effective fluorescent chemosensor for mercury ions[J]. J. Am. Chem. Soc. 2000,122(28):6769-6770.
    [81] H.Sakamoto, J.Ishikawa, S.Nakao, et al. Excellent mercury(Ⅱ) ion selective fluoroionophore based on a 3,6,12,15-tetrathia-9-azaheptadecane derivative bearing a nitrobenzoxadiazolyl moiety[J]. Chem. Commun., 2000, 2395-2396.
    [82] X.Guo, X.Qian, L.Jia. A highly selective and sensitive fluorescent
    chemosensor for Hg~(2+) in neutral buffer aqueous solution[J]. J. Am. Chem. Soc., 2004, 126(8):2272-2273.
    [83] Z.Zhang, X.Guo, X.Qian, et al. Fluorescent imaging of acute mercuric chloride exposure on cultured human kidneytubular epithelial cells[J]. Kidney Int., 2004, 66:2279-2282.
    [84] S.H.Kim, J.S.Kim, S.M.Park, et al. Hg~(2+)-selective off?on and Cu~(2+)-selective on?off type fluoroionophore based upon cyclam[J]. Org. Lett., 2006, 8(3):371-374.
    [85] A.Caballero, R.Martínez, V.Lloveras, et al. Highly selective chromogenic and redox or fluorescent sensors of Hg~(2+) in aqueous environment based on 1, 4-disubstituted azines[J]. J. Am. Chem. Soc., 2005, 127(45): 15666-15667.
    [86] K.C.Song, J.S.Kim, S.M.Park. Fluorogenic Hg~(2+)-selective chemodosimeter derived from 8-hydroxyquinoline[J]. Org. Lett., 2006, 8(16):3413-3416.
    [87] D.Wu, W.Huang, C.Duan, et al. Highly sensitive fluorescent probe for selective detection of Hg~(2+) in DMF aqueous media[J]. Inorg. Chem., 2007, 46(5):1538-1540.
    [88] J.Y.Kwon, Y.J.Jang, Y.J.Lee, et al. A highly selective fluorescent chemosensor for Pb~(2+)[J]. J. Am. Chem. Soc., 2005, 127(28):10107-10111.
    [89] J.V.Ros-Lis, M.D.Marcos, R.Martínez-Má?ez, et al. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg~(2+) Ion[J]. Angew. Chem. Int. Ed., 2005, 44(28):4405-4407.
    [90] M.Y.Chae, A.W.Czarnik. Fluorometric chemodosimetry mercury(Ⅱ) and silver(I) indication in water via enhanced fluorescence signaling[J]. J. Am. Chem. Soc., 1992, 114(24):9704-9705.
    [91] H.Zheng, Z.H.Qian, L.Xu, et al. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(Ⅱ) in aqueous solution[J]. Org. Lett., 2006, 8(5):859-861.
    [92] S.Ou, Z.Lin, C.Duan, et al. A sugar-quinoline fluorescent chemosensor for selective detection of Hg~(2+) ion in natural water[J]. Chem. Commun., 2006, 4392-4394.
    [93] J.V.Mello, N.S.Finney. Reversing the discovery paradigm: A new approach to the combinatorial discovery of fluorescent chemosensors[J]. J. Am. Chem. Soc., 2005, 127(29):10124-10125.
    [94] J.Wang, X.Qian. Two regioisomeric and exclusively selective Hg(Ⅱ) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor[J]. Chem. Commun., 2006, 109-111.
    [95] J.Wang, X.Qian. A series of polyamide receptor based PET fluorescent sensor molecules: positively cooperative Hg~(2+) ion binding with high sensitivity[J].Org. Lett., 2006, 8(17):3721-3724.
    [96] S.C.Burdette, C.J.Frederickson, W.Bu, et al. ZP4, an improved neuronal Zn~(2+) sensor of the zinpyr family[J]. J. Am. Chem. Soc., 2003, 125(7): 1778-1787.
    [97] E.M.Nolan, S.C.Burdette, J.H.Harvey, et al. Synthesis and characterization of zinc sensors based on a monosubstituted fluorescein platform[J]. Inorg. Chem., 2004, 43(8):2624-2635.
    [98] T.Hirano, K.Kikuchi, Y.Urano, et al. Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs[J]. J. Am. Chem. Soc., 2002, 124(23):6555-6562.
    [99] X.M.Meng, L.Liu, H.Y.Hu, et al. Highly sensitive and selective fluorescent chemosensors for Hg (Ⅱ) in an aqueous environment based on carbamodithioate[J]. Tetrahedron Lett., 2006, 47(45):7961-7964.
    [100] E.M.Nolan, S. J.Lippard. A“turn-on”fluorescent sensor for the selective detection of mercuric ion in aqueous media[J]. J. Am. Chem. Soc., 2003, 125(47): 14270-14271.
    [101] Y.K.Yang, K.J.Yook, J.Tae. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg~(2+) ions in aqueous media[J]. J. Am. Chem. Soc., 2005, 127(48):16760-16761.
    [102] S.K.Ko, Y.K.Yang, J.Tae, I.Shin. In vivo monitoring of mercury ions using a rhodamine-based molecular probe[J]. J. Am. Chem. Soc., 2006, 128(43):14150-14155.
    [103] P.Zhou, Q.T.Meng, G.J.He, et al. Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg~(2+) in aqueous media[J]. J. Environ. Monit., 2009, 11(3):648–653.
    [104] C.S.He, W.P.Zhu, Y.F.Xu, et al. Trace mercury (Ⅱ) detection and separation in serum and water samples using a reusable bifunctional fluorescent sensor[J]. Anal. Chim. Acta, 2009, 651(2):227–233.
    [105] E.Delgado-Pinar, N.Montoya, M.Galiana, et al. Preparation of Hg~(2+) selective fluorescent chemosensors based on surface modified core–shell aluminosilicate nanoparticles[J]. New J. Chem., 2010, 34(3):567-570.
    [106] Y.Amao. Probes and polymers for optical sensing of oxygen[J]. Microchim. Acta, 2003, 143:1-12.
    [107] B.T.Glazer, A.G.Marsh, K.Stierho, et al. The dynamic response of optical oxygen sensors and voltammetric electrodes to temporal changes in dissolved oxygen concentrations[J]. Anal. Chim. Acta, 2004, 518(1-2):93-100.
    [108] H.Hasumoto, T.Imazu, T.Miura, et al. Use of an optical oxygen sensor to measure dissolved oxygen in seawater[J]. J. Oceanogr., 2006, 62:99-103.
    [109] Y.Amao, T.Miyashita, I.Okura. Optical oxygen detection based on luminescence change of metalloporphyrins immobilized in poly (isobutylmethacrylate-co- trifluoroethylmethacrylate) film[J]. Anal. Chim. Acta,2000, 421(2):167-174.
    [110] K.Mitsubayashi, Y.Wakabayashi, D.Murotomi. Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring[J]. Sens. Actuators B, 2003, 95(1-3):373 -377.
    [111] A.Mills, A.Lepre, B.R.C.Theobald, et al. Use of luminescent gold compounds in the design of thin-film oxygen sensors[J]. Anal. Chem., 1997, 69(14):2842-2847.
    [112] M.C.DeRosa, P.J.Mosher, G.P.A.Yap, et al. Synthesis, characterization, and evaluation of [Ir(ppy)2(vpy)Cl] as a polymer-bound oxygen sensor[J]. Inorg. Chem., 2003, 42(16):4864-4872.
    [113] L.Huynh, Z.Wang, J.Yang, et al. Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications[J]. Chem. Mater., 2005, 17(19):4765-4773.
    [114] J.Yoon, S.K.Cha, J.M.Kim. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers[J]. J. Am. Chem. Soc., 2007, 129(11):3038-3039.
    [115] J.Jang, J.Ha, J.Cho. Fabrication of water-dispersible polyaniline-poly (4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications[J]. Adv. Mater., 2007, 19(13):1772-1775.
    [116] S.K.Chae, H.Park, J.Yoon, et al. Polydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications[J]. Adv. Mater., 2007, 19(4):521-524.
    [117] H.Xin, F.Y.Li, M.Guan, et al. Carbazole-functionalized europium complex and its high-efficiency organic electroluminescent properties[J]. J. Appl. Phys., 2003, 94(7):4729-4731.
    [118] X.H.Zou, B.H.Ye, H.Li, et al. Mono-and bi-nuclear ruthenium(Ⅱ) complexes containing a new asymmetric ligand 3-(pyrazin-2-yl)-as-triazino [5,6-f]1,10- phenanthroline: synthesis, characterization and DNA-binding properties[J]. J. Chem. Soc. Dalton Trans., 1999, 1423-1428.
    [119] L.Jian, P.I.Djurovich, B.D.Alleyne, et al. Synthetic control of excited-state properties in cyclometalated Ir (Ⅲ) complexes using ancillary ligands[J]. Inorg. Chem., 2005, 44(6):1713-1727.
    [120] S.Kuang, D.G.Cuttell, D.R.McMillin, et al. Synthesis and structural characterization of Cu(Ⅰ) and Ni(Ⅱ) complexes that contain the bis[2- (diphenylphosphino)phenyl]ether ligand. Novel emission properties for the Cu (I) species[J].Inorg. Chem., 2002, 41(12):3313-3322.
    [121] C.Malins, S.Fanni, H.G.Glever, et al. The preparation of a sol-gel glass oxygen sensor incorporating a covalently bound fluorescent dye[J]. Anal. Commun., 1999, 36(1):3-4.
    [122] E.R.Carraway, J.N.Demas, B.A.DeGra, et al. Photophysics and photochemistry of oxygen sensor based on luminescent transiton - metal complexes[J]. Anal. Chem., 1991, 63(4):337-342.
    [123] M.T.Murtagh, M.R.Shahriari, M.Krihak. A study of the effects of organic modification and processing technique on the luminescence quenching behavior of sol-gel oxygen sensors based on a Ru (Ⅱ) complex[J]. Chem. Mater., 1998, 10(12):3862-3869.
    [124] Y.Amao, K.Miyakawa, I.Okura. Novel optical oxygen sensing device: a thin film of a palladium porphyrin with a long alkyl chain on an alumina plate[J]. J. Mater. Chem., 2000, 10(2):305-308.
    [125] J.C.G.Bünzli, G.R.Choppin. Lanthanide probes in life, chemical and earth sciences: Theory and practice[M]. Eds. Elsevier: Amsterdam, 1989.
    [126] A.J.Kenyon. Recent developments in rare-earth doped materials for optoelectronics[J]. Prog. Quantum Electron., 2002, 26:225-284.
    [127] G.Blasse, B.C.Grabmaier. Luminescent Materials [M]. Spinger-Verlag:Berlin, 1994.
    [128] G.Blasse. Luminescence of inorganic solids: From isolated centres to concentrated systems[J]. Prog. Solid State Chem., 1988, 18:79-171.
    [129] M.Elbanowski, B.M?kowsaka. The lanthanides as luminescent probes in investigations of biochemical systems[J]. J. Photochem. Photobiol. A, 1996, 99(2-3):85-92.
    [130] J.C.G.Bünzli. Benefiting from the unique properties of lanthanide ions[J]. Acc. Chem. Res., 2006, 39(1):53-61.
    [131] J.C.G.Bünzli, C.Piguet. Taking advantage of luminiscent lanthanide ions[J]. Chem. Soc. Rev., 2005, 34(12):1048-1077.
    [132] Y.Hasegawa, Y.Wada, S.Yanagida. Strategies for the design of luminescent lanthanide (Ⅲ) complexes and their photonic applications[J]. J. Photochem. Photobiol. C, 2004, 5(3):183-202.
    [133] B.M.Tissue. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts[J]. Chem. Mater., 1998, 10(10):2837-2845.
    [134] W.T.Carnall, J.V.Beitz, H.Crosswhite, et al. Spectroscopic properties of the f-elements in compounds and solutions[M]. Reidel Publishing Company: Dordrecht, The Netherlands, 1983; p 389.
    [135] W.T.Carnall. The absorption and ?uorescence spectra of rare earth ions in solution[M]. Elsevier: Amsterdam, 1979; Vol. 3, Chapter 24, p 171.
    [136] J.Blasse. Chemistry and Physics of R-activated Phosphors[M]. Elsevier: Amsterdam, 1979; Vol. 4, Chapter 34, p 237.
    [137] M.J.Weber. Rare Earth Lasers. In Handbook on the Physics and Chemistry ofRare Earths[M]. Elsevier: Amsterdam, 1979; Vol. 4, Chapter 35, p 275.
    [138] C.A.Morrison, R.P.Leavitt. Spectroscopic properties of triply ionized lanthanides in transparent host crystals[M]. Elsevier: Amsterdam, 1982; Vol. 5, Chapter 46, p 461.
    [139] S.Moynihan, R.V.Deun, K.Binnemans, et al. Organo-lanthanide complexes as luminescent dopants in polymer waveguides fabricated by hot embossing[J]. Opt. Mater., 2007, 29(12):1798-1808.
    [140] A.de Bettencourt-Dias. Lanthanide-based emitting materials in light- emitting diodes[J]. Dalton Trans., 2007, 2229-2241.
    [141] N.Sabbatini, M.Guardigli, J.M.Lehn. Luminescent lanthanide complexes as photochemical supramolecular devices[J]. Coord. Chem. Rev., 1993, 123(1-2):201-228.
    [142] A.Dossing. Luminescence from lanthanide(Ⅲ) ions in solution[J]. Eur. J. Inorg. Chem., 2005, 1425-1434.
    [143] S.Pandya, J.Yu, D.Parker. Engineering emissive europium and terbium complexes for molecular imaging and sensing[J]. Dalton Trans., 2006, 2757-2766.
    [144] Y.Amao, I.Okura, T.Miyashita. Thenoyltrifluoroacetonato 1, 10- phenanthroline europium (Ⅲ) complex immobilized in fluoropolymer film as optical oxygen sensing material[J]. Chem. Lett., 2000, 29(8):934-935.
    [145] Y.Amao, I.Okura, T.Miyashita. Optical oxygen sensing based on the luminescence quenching of europium (Ⅲ) complex immobilized in fluoropolymer film[J]. Bull. Chem. Soc. Jpn., 2000, 73(12):2663-2668.
    [146] Y.Amao, I.Okura, T.Miyashita. Photoluminescent oxygen sensing using tris (acethylacetonato) 1, 10-phenanthroline terbium (Ⅲ) complex doped on alumina film[J]. Chem. Lett., 2000, 29(11):1286-1287.
    [147] H.Bauer, J.Blanc, D.L.Ross. Octacoordinate chelates of lanthanides. Two series of compounds[J]. J. Am. Chem. Soc., 1964, 86(23):5125-5131.
    [148] J.L.Liu, B.Yan. Lanthanide (Eu~(3+), Tb~(3+)) centered hybrid materials using modified functional bridge chemical bonded with silica: molecular design, physical characterization and photophysical properties[J]. J. Phys. Chem. B, 2008, 112(35):10898-10907.
    [149] Y.Li, B.Yan, H.Yang. Construction, characterization and photoluminescence of mesoporous hybrids containing europium (Ш) complexes covalently bonded to SBA-15 directly functionalized by modified beta-diketone[J]. J. Phys. Chem. C, 2008, 112(10):3959-3968.
    [150] G.L.Law, R.Pal, L.O.Palsson, et al. Responsive and reactive terbium complexes with an azaxanthone sensitiser and one naphthyl group: applications in ratiometric oxygen sensing in vitro and in regioselective cell killing[J]. Chem.Commun., 2009, 7321-7323.
    [151] D.Parker, J.A.G.Williams. Getting excited about lanthanide complexation chemistry[J]. J. Chem. Soc., Dalton Trans., 1996, 3613-3628.
    [152] A.Beeby, D.Parker, J.A.G.Williams. Photochemical investigations of functionalised 1,4,7,10-tetraazacyclododecane ligands incorporating naphthyl chromophores[J]. J. Chem. Soc., Perkin Trans. 2, 1996, 1565-1579.
    [153] E.R.Carraway, J.N.Demas, B.A.DeGraff, et al. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes[J]. Anal. Chem., 1991, 63(4):337-342.
    [154] J.R.Bacon, J.N.Demas. Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex[J]. Anal. Chem., 1987, 59(23):2780-2785.
    [155] W.Y.Xu, R.C.McDonough, B.Langsdorf, et al. Oxygen sensors based on luminescence quenching: interactions of metal complexes with the polymer supports[J]. Anal. Chem., 1994, 66(23):4133-4141.
    [156] S.Draxler, M.E.Lippitsch, I.Klimant, et al. Effects of polymer matrixes on the time-resolved luminescence of a ruthenium complex quenched by oxygen[J]. J. Phys. Chem., 1995, 99(10):3162-3167.
    [157] K.A.McGee, D.J.Veltkamp, B.J.Marquardt, et al. Porous crystalline ruthenium complexes are oxygen sensors[J]. J. Am. Chem. Soc., 2007, 129(49):15092-15093.
    [158] J.N.Demas, B.A.Deora, W.Y.Xu. Modeling of luminescence quenching-based sensors: comparison of multisite and nonlinear gas solubility models[J]. Anal. Chem., 1995, 67(8):1377-1380.
    [159] L.A.Sacksteder, J.N.Demas, B.A.DeGrafflt. Design of oxygen sensors based on quenching of luminescent metal complexes: Effect of ligand size on heterogeneity[J]. Anal. Chem., 1993, 65(23):3480-3483.
    [160] M.Nendza, T.Herbst, C.Kussatz, et al. Potential for secondary poisoning and biomagnification in marine organisms[J]. Chemosphere, 1997,35(9):1875-1885.
    [161] Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations[J]. Environ. Res., Sect. A, 1998, 77(1):68-72.
    [162] D.W.Boening. Ecological effects, transport, and fate of mercury: a general review[J]. Chemosphere, 2000, 40(12):1335-1351.
    [163] S.H.Kim, K.C.Song, S.Ahn, et al. Hg~(2+)-selective fluoroionophoric behavior of pyrene appended diazatetrathia -crown ether[J]. Tetrahedron Lett., 2006, 47(4):497–500.
    [164] D.Zhao, J.Feng, Q.Huo, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279:548–552.
    [165] T.Tien, L.K.Chau. Novel Sol-Gel-derived material for separation and optical sensing of metal ions: propyl-ethylenediamine triacetate functionalized silica[J]. Chem. Mater., 1999, 11(8):2141–2147.
    [166] B.Marler, U.Oberhagemann, S.Voltmann, et al. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41[J]. Microporous Mesoporous Mater., 1996, 6(5-6):375-383.
    [167] A.Vinu, V.Murugesan, M.Hartmann. Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: influence of pH and aluminum incorporation[J]. J. Phys. Chem. B, 2004, 108(31):7323-7330.
    [168] D.P.Quintanilla, I.Hierro, M.Fajardo, et al. Adsorption of cadmium(Ⅱ) from aqueous media onto a mesoporous silica chemically modified with 2-mercaptopyrimidin[J]. J. Mater. Chem., 2006, 16(18):1757–1764.
    [169] L.N.Sun, J.B.Yu, H.J.Zhang, et al. Near-infrared luminescent mesoporous materials covalently bonded with ternary lanthanide [Er(Ⅲ), Nd(Ⅲ), Yb(Ⅲ), Sm(Ⅲ), Pr(Ⅲ)] complexes[J]. Microporous Mesoporous Mater., 2007, 98(1-3):156-165.
    [170] K.S.W.Sing, D.H.Everett, R.A.W.Haul, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem., 1985, 57(4):603–619.
    [171] J.R.Lakowicz. Principles of Fluorescence Spectroscopy [M]. Kluwer Academic/ Plenum, New York, 1999.
    [172] W.A.E.McBryde, Spectrophotometric determination of equilibrium constants in solution[J]. Talanta, 1974, 21(10):979–1004.
    [173] W.Likussar, D.F.Boltz. Theory of continuous variations plots and a new method for spectrophotometric determination of extraction and formation constants[J]. Anal. Chem., 1971, 43(10):1265–1272.
    [174] D.A.Muller, T.Sorsch, S.Moccio, et al. The electronic structure at the atomic scale of ultrathin gate oxides[J]. Nature, 1999, 399:758-761.
    [175] G.M.Whitesides, J.C.Love. The Art of Building Small[J].Sci. Am., 2001, 285:32-41.
    [176] R.F.Service. Optical lithography goes to extremes-and beyond[J]. Science, 2001, 293:785-786.
    [177] A.P.de Silva, H.Q.N.Gunaratne, C.P.McCoy. A molecular photoionic AND gate based on fluorescent signalling[J]. Nature, 1993, 364:42-44.
    [178] R.Baron, A.Onopriyenko, E.Katz, et al. An electrochemical/photochemical information processing system using a monolayer-functionalized electrode[J]. Chem. Commun., 2006, 2147-2149.
    [179] Y.Liu, W.Jiang, H.Y.Zhang, et al. A multifunctional arithmetical processormodel integrated inside a single molecule[J]. J. Phys. Chem. B, 2006, 110(29):14231-14235.
    [180] J.Andréasson, S.D.Straight, S.Bandyopadhyay, et al. A molecule-based 1:2 digital demultiplexer[J]. J. Phys. Chem. C, 2007, 111(38):14274-14278.
    [181] J.Andréasson, S.D.Straight, T.A.Moore, et al. Molecular all-photonic encoder?decoder[J]. J. Am. Chem. Soc., 2008, 130(33):11122–11128.
    [182] B.Valeur. Molecular fluorescence: principles and applications[M]. Wiley-VCH, Verlag GmbH: New York, 2001.
    [183] Y.Xiang, A.Tong. A new rhodamine-based chemosensor exhibiting selective FeⅢ-amplified fluorescence[J]. Org. Lett., 2006, 8(8):1549-1552.
    [184] Y.Xiang, A.Tong, P.Jin, et al. New fluorescent rhodamine hydrazone chemosensor for Cu (Ⅱ) with high selectivity and sensitivity[J]. Org. Lett., 2006, 8(13):2863-2866.
    [185] J.Y.Kwon, Y.J.Jang, Y.J.Lee, et al. A highly selective fluorescent chemosensor for Pb~(2+)[J]. J. Am. Chem. Soc., 2005, 127(28):10107-10111.
    [186] H.Zheng, Z.H.Qian, L.Xu, et al. Switching the recognition preference of rhodamine B spirolactam by replacing one Atom: design of rhodamine B thiohydrazide for recognition of Hg(Ⅱ) in aqueous solution[J]. Org. Lett., 2006, 8(5):859-861.
    [187] J.S.Wu, I.C.Hwang, K.S.Kim, et al. Rhodamine-based Hg~(2+)-selective chemodosimeter in aqueous solution: fluorescent off-on[J]. Org. Lett., 2007, 9(13):907-910.
    [188] D.Wu, W.Huang, C.Duan, et al. Highly sensitive fluorescent probe for selective detection of Hg~(2+) in DMF aqueous media[J]. Inorg. Chem. 2007, 46(5), 1538-1540.
    [189] J.Chen, A.F.Zheng, A.H.Chen, et al. A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury (Ⅱ) in environmental water samples[J]. Anal. Chim. Acta., 2007, 599(1):134-142.
    [190] K.P.Prathish, D.James, J.Jaisy, et al. Dual optoelectronic visual detection and quantification of spectroscopically silent heavy metal toxins: A multi-measurand sensing strategy based on Rhodamine 6G as chromo or fluoro ionophore[J]. Anal. Chim. Acta., 2009, 647(1):84-89.
    [191] Y.Xiang, Z.Li, X.Chen, et al. Highly sensitive and selective optical chemosensor for determination of Cu~(2+) in aqueous solution[J]. Talanta, 2008, 74(5):1148-1153.
    [192] M.Suresh, A.Shrivastav, S.Mishra, et al. A rhodamine-based chemosensor that works in the biological system[J]. Org. Lett., 2008, 10(14):3013-3016.
    [193] Y.K.Yang, K.J.Yook, J.Tae. A rhodamine-based fluorescent and colorimetricchemodosimeter for the rapid detection of Hg~(2+) ions in aqueous media[J]. J. Am. Chem. Soc., 2005, 127(48):16760-16761.
    [194] X.B.Zhang, C.C.Guo, Z.Z.Li, et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimmer[J]. Anal. Chem., 2002, 74(4):821-825.
    [195] J.S.Kim, D.T. Quang. Calixarene-derived fluorescent probes[J]. Chem. Rev., 2007, 107:3780-3799.
    [196] M.Suresh, A.Shrivastav, S.Mishra, et al. A rhodamine-based chemosensor that works in the biological system[J]. Org. Lett., 2008, 10(14):3013-3016.
    [197] R.Reisfeld. Rare earth ions: their spectroscopy of cryptates and inorganic compounds[M]. Ed; T. Schonherr, Structure and Bonding, 2004, 106: 209-235.
    [198] J.M.Lehn. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization[J]. Angew. Chem. Int. Ed. Engl., 1990, 29(11):1304-1319.
    [199] W.Hu, M.Matsumura, M.Wang, et al. Efficient red electroluminescence from devices having multilayers of a europium complex[J]. Appl. Phys. Lett. 2000, 77(26):4271-4723.
    [200] Y.X.Zheng, L.S.Fu, Y.H.Zhou, et al. Electroluminescence based on aβ-diketonate ternary samarium complex[J]. J. Mater. Chem., 2002, 12(4):919-923.
    [201] P.Judeinstein, C.Sanchez. Hybrid organic–inorganic materials: a land of multidisciplinarity[J]. J. Mater. Chem., 1996, 6(4):511-525.
    [202] C.Sanchez, B.Julian, P.Belleville, et al. Applications of hybrid organic-inorganic nanocomposites[J]. J. Mater. Chem., 2005, 15(35-36):3559-3592.
    [203] P.Escribano, B.Julian-Lopez, J.Planelles-Arago, et al. Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials[J]. J. Mater. Chem., 2008, 18(1):23-40.
    [204] M.Pagliaro, R.Ciriminna, M.Wong Chi Man, et al. Better chemistry through ceramics: the physical bases of the outstanding chemistry of ORMOSIL[J]. J. Phys. Chem. B, 2006, 110(5):1976-1988.
    [205] L.Lin, L.L.Xiao, S.Huang, et al. Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix[J]. Biosens. Bioelectron., 2006, 21(9):1703-1709.
    [206] V.B.Kandimalla, V.S.Tripathi, H.X.Ju. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application[J]. Biomaterials, 2006, 27(7):1167-1174.
    [207] A.Fidalgo, R.Ciriminna, L.M.Iharco, et al. Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol-gel catalysts[J]. Chem. Mater., 2005, 17(26):6686-6694.
    [208] D.L.Dexter. A Theory of Sensitized Luminescence in Solids[J]. J. Chem. Phys.,1953, 21(5):836-850.
    [209] N.Sabbatini, A.Mecati, M.Guardigli, et al. Lanthanide luminescence in supramolecular species[J]. J. Lumin., 1991, 48(2):463-468.
    [210] M.Kawa, J.M.J.Fréchet. Self-assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects[J]. Chem. Mater., 1998, 10(1):286-296.
    [211] W.F.Sager, N.Filipescu, F.A.Serafin. Substituent effects on intramolecular energy transfer. I. absorption and phosphorescence spectra of rare earthβ-diketone chelates[J]. J. Phys. Chem., 1965, 69(4):1092-1100.
    [212] I.B. Berlman. Energy Transfer Parameters of Aromatic Compounds[M]. Academic Press, New York, 1973.
    [213] S.Sato, M.Wada. Relations between intramolecular energy transfer efficiencies and triplet state energies in rare earthβ-diketone chelates[J]. Bull. Chem. Soc. Jpn., 1970, 43(7):1955-1962.
    [214] G.A.Crosby, R.E.Whan, R.M.Alire. Intramolecular energy transfer in rare earth chelates. Role of the triplet state[J]. J. Chem. Phys., 1961, 34(3):743-748.
    [215] B.Yan, H.J.Zhang, S.B.Wang, et al. Intramolecular energy transfer mechanism between ligands in ternary rare earth complexes with aromatic carboxylic acids and 1, 10-phenanthroline[J]. J. Photochem. Photobiol. A Chem., 1998, 116(3):209-214.
    [216] X.Guo, H.Guo, L.Fu, et al. Synthesis and photophysical properties of novel organic–inorganic hybrid materials covalently linked to a europium complex[J]. J. Photochem. Photobiol. A Chem., 2008, 200(2-3):318-324.
    [217] P.J.Miranda, J.Zukerman-Schpector, P.C.Isolani, et al. Synthesis and structure of lanthanide picrates with trans-1, 3-dithiane-1, 3-dioxide[J]. J. Alloys Compd., 2002, 344(1-2):141-144.
    [218] X.M.Guo, L.S.Fu, H.J.Zhang,et al. Incorporation of luminescent lanthanide complex inside the channels of organically modified mesoporous silica via template-ion exchange method[J]. New J. Chem., 2005, 29(10):1351-1358.
    [219] B.S.Li, Y.C.Liu, Z.Z.Zhi, et al. The photoluminescence of ZnO thin films grown on Si substrate by plasma-enhanced chemical vapor deposition[J]. J. Cryst. Growth, 2002, 240(3-4):479-483.
    [220] Q.Li, T.Li, J.Wu. Luminescence of europium (Ⅲ) and terbium (Ⅲ) complexes incorporated in poly (vinyl pyrrolidone) matrix[J]. J. Phys. Chem. B, 2001, 105(49):12293-12296.
    [221] P.C.R.Soares-Santos, H.I.S.Nogueira, V.Félix,et al. Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles[J]. Chem. Mater., 2003, 15(1):100-108.
    [222] M.H.V.Werts, R.T.F.Jukes, J.W.Verhoeven. The emission spectrum and theradiative lifetime of Eu~(3+) in luminescent lanthanide complexes[J]. Phys. Chem. Chem. Phys., 2002, 4(9):1542-1548.
    [223] L.D.Carlos, Y.Messaddeq, H.F.Brito, et al. Full-color phosphors from europium (Ⅲ)-based organosilicates[J]. Adv. Mater., 2000, 12(10):594-598.
    [224] E.E.S.Teotonio, J.G.P.Espinola, H.F.Brito, et al. Influence of the N-[methylpyridyl] acetamide ligands on the photoluminescent properties of Eu (Ⅲ)-perchlorate complexes[J]. Polyhedron, 2002, 21(18):1837-1844.
    [225] S.J.L.Ribeiro, K.Dahmouche, C.A.Ribeiro, et al. Study of hybrid silica-polyethyleneglycol xerogels by Eu~(3+) luminescence spectroscopy[J]. J. Sol–gel Sci. Technol., 1998, 13(1-3):427-432.
    [226] O.L.Malta. M.A.Couto dos Santos, L.C.Thompson, et al. Intensity parameters of 4f-4f transitions in the Eu (dipivaloylmethanate)3 1, 10-phenanthroline complex[J]. J. Lumin., 1996, 69(2):77-84.
    [227] J.C.Boyer, F.Vetrone, J.A.Capobianco, et al. Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu~(3+) doped bulk and nanocrystalline cubic LU2O3[J]. J. Phys. Chem. B, 2004, 108(52):20137-20143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700