用户名: 密码: 验证码:
中国东部陆海相互作用中的元素地球化学特征及高分辨率沉积记录初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preliminary Study on the Characters of Elemental Geochemistry and High Resolution Sedimentary Record in the Process of Land-sea Interaction in the East China
  • 作者:郝云超
  • 论文级别:博士
  • 学科专业名称:海洋地质
  • 学位年度:2008
  • 导师:翟世奎
  • 学科代码:070704
  • 学位授予单位:中国海洋大学
  • 论文提交日期:2008-10-14
摘要
长江和黄河每年向中国东部边缘海输送包括污染物在内大量物质,东亚沙尘也是向太平洋输送各种物质的重要途径;中国东部边缘海的济州岛西南泥质区,闽浙沿岸泥质区,南黄海泥质区,北黄海泥质区和渤海泥质区等是进入海洋的细颗粒物质的沉积中心。
     本论文首先阐述了胶体絮凝机制,将其应用海洋中细颗粒泥质区的成因探讨。中国边缘海的泥质区都是处在物理化学条件(例温度和盐度等)经常发生规律性变化的上升流区,物理化学条件的变化致使水体中的胶体组分发生絮凝沉降,从而形成海底的细颗粒泥质沉积。
     利用ICP-AES对渤海和北黄海118个表层沉积物和渤海湾柱状样B18的0-40cm的57个样品的主量元素含量进行了测试,用ICP-MS测试上述样品微量(包括稀土元素)元素的含量,同时利用激光粒度仪测试上述样品的粒度组成。对渤海湾东西分布的三根沉积物柱状样A435,B18和B178进行了。~(210)Pb测年。
     通过分析渤海和北黄海118个表层沉积物的有毒元素含量分布,发现渤海的有毒元素主要来源于河流的输入,大连工业区是北黄海西部的重要污染源。有毒元素的分布反映了沉积物从海岸到近海的输送趋势。因为溶解元素明显受颗粒物的吸附和絮凝沉淀作用影响,而颗粒物在咸水和淡水界面具有明显的絮凝沉积作用,所以黄河口地区具有高的有毒元素含量。通过对有毒元素的富集系数,以及和Fe含量相关性的研究,表明和其它有毒元素相比,人为源对As和Sb的贡献比例可能更大。PCA的研究结果表明自然源仍然是测试元素的主要来源,渤海湾是渤海四个亚分区中污染最严重。将渤海和北黄海西部表层沉积物的有毒元素含量和中国、美国海洋沉积物质量标准进行了比较,并且利用地累积指数NIgeo和Hakanson评价方法对渤海和北黄海西部的表层沉积物样品进行了生态环境风险评价。As和Cd具有相对高的Ers值,表明As和Cd是导致研究区域具有较高的生态风险的两个主要元素。渤海湾,黄河口和辽东湾的西南部可能均处在中等生态风险中。北黄海西部大连附近海域受大连工业区排污的影响,有毒元素污染相对严重,其中As的污染最严重,此区总体处于中-中高等的生态风险。北黄海中部泥质区的有毒元素具有较高的含量,具有中等生态风险。
     结合渤海和北黄海西部表层样主量元素的分布,柱状样B18的0-40cm的主量元素组成和三根柱状样的~(210)Pb测年结果,对百年尺度黄河入海物质的“源”到“汇”问题进行了研究。结果表明:CaO/TiO_2和CaO/Al_2O_3是黄河入海物质在渤海扩散范围的有效指标,CaO/TiO_2=6和CaO/Al_2O_3=0.3可以作为黄河入海物质在渤海扩散范围的边界值。黄河入海物质由于受絮凝沉积作用影响,在河口区形成两个细沉积中心;河口区的物质再悬浮,在潮流的作用下向渤海湾输送;且黄河入海物质在冬季风的作用下向东输送,细颗粒物质可以转过山东半岛东端,进入南黄海。CaO/TiO_2和CaO/Al_2O_3的值表明,黄河物质对北黄海中部泥质区的贡献较小。从三根柱子的~(210)Pb测年结果证实,黄河物质沿渤海湾南岸向西部的输送和向北北东方向的输送强度强于向西北方向输送。B18为黄河和滦河物质混合的产物。B18的粒度、CaO/TiO_2和CIA大约从1976年(~(210)Pb年龄)发生明显变化,表明黄河向渤海湾输入的物质从1976年以来明显减少,是由于黄河1976年人工改道和入海泥沙的减少,以及渤海盐度场和环流结构改变共同作用造成的。
     对渤海和北黄海西部表层样沉积物的REE研究表明:渤海和北黄海西部表层沉积物∑REE,∑HREE和∑LREE和沉积物的粘土含量(%)正相关。辽东浅滩、辽东湾西侧长兴岛附近、渤海海峡,滦河口,和烟台东北侧附近海区的∑LREE/∑HREE,La/Yb和La/Sm值基本均相对高于其它海域,Eu/Eu~*基本上大于1,证明这些地区附近海域的沉积物可能部分来源于陆上太古代岩石。Ce/Ce~*在大连南侧,曹妃甸,烟台附近以及北黄海中部泥质区均>1,说明这些海区可能处于相对强的氧化环境。
     青岛气溶胶的元素Fe,Ti,Mn,V Ni,Cu,Pb,Zn和Cd均呈现季节变化的特点:夏季最低,冬季最高。S季节变化比较特别,夏季含量高于春季和秋季。沙尘事件期间,Fe,Ti,Mn,V,Ni和Cu含量明显增加,达到全年最高值。Pb,Zn,Cd,S虽然在沙尘:事件期间也明显增加,但低于冬季平均值。对各元素的富集系数(EF)进行了分析,结合主成分分析和聚类分析的结果,可以看出,Ti和Mn可能主要来源于土壤;V也可能来源于土壤,船排放物可能是V的一个较小的来源。沙尘期间,Cu主要来源于土壤,但在非沙尘期间,人为源对Ni和Cu具有较高的贡献。全年的S,Pb,Zn和Cd主要来源于人为源,即使在沙尘期间,人为源仍然是S,Pb,Zn和Cd的主要来源。自然源贡献了全年测试元素的大约60%,人为源可能贡献了30%左右。
     利用X射线荧光光谱(XRF)元素分析仪和热电离质谱仪(TIMS)就东海近岸泥质区S5孔百年尺度(~(210)Pb定年)Pb和Pb稳定同位素组成的高分辨沉积记录进行了研究。结果显示闽浙沿岸泥质区的Pb含量背景值为32μg g~(-1),~(206)Pb/~(207)Pb的背景值为1.195。S5铅通量从19世纪80年代开始迅速升高,1999年达到最高,之后迅速降低到2002年的31 mg cm~(-2) yr~(-1)。~(206)Pb/~(207)Pb从1860年到20世纪60年代基本稳定,平均值为1.195;之后逐渐降低,1980年后降低幅度尤为明显,2000年达到最小值1.165;2000-2002年,~(206)Pb/~(207)Pb升高,2002年达到1.185。S5铅通量和铅稳定同位素组成的变化反映了中国经济的发展,特别是含铅汽油的使用和禁用。特大洪水可能会导致更多的人为源Pb进入闽浙沿岸泥质区。由于经济发展时期不同,中国的含铅汽油的禁用大约比欧美国家晚大约20年,中国环境中Pb的历史纪录明显不同于欧美国家。
     本论文受国家973项目“中国典型河口海岸带陆海相互作用及其环境效应(2002CB42400)第4课题:黄河三角洲海岸蚀积转换机制和趋势预测”(2002CB42404),“中国东部陆架边缘海海洋物理环境演变及其环境效应(2005CB422300)第4课题:颗粒物源-汇效应与沉积记录对海洋物理环境演变的响应(2005CB422304)”和国家海洋局“908”专项:“CJ02区块海底底质调查与研究(908—CJ02)”联合资助。
Yangtze River and Yellow River transport numerous materials, including a lot ofpollutant, to the marginal seas of China, and the dust storm of the East China is animportant passage, delivering the materials to the Pacific. The mud areas in theSouthwest of the Cheju Island, the South Yellow Sea, the Bohai Sea, and along theFujian-Zhejiang Coast are the sedimentary center of the fine matter.
     Firstly, the mechanism of the colloidal flocculation is described and introduced todiscuss the formation of fine mud areas in ocean in my dissertation. The mud areas inthe marginal seas of China are all formed in the upwelling areas where the conditionof the physical chemistry (temperature and salinity and so on) changes regularly,which leads to the flocculation and sink of the colloidal solid.
     Major elements of 118 surface sediment samples in the Bohai Sea and the West ofthe North Yellow Sea and 57 sediment samples of sediment core B18 in the BohaiBay were analyzed by the ICP-AES, minor elements, including REE, of all sedimentsamples above were determined by the ICP-MS, and the compositions ofthe grainsize of all samples were analyzed by the Laser particle size analyzer. Three sedimentcores of B178, B18, and A435 from East to west in the Bohal Bay were dated by themethod of ~(210)pb.
     The distributions of the toxic elements showed that clear anthropogenic inputs oftoxic elements mainly from the rivers to the Bohai Sea, and the Dalian industrialregion was the important source of the toxic-elements in the West of the North YellowSea. The results indicated the potential pathways of trace metals via the transport ofsediment from the coast to the Bohai Sea and the West of the North Yellow Sea. The high concentrations of toxic elements near the Yellow River Delta were caused by theprocesses of adsorption and coagulation of dissolved trace metals with particulates aswell as aggregation of particulates between freshwater and marine water zones. Theresults of EFs and the correlation with the Fe indicated that As and Sb may be derivedmore from the anthropogenic sources, and Ers of As and Cd indicated that they maylead to heavier ecological risks in the studied region. The results of PCA indicated themost of the elements analyzed may be derived from the natural sources, and the BohaiBay may be the heaviest polluted areas among the four parts of the Bohai Sea. Theremay be considerable ecological risk in the most of the Bohai Bay, the Yellow Rivermouth and the southwest of the Liaodong Bay. In the West of the North Yellow Sea,the pollution of toxic elements, especially As, near Dalian may be much heavier, andthe sea area near Dalian may be in moderate or considerable ecological risk,influenced by the Dalian Industrial area region.
     The distributions of the major elements in the Bohai Sea and the West of the NorthYellow Sea, the compositions of the major elements of the sediment core B18(0-40cm), and the ~(210)pb dating results of three sediment cores were used to study thetransport process of the Yellow River material into the sea. The results indicated thatCaO/TiO_2 and CaO/Al_2O_3 were the effective indicators of the diffusing range of theYellow River materials in to the sea, and CaO/TiO_2=6 and CaO/Al_2O_3=0.3 were theboundary values of the diffusing range of the Yellow River material in to the sea.There were two centers of the fine sediments near the Yellow River delta, influencedby the flocculation process. The sediments near the Yellow River mouth wereresuspended, and transported to the Bohai Bay by the tidal current. Impacted by thewind in winter, the sediments near the Yellow River delta were transported to the east,and the fine materials could enter the South Yellow Sea through the tip of theShandong Peninsula. The Yellow River's contribution to the center of the NorthYellow Sea may be small, indicated by the CaO/TiO_2 and CaO/Al_2O_3. The ~(210)Pbdating results of three sediment cores indicated that the materials from the YellowRiver were transported more to North-Northeast and the west along the south coast ofthe Bohai Bay than it to the Northwest. B18 was a mixture of the Yellow River and Luan River materials. Since 1976, the grain size composition, CaO/TiO_2 and CIA ofB18 had changed remarkably, indicating that the Yellow River materials transportedinto the Bohai Bay had decreased distinctly since 1976, which was caused by theman-made changing of the Yellow River channel, the decreasing of the Yellow Riversediments into the sea, and the changing of the salinity field and the circulationstructure in the Bohai Sea.
     ∑REE,∑HREE and∑LREE were positive relation with the clay content (%) of thesurface sediments of the Bohai Sea and the West of the North Yellow Sea. In the westof the Liaodong Peninsula near the Changxing Island, Liaodong shallow bank, theBohai Strait, the Luan River mouth, and the Northeast area near the Yantai,∑LREE/∑HREE, La/Yb and La/Sm, were higher than them of other regions, andEu/Eu~* was higher than 1, indicating that the sediments in these regions may be partlyderived from the Archean rock on the land. Ce/Ce~* was higher than 1 in the South ofDalian, around Caofeidian, near Yantai, and the center mud of the North Yellow Sea,indicating that the oxidized condition was relatively stronger in these regions.
     All the analyzed elements in the aerosols of Qingdao displayed strong seasonalvariations: the concentration of Fe, Ti, Mn, V, Ni, Cu, Pb, Zn, Cd was the lowest inthe summer, and the highest in the winter. As an exception, the concentration of S insummer is higher than those in spring and autumn. During the dust episode, theconcentration of Fe, Ti, Mn, V, Ni, Cu increased remarkably, while the concentrationsof Pb, Zn, Cd, S were obviously lower than that in winter though they also increasedremarkably. Ti, Mn are mainly derived from the soil source. V in the atmosphere ismainly derived from the soil source, with minor contribution from ship emission. Theanthropogenic source has a relatively higher contribution to Ni and Cu in the non-dustsamples, while Cu is mainly from soil source during the dust episode. The S, Pb, Znand Cd are mainly derived from the anthropogenic source, even during the dustepisodes. The natural sources contributed about 60% to the sum of measured elementsand anthropogenic sources contributed about 30%.
     The rapid economic development in the Yangtze River Delta (YRD), China in thelast three decades has had a significant impact on the environment of the East China Sea (ECS). Lead isotopic compositions of a ~(210)pb dated sediment core collected fromthe coastal ECS adjacent to the Yangtze River Estuary were analyzed to track the Pbpollution in the region. The baseline Pb concentration in the coastal ECS adjacent tothe YRE was 32μg g~(-1), with the corresponding ~(206)pb/~(207)pb of 1.195. The Pbconcentrations (average, 31~(-2) mg g~(-1)) and fluxes (average, 30~(-2) mg cm~(-2) yr~(-1)) wererelatively constant from w1860 to mid-1980s, and they increased rapidly from themid-1980s to 1999, peaking in 1999 at 65 mg g~(-1) for the concentration and 61 mgcm~(-2) yr~(-1) for the flux before decreasing sharply to 36 mg g~(-1) and 31 mg cm~(-2) yr~(-1),respectively, in 2002. ~(206)pb/~(207)pb was constant from w1860 to mid-1960s (average,1.195), and decreased from the mid-1960s to 1.165 in 2000 before rising to 1.185 in2002. The variations of Pb flux and stable Pb isotopic composition in the study areareflected the impacts of the economic development, in particular the leaded gasolineusage in China. The severe flood of the Yangtze River could contribute moreanthropogenic Pb to the coastal ECS. Due to the different time of economicdevelopment, especially about 20 years lag of the phasing-out of leaded gasoline inChina, the historical records of Pb in the environment of China were obviouslydifferent from those of most European countries and the United States.
引文
[1] Johnson K S, Chavez F P, Friederieh G. E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature, 1999, 398, 22, 697-700
    [2] Nilsson C, Reidy C A, Dynesius M, Revenga C. Fragmentation and Flow Regulation of the Word's Large River Systems. Science, 2005, 308, 405-408
    [3] Milly P C D, Dunnel K A, Vecchia A V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438(17), 347-350
    [4] Syvitski J P M, V(o|¨)r(o|¨)smarty C J, Kettner A J, Green P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science, 2005, 308, 376-380
    [5] Syvitski J P M. Supply and flux of sediment along hydrological pathways: research for the 21 st century.Global and Planetary Change, 200339, 1-11. doi: 10.1016/S0921-8181 (03) 00008-0.
    [6] Duce R A, Unni C K, Ray B J, et al. Long-range atmospheric transport of soil dust from Asia to the tropical north Pacific: tem-poral variability. Science, 1980, 209:1522-1524
    [7] Parrington J R, Zoller W H, Aras N K. Asian dust: seasonal transport to the Hawaiian Islands. Science, 1983, 220:195-197
    [8] Fanning K A, Influence of atmospheric pollution on nutrient limitation in the ocean. Nature, 1989, 339:460-463
    [9] Rahn K A, Borys R D, Shaw G E. The Asian source of Arctic haze bands. Nature, 1977, 268:713-715
    [10] Jickells T D. Nutrient Biogeochemistry of the Coastal Zone. Science, 1998, 261:217-221
    [11] Wilkening K E, Barrie L A, Engle M. Trans-Pacific Air Pollution, Science, 2000; 290: 65-67
    [12] 庄国顺,郭敬华,袁蕙,等.2000年中国沙尘暴的组成、来源、粒径分布及其对全球环境的影响.科学通报,2001,46(3):191-197
    [13] Milliman J D, and Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers, J. Geol., 1992, 100, 525-544
    [14] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans. Journal of Geology 1983, 91, 1-21
    [15] Wang H J, Yang Z S, Saito Y, Liu J P, Sun X X, Wang Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities. Global Planet Change, 2007, 57, 331-354
    [16] 刘毅,周明煜.中国近海大气气溶胶的时间和地理分布特征.海洋学报,1999,21(1):32-40
    [17] Uemastu M, Duce R A, Prospero J M, et al. Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geo-physical Research, 1983, 88:5343-5352
    [18] Merrill J T, Uemastsu M, Bleck R. Meteorological analysis of long-range transport of mineral aerosol over the North Pacific. Journal of Geophysical Research, 1989, 90: 12927-12936
    [19] Gao Y, Arimoto R, Merril J T, et al. Relationships between the dust concentrations over eastern Asia and the remote North Pacific, Journal Geophysical Research [Atmos], 1992, 97 (D9): 9867-9872
    [20] Arimoto R, Duce R A, Savoie D L. Relationships among aerosol constituents from Asia and the North Pacific during PEM-West. Journal of Geophysical Research [Atmos], 1996,101 (D1): 2011-2023[DOI]
    [21] Nriagu JO, Pacyna, J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333, 134-139.
    [22] Nriagu J O. Tales told in lead. Science, 1998, 281, 1622-1623.
    [23] Boutron C F, G(o|¨)rlach U, Candelone J P, Bolshov M B, Delmas R J. Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s. Nature, 1991, 353, 153-156
    [24] Heike K L, Hunter S L, Bruce J B, Roger H B, Richard G C, Matthew C K, Susan M K, Michael X K, Charles H P, Jeremy B C J, Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 2006, 312, 1086-1089
    [25] Moreno-Garrido I, Lubi(?)n L M, Blasco J. Sediment toxicity tests involving immobilized microalgae (Phacodactylum tricornutum Bohlin). Environ Int 2007, 33, 481-495.
    [26] Rainbow P S. Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environ Int 2007, 33,576-582.
    [27] Islam F S, Gault A G, Boothman C, Polya D A, Charnock J M, Chatterjee D, Lloyd J R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68-71.
    [28] Ren(?) P S, Beate I E, Kathrin F, Thomas B H, C Annette J, Urs yon G, Bernhard W. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072-1077.
    [29] Natalia J T, Carmen M C, Judit K, M Jos(?) S, M Luisa G D C, Carmen S, T (?)ngel D. Determining sediment quality for regulatory proposes using fish chronic bioassays. Environ Int 2007, 33,474-480.
    [30] Ventura-Lima J, Sandrini J Z, Cravo M F, Piedras F R, Moraes T B, Fattorini D, Notti A, Regoli F, Geracitano L A, Matins L F F, Monserrat J M. Toxicological responses in Laeonereis acuta (annelida, polychaeta) after arsenic exposure. Environ Int 2007, 33, 559-564.
    [31] Guo Z G, Lin T, Zhang G, Yang Z S, Fang M. High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea. Environ Sei Technol 2006, 40, 5304-5311.
    [32] Hao Y C, Guo Z G, Yang Z S, Fan D J, Fang M, Li X D. Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions. Environ Pollut 2008, Published.
    [33] Cao W Z, Wong Ming H. Current status of coastal zone issues and management in China: A review. Environ Int 2007, 33, 985-992,
    [34] 李广雪,杨子庚,刘勇.中国东部海域海底沉积环境成因研究.科学出版社.
    [35] Hu D X. Upwelling and sedimentation dynamics: Ⅰ The role of upwelling in sedimentation in the Huanghai Sea and East China Sea-A description of general features. Chinese Journal of Oceanography and lirnnology 1984 2(1), 12-19
    [36] Qu T D, Hu D X. Upwelling and sedimentation dynamics: Ⅱ.A simple Model. Chinese Journal of Oceanography and Limnology, 1993, 11(4) 289-295
    [37] Pang C G, Hu D X. Upwelling and sedimentation dynamics: Ⅲ: coincidence of upwelling areas with mud patches in north hemisphere shelf seas. Chinese Journal of Oceanography and Limnology, 2002, 20(2) 101-106
    [38] 庞重光,自学志,胡敦欣.渤、黄、东海海流和潮汐共同作用下的悬浮物输运、沉积及 其季节变化.海洋科学集刊,2004,46,32-41
    [39] Huhn K., Paul A., Seyferth M. Modeling sediment transport patterns during an upwelling event. Journal of Geophysical Research, 112, C 10003, doi: 10.1029/2005JC003107, 2007
    [40] Elderfield H., Greaves M. J. The rare earth elements in seawater. Nature 1982, 296, 214-219
    [41] Toyoda K., Nakamura Y, Masuda A. Rare earth elements of Pacific pelagic sediments. Geochimica et Cosmochimica Acta, 1990, 54, 1093-1103
    [42] German C. R., Klinkhammer G P., Edmond J. M., Mitra A., Elderfield H. Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 1990, 345, 516-518
    [43] Michard A., Albar(?)de F., Michard G., Minster J. F., Charlou J. L. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature, 1983, 795-797
    [44] 杨守业,李从先。REE示踪沉积物物源研究进展。1999,14(2),164-167
    [45] 王贤觉,陈毓蔚,雷剑泉,吴明清.东海大陆架海底沉积物稀土元素地球化学研究.地球化学,1982,1,56-65
    [46] 王金土.黄海表层沉积物稀土元素地球化学.地球化学,1990,1,44-53
    [47] 吴明清,文启忠,潘景瑜,刁桂仪.黄河中游地区马兰黄土的稀土元素.科学通报,1991,5,366-369
    [48] Yang'S. Y., Jung H. S., Choi M. S., Li C. X. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth and Planetary Science Letters, 2002, 201,407-419
    [49] 杨守业,李从先。Lee C.B.,Na T.K.黄海周边河流的稀土元素地球化学及沉积物物源示踪。科学通报,2003,48(11),1233-1236
    [50] 高爱国,陈志华,刘炎光,孙海清,杨守业。 楚科奇海表层沉积五的稀土元素地球化学特征。中国科学(D辑),2003,33(2),148-154
    [51] Yang S.Y., Lim D.I., Jung H.S., Oh B.C. Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea. Marine Geology 2004, 206, 41-53
    [52] Nance W. B., Taylor S. R. Rare earth element patterns and crustal evolution-Ⅰ. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 1976, 40, 1539-1551
    [53] Nance W. B., Taylor S. R. Rare earth element patterns and crustal evolution-Ⅱ. Archean sedimentary rocks from Kalgoorlie, Australia. Geochimica et Cosmochimica Acta, 1977, 41, 225-231
    [54] Fryer B. J. Rare earth evidence in iron-formations for changing Precambrian oxidation states. Geochimica et Cosmochimica Acta, 1977,41,361-367
    [55] Falkowski P. G. Tracing Oxygen's Imprint on Earth's Metabolic Evolution. Science, 2006, 311, 1724-1725
    [56] Tu G. Z., Zhao Z. H., Qiu Y. Z. Evolution of Preeambrian REE Mineralization. Precambrian Research, 27 (1985) 131-151 Falkowski P. G.
    [57] 董春艳,刘敦一,李俊建等.华北克拉通西部孔兹岩带形成时代新证据:巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成.科学通报,2007,52(16):1913-1922
    [58] 赵国春,孙敏.华北克拉通基底构造单元特征及早元古代拼合.中国科学(D辑),2002,32(7): 538-549
    [59] Lu S. N., Zhao G. C., Wang H. C., Hao G. J. Preeambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research 2008, 160:77-93
    [60] 安芷生,王苏民,吴锡浩,陈明扬,孙东怀,刘秀铭,王富葆,李力,孙有斌,周卫建,周杰,刘晓东.中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动.中国科学(D辑),1998,28(6),481-490
    [61] 中国科学院海洋研究所. 《渤海地质》.科学出版社.1985.
    [62] 秦蕴珊,廖先贵.渤海湾海底沉积作用的初步探讨.海洋与湖沼,1962,4(3-4):199-207
    [63] 秦蕴珊.中国陆棚海的地形及沉积类型的初步研究.海洋与湖沼,1963,5(1),71-85
    [64] 王琦等.渤海南部表层沉积的相特征.青岛海洋大学学报,1989,19(1),75-89
    [65] 秦蕴珊,李凡.渤海海水中悬浮体的研究.海洋学报,1982,4(2),191-200
    [66] Yang Z S, Wang Z X, Zheng A F, Zhang J, Qu J Z. Distribution and movement of suspended matter in summer in Laizhou Bay, the gulf of Bohai. Journal of Ocean University of Qingdao, 1989, 19(4),49-61
    [67] 李国刚,秦蕴珊.中国近海细粒级沉积物中的方解石分布、成因及其他地质意义.海洋学报,1991,13(3),381-386
    [68]董太禄等.渤海南部现代沉积特征.海洋地质与第四纪地质,1995,15(4),131-134
    [69]董太禄.渤海现代沉积作用与模式的研究.海洋地质与第四纪地质,1996,16(4),43-53
    [70]赵保仁,庄国文,曹德明,雷方辉.渤海的环流、潮余流及其对沉积物分布的影响.海洋与湖沼,1995,26(5):466-473
    [71]赵一阳.中国渤海沉积物中铀的地球化学.地球化学,1980,1,101-105
    [72]吕成功,陈真.渤海表层沉积物地球化学分析.青岛海洋大学学报,1993,23(3),91-98
    [73]赵一阳.中国海大陆架沉积物地球化学的若干模式.地质科学,1983,4,307-314
    [74]赵一阳,王金土,秦朝阳等.中国大陆架海底沉积物中的稀土元素.沉积学报,1990,8(1),37-43
    [75]杨作升,孙宝喜等.黄河口毗邻海域细粒级沉积物特征及沉积物入海后的运移.山东海洋学院学报,1985,15(2),121-129
    [76]杨作升.黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系.海洋与湖沼,1988,19(4):336-346
    [77]Wright L D, Wiseman W J, Bornhold B D, Prior D B, Suhayda J N, Keller G H, Yang Z S, Fan Y B. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows. Nature 1988, 332, 629-632
    [78]Yang Z S, Wang Z X, Qu J Z, Zhen A F. Study on carbonates from the coastal zone of the Yellow River delta and adjacent Bohai gulf. Journal of Ocean University of Qingdao, 1989, 19(3) 91-99
    [79]Prior D B, Suhayda J N, Lu N Z, Bornhold B D, Keller G H, Wiseman W J, Wright L D, Yang Z S. Storm wave reactivation of a submarine landside. Nature, 1989, 341, 47-50
    [80]杨作升,王兆祥等.黄河口毗邻渤海陆架区悬浮体成分.青岛海洋大学学报,1990,20(1),22-36
    [81]杨作升等.现行黄河口水下三角洲海底形貌及不稳定性.青岛海洋大学学报,1990,20(1),7-21
    [82]王琦,曹立华等.黄河水下三角洲的动力沉积特征.中国科学(B辑),1991,6,659-665
    [83]张琦,杨作升,陆念祖等.黄河口水下底坡不稳定的水动力机制探讨.海洋学报,1992,14(3),133-141
    [84]陈卫民,杨作升等.黄河口水下底坡微地貌及其成因探讨.青岛海洋大学学报,1992, 22(1),71-81
    [85]孙效功等.黄河三角洲埕北海区泥沙冲淤进行了分析.青岛海洋大学学报,1993,SPIssue,37-44
    [86]孙效功,杨作升等.现行黄河口海域泥沙冲淤的定量计算及其规律探讨.1993,15(1),129-136
    [87]杨作升等.黄河口水下滑坡体系进行了研究.海洋与湖沼,1994,25(6),573-583
    [88]孙效功和杨作升.利用输沙量预测了现代黄河三角洲的面积增长.海洋与湖沼,1995,26(1), 76-92
    [89]林振宏等.现代黄河水下三角洲底坡的不稳定性进行了研究.海洋地质与第四纪,1995,15(3),11-23
    [90]陈彰榕等.现行黄河口冲淤特征和作用机制。青岛海洋大学学报,1998,149-155
    [91]阎通等.水声学方法对黄河口水下底坡失稳现象研究.青岛海洋大学学报,1999,29(2),314-318
    [92]庞重光和杨作升.黄河口泥沙异重流基本控制参数的进行了数值试验研究.泥沙研究,2000,5,68-72
    [93]庞重光等.黄河口最大浑浊带特征及其时空演变研究.黄渤海海洋,2000,18(3),1-6
    [94]庞重光和杨作升.黄河口泥沙异重流的进行了数值模拟.青岛海洋大学学报,2001,31(2),762-768
    [95]庞重光等.黄河口汛期泥沙分布特征及其对水流结构的影响.泥沙研究,2001,4,47-52
    [96]陈卫民和杨作升.现代长江、黄河河口水下三角洲不稳定性的进行了对比研究.青岛海洋大学学报,2001,31(2),249-255
    [97]毛登等.长江、黄河河口沉积物中生物标志化合物组成的初步研究.青岛海洋大学学报,2001,31(5),747-754
    [98]周晓霞和杨作升.48年来黄河入海水沙过程及其对流域人类活动的响应.海岸工程,2002,21(1),6-15
    [99]范德江等.长江、黄河沉积物中碳酸盐组成及差异。自然科学进展,2002,60-64
    [100]乔淑卿等.长江、黄河悬浮物质与山东尘暴物质组成研究.海岸工程,2002,16-23
    [101]庞家珍,司书亨.Ⅰ黄河河演变近代历史变迁.海洋与湖沼,1979,10(2):136-141
    [102]庞家珍,司书亨.黄河河口演变Ⅱ河口水文特征及泥沙淤积分布.海洋与湖沼,1980,11(4):295-305
    [103]庞家珍,司书亨.黄河河口演变Ⅲ河口演变对黄河下游的影响.海洋与湖沼,1982,13(3):218-224
    [104]黄海挺等.黄河口拦门沙研究动态.海洋科学,2003,27(6),35-37
    [105]熊应乾等.长江、黄河沉积物物源研究综述.海洋科学进展,2003,21(3),355-362
    [106]杨作升等.1950-2000年黄河入海水沙的逐日变化及其影响因素.中国海洋大学学报,2005,35(2),237-244.
    [107]王厚杰等.2005年黄河调水调沙期间河口入海主流的快速摆动。科学通报,2005,50(23),2656-2662
    [108]潘燕俊等.长江、黄河悬移载荷粒度组成的比较研究.中国海洋大学学报,2005,35(3),417-422
    [109]王厚杰等.黄河口泥沙输运三维数值模拟-河口双导堤工程进行了泥沙输运方面的三维数值模拟.泥沙研究,2006,2,29-36
    [110]王厚杰等.黄河口泥沙输运三维数值模拟Ⅰ--黄河口切变锋.泥沙研究,2006,2,1-9
    [111]李海东等.现代黄河水下三角洲地质灾害现象的空间分布.海洋地质与第四纪,2006,26(4),37-43
    [112]乔淑卿等.长江和黄河河口沉积物中石英氧同位素的对比。海洋地质与第四纪,2006,26(3),15-18
    [113]戴慧敏等.黄河沉积物中稀土元素(REE)组成的粒度效应。第四纪研究,2007,27(5),718-723
    [114]李广雪,刘守全,姜玉池,魏合龙,庄克琳,杨子赓.黄河三角洲北部海底刺穿初步研究.中国科学(D辑).1999.29(4).379-384
    [115]Li G X, Wei H L, Han Y S, Chen Y J. Sedimentation in the Yellow River delta, part Ⅰ: flow and suspended sediment structure in the upper distributary and the estuary. Marine Geology 1998, 149, 93-111
    [116]Li G X, Wei H L, Yue S H, Cheng Y J, Han Y S. Sedimentation in the Yellow River delta, part Ⅱ: suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology 1998, 149, 113-131[117]Li G X, Zhuang K L, Wei H L. Sedimentation in the Yellow River delta. Part Ⅲ. Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology 2000, 168, 129-144
    [118] Wang H J, Yang Z S, Li Y H, Guo Z G, Sun X X, Wang Y. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Cont Shelf Res, 2007; 27, 854-871.
    [119] Wang H J, Yang Z S, Saito Y, Liu J P, Sun X X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Global Planet Change, 2006, 50, 212-225.
    [120] Wang H J, Yang Z S, Li G X, Jiang W S. Wave Climate Modeling on the Abandoned Huanghe (Yellow River) Delta Lobe and Related Deltaic Erosion. J Coastal Res, 2006, 22(4), 906-918.
    [121] Wang S J, Hassan M A, Xie X P. Relationship between suspended sediment load, channel geometry and land area increment in the Yellow River Delta. Catena 2006, 65, 302-314.
    [122] Jiang W S, Thomas P, J(u|¨)rgen S, Shizuo Feng S Z. A modelling study of SPM transport in the Bohai Sea. J Mar Res 2000; 24, 175-200.
    [123] Jiang W S, Thomas P, Sun J, Andreas S. SPM transport in the Bohai Sea: field experiments and numerical modeling. J Mar Res 2004; 44, 175-188.
    [124] 秦蕴珊,赵一阳,陈丽蓉,赵松龄.黄海地质.海洋出版社.1989.
    [125] 程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与湖沼,2000,31(6):604-615
    [126] 李凤业,高抒,贾建军,赵一阳.黄、渤海泥质沉积区现代沉积速率.海洋与湖沼,2002,33(4):364-369
    [127] 王桂芝,高抒,李凤业.北黄海西部的全新世泥质沉积.海洋学报,2003,25(4):125-134
    [128] Liu J P, Milliman J D, Gao S, Cheng P. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology, 2004, 209:45-67
    [129] Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea. Marine Geology, 1991, 98:51-72
    [130] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology 2007, 240:169-176
    [131] Liu J, Saito Y, Wang H, Yang Z G, Nakashima R. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology, 2007, 236:165-187
    [132]Liu Z X, Xia D X, Berne S, Wang K Y, Marsset T, Tang Y X, Bourillet J E Tidal deposition systems of China's continental shelf, with special reference to the eastern Bohai Sea. Marine Geology 1998, 145:225-253
    [133]黄薇文等.黄河口底质中重金属的存在形式.山东海洋学院学报,1985, 15(1),137-145
    [134]黄薇文等.黄河口地区沉积物中若干地球化学参数及地球化学环境.山东海洋学院学报,1985,15(2),112-120
    [135]张经等.黄河口及邻近海域中悬浮体的分布特征和季节变化.山东海洋学院学报,1985,15(2),96-104
    [136]李静等.黄河口及毗邻海区底质中重金属的分布规律及季节性变化.山东海洋学院学报,1985,15(2),105-111
    [137]黄薇文等.黄河口地区底质中重金属的分布特征、污染评价及其与泥沙运动的关系.环境科学,1985,29-34
    [138]张经等.渤海湾沉积物中若干重金属的存在形式.海洋学报,1987,9(4),520-524
    [139]黄薇文等.黄河河口段沉积物中重金属的地球化学行为.海洋通报,1987,6(2),23-28
    [140]武倩倩,马启敏,王继纲,江志华,王修林.黄河口近岸海域沉积物酸可挥发性硫化物(AVS)的研究.海洋环境科学.2007,26,2,126-129
    [141]鲍永恩等.数理分析法在重金属形态研究中的应用.海洋环境科学,1986,5(3),34-43
    [142]鲍永恩等.锦州湾潮间带底质重金属对海水的污染.环境污染与防治,1988,8-14
    [143]鲍永恩.辽河口海区沉积物与重金属环境背景值的关系.海洋环境科学,1988,7(2),20-27
    [144]鲍永恩.辽河口海区底质重金属环境质量研究.海洋通报,1988,7(3),28-34
    [145]郝静等.渤海辽东湾沉积物中Cu、Pb、Zn、Cd环境背景值初步研究.海洋学报,1989,11(6),742-748
    [146]鲍永恩等.辽东湾北部沉积物对重金属集散的控制作用.海洋学报, 1994,16(3),139-142
    [147]李凤昌,鲍永恩.浅析锦州湾沉积环境变化趋势.海洋环境科学,1994,13(3),27-32
    [148]鲍永恩,刘娟.葫芦山湾沉积物中重金属集散特征及环境背景值.海洋环境科学,1995,14(1),1-8
    [149]周秀艳等.辽东湾河口底质重金属环境地球化学.地球化学,2004,33(3),286-290
    [150]王继龙等.辽河口水域溶解氧与营养盐关系.水资源保护,2004,4,5-7
    [151]孟伟等.渤海主要河口污染特征.环境科学研究,2004,17(6),66-69
    [152]刘成等.环渤海湾诸河口底质现状的调查研究.环境科学学报,2003,23(1),58-63
    [153]张龙军等.2005年夏季环渤海16条主要入海河流的污染状况.环境科学,2007,28(11),2409-2415
    [154]鲍永恩和马嘉蕊.刍议大连湾底质地化环境.海洋科学,1990,4,43-47
    [155]马嘉蕊和鲍永恩.大连湾沉积化学要素分布规律及变化特征.环境化学,1990,9(5),34-40
    [156]鲍永恩和马嘉蕊.大连湾锌的集散特征及变化动态.环境科学学报,1990,10(3),371-377
    [157]鲍永恩和马嘉蕊.大连小窖湾沉积化学要素分布规律及变化特征.海洋通报,1991,10(4),52-58
    [158]鲍永恩.辽东北黄海沿岸底质污染特征.海洋通报,1993,12(3),66-71
    [159]马嘉蕊等.渤海辽宁海湾地化环境与资源开发问题探讨.大连水产学院学报,1993,8(4),22-29
    [160]马嘉蕊等.黄渤海辽宁省海湾的环境现状及其评价.环境科学研究,1995,8(1),27-34
    [161]李捍东等.渤海大沽河河口底质、水界面耗氧特性.环境科学研究,2004,17(5),19-22
    [162]秦延文等.渤海湾水环境氮磷营养盐分布特点.海洋学报,2005,27(2),172-176
    [163]孟伟等.渤海湾潮间带(大沽口)柱状沉积物中的重金属来源判别.海洋通报,2006,25(1),62-69
    [164]刘俐等.海河及邻近海域表层沉积物重金属污染及其分布特征.海洋环境科学,2006,25(2),40-44
    [165]秦延文等.渤海湾潮间带沉积物柱状样重金属污染特征.环境科学,2006,27(2),268-273
    [166]魏修华等.黄渤海海域污染状况及对生态的影响.黄渤海海洋,1993,11(3),76-82
    [167]李淑媛等.渤海沉积物中重金属分布及环境背景值.中国环境科学,1994,14(5),370-376
    [168]李淑媛等.渤海底质重金属环境背景值初步研究.海洋学报,1995,17(2),78-85
    [169]单志欣等.渤海污染对水产资源的影响.齐鲁渔业,1996,13(3),34-36
    [170]张小林.渤海海域海水、沉积物中铅、镉、汞、砷污染进行了研究,调查.黑龙江环境通报,2001,25,3-9
    [171]苏一兵等.陆域活动对渤海海岸带的影响.中国水利,2003,B刊,78-80
    [172]陈江麟等.渤海表层沉积物重金属污染评价.海洋科学,2004,28(12),16-21
    [173]刘文新等.渤海表层沉积物中DDTs、PCBs和酞酸酯的空间分布特征.环境科学学报,2005,25(1),58-63
    [174]李任伟和李原.渤海沿岸环境沉积调查:As、重金属、氮和磷污染.沉积学报,2007,26(1),128-138
    [175]林秀梅等.多元统计在渤海表层沉积物中PAHs源解析上的应用.海洋环境科学,2007,26(2),107-111
    [176]王修林、李克强著.渤海主要化学污染物海洋环境容量.北京,科学出版社.2006.
    [177]陈静等.天津地区土壤多环芳烃在剖面中的纵向分布特征.环境科学学报,2004,24(2),286-290
    [178]赵同科等.环渤海七省市地下水硝酸盐含量调查.农业环境科学学报2007,26(2):779-783
    [179]左谦等.环渤海西部地区表层土壤中的多环芳烃.环境科学学报,2007,27(4),667-671
    [180]Wang C Y, Wang X L. Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. J Environ Sci-China 2007; 19: 1061-1066.
    [181]Zhang Z H, Zhu M Y, Wang Z L, Wang J. Monitoring and managing pollution load in Bohai Sea, PR China. Ocean Coast Manage 2006; 49, 706-716.
    [182]Zheng N, Wang Q C, Liang Z Z, Zheng D M. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ Pollut 2008, Published.
    [183]Zhou H, Zhang Z N, Liu X S, Tu L H, Yu Z S. Changes in the shelf macrobenthic community over large temporal and spatial scales in the Bohai Sea, China. J Mar Res, 2006, Published.
    [184]Zhang C S, Wang L J, Lia G S, Dong S S, Yang J R, Wang X L. Grain size effect on multi-element concentrations in sediments from the intertidal fiats of Bohai Bay, China. Applied Geochemistry 2002, 17, 59-68
    [185]Fan W H, Wang W X, Chen J S, Li X D, Yen Y F. Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China. Marine Pollution Bulletin 2002, 44,816-832
    [186]李凤业,史玉兰.渤海现代沉积研究.海洋科学,1995,2,47-50
    [187]宋云香等.辽东湾北部河口区现代沉积特征.海洋学报,1997,19(5),145-149
    [188]吕丹梅等.黄河口及渤海中南部沉积特征变化及其环境动力分析.中国海洋大学学报,2004,34(1):133-138
    [189]孟伟等.渤海湾西岸潮间带现代沉积速率研究.海洋学报,2005,27(3),67-72
    [190]Gap Y., R. Arimoto, M. S. Hong et al. Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year, J. Geophysical Research, 1992, 97(D4), 3767-3777.
    [191]Zhang J., Huang W. W. et al. Transport of particulate heavy metals towards the China Sea: a preliminary study and comparison, Marine chemistry, 1992, 40, 161-178.
    [192]陈立奇.中国沙漠尘土向北太平洋的长距离输送,海洋学报,1985,7(5),554-560.
    [193]陈立奇.厦门海域大气气溶胶特征,海洋学报,1993,15(2),24-32.
    [194]Li An-chun(李安春),Chen Li-rong(陈丽蓉).Chatacteristics of eolian dust over the Eastern China Seas, CHIN. J. OCEANOL. LIMOL., 1997, 15(2):113-117.
    [195]刘毅,周明煜.近中国海大气气溶胶入海通量的研究,海洋学报,1998,21(5):38-45.
    [196]刘毅,周明煜.北京及近中国海春季沙尘气溶胶浓度变化规律的研究,环境科学学报,1999,19(6):642-647.
    [197]郭志刚、杨作升、陈致林等.东海陆架泥质区沉积有机质的物源分析,地球化学,2001,30(5):416-424.
    [198]Wu Y., Zhang J., Mi T. et al. Occurrence of n-alkanes and polycyelic aromatic hydrocarbons in the core sediments of the Yellow Sea, Marine chemistry, 2001, 76: 1-15.
    [199]Zhang K., Gap H. W. The characteristics of Asian-dust storms during 2000-2002: From the source to the sea. Atmospheric Environment, 2007, doi: 10.1016/j.atmosenv.2007.08.007
    [200]Bindler R., Renberg I., Anderson N., et al. Pb isotope ratios of lake sediments in west Greenland: inferences on pollution sources, Atmospheric environment, 2001, 25, 4675-4685.
    [201]Blais J. M. Using isotope tracers in lake sediments to assess atmospheric transport of lead in Eastern Canada, Water, air and soil pollution 1996, 92: 329-342.
    [202] Monna F., Lancelot J., Croudale I, et al. Pb isotope composition of airborne particulate material from France and the southern United Kingdom: Implications for Pb pollution sources in Urban areas, Environmental Science & Technology, 1997, 31,2277-2286.
    [203] Riston P. I., R. M. Bouse, A. R. Flegfal et al. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary, Marine chemistry, 1999,64, 71-83.
    [204] Farmer J. & Eades L. Stable lead isotope record of lead pollution in Loch Lomond sediments since 1630 A. D., Environmental Science & Technology, 1996, 30, 3080-3083.
    [205] Farmer J., Eades L., Atkins H. et al. Historicl trends in the lead isotopic composition of Archival Sphagm mosses from Scotland (1838-2000), Environmental Science & Technology, 2002, 36,152-157.
    [206] Tatsumoto D M., Patterson C C. Concentration of common lead in some Atlantic and Mediterranean waters and in snow. Nature 1963,199,350-352
    [207] Elbaz-Poulichet F, Holliger P, Huang W W, Martin J M. Lead cycling in estuaries, illustrated by the Gironde estuary, France. Nature 1984 308 409-414
    [208] Flegal A R, Nriagu, J.O., Niemeyer S, Coale K H. Isotopic tracers of lead contamination in the Great Lakes. Nature 1989 339 455-457
    [209] Flegal A R, Duda T F, Niemeyer S. High gradients of lead isotopic composition in north-east Pacific upwelling filaments. Nature 1989 339 458-460
    [210] Flegal A R, Maring H, Niemeyer S. Anthropogenic lead in Antarctic sea water. Nature 1993 365 242-244
    [211] Chow T J, Johnstone M S. Lead isotopes in gasoline and aerosols of Los Angeles Basin, California. Science 1965,147, 502-503
    
    [212] Chow T J, Earl J L. Lead Isotopes in North American coals. Science 1972 176, 510-511
    [213] Maring H, Settle D M, Buat-Menard P, Dulac Francois, Patterson C C. Stable lead isotope tracers of air mass trajectories in the Mediterranean region. Nature 1987 330 154-156
    [214] Sturges W T, Barrie L A. Lead~(206/207) isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions. Nature 1987 329 144-146
    
    [215] Chen, J.M., Tan, M.G., Li, Y.L., Zhang, Y.M., Lu, W.W., Tong, Y.P., Zhang, GL., Li, Y.A., 2005. Lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmospheric Environment 39, 1245-1253.
    [216] Wang, W., Liu, X.D., Zhao, L.W., Guo, D.F., Tian, X.D., Adams, F., 2006. Effectiveness of leaded petrol phase-out in Tianjin, China based on the aerosol lead concentration and isotope abundance ratio. Science of the Total Environment 364, 175-187.
    [217] Br(a|¨)nnvall, M.L., Bindler, R., Renberg, I., Emteryd, O., Bartnicki, J., Billstr(o|¨)m, K., 1999. The Mediaeval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe. Environmental Science and Technology 33, 4391-4395.
    [218] Renberg, I., Bindler, R., Br(a|¨)nnvall, M.L., 2001. Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene 11,511-516
    [219] Gobeil C, Macdonald R W, Smith J N, Beaudin L. Atlantic Water Flow Pathways Revealed by Lead Contamination in Arctic Basin Sediments. Science 2001,293, 1301-1304
    [220] Shotyk, W., Weiss, D., Appleby, P.G., Cheburkin, A.K., Frei, R., Gloor, M., Kramers, J.D., Reese, S., Van Der Knaap, W.O., 1998. History of atmospheric lead deposition since 12370 ~(14)C yr BP from a peat bog, Jura Mountain, Switzerland. Science 281, 1635-1640
    [221] Rosman K J R, Chisholm W, Boutron C F, Candelone J P, G(o|¨)rlach. Isotopic evidence for the source of lead in Greenland snows since the late 1960s. Nature 1993 362 333-335
    [222] 林茂福、李太俊、傅家谟.我国东海大陆架沉积物中有机粘土复合体与某些金属元素富集关系的研究,地球化学,1983,4:417-425.
    [223] 李柚霞.东海陆架沉积物的中子活化分析和地球化学研究,海洋学报,1986,8(2):566-572.
    [224] 王正方.长江口海域铜的地球化学行为,地球化学,1990,1:90-96.
    [225] 陈松、许爱玉.长江口表层沉积物Fe、Mn、Zn、Co、Ni的地球化学特征,台湾海峡,1987,6(1):13-19.
    [226] 陈敏仪、朱旭.长江口、杭州湾表层沉积物中汞的地球化学行为,海洋与湖沼,1988,19(6):601-605.
    [227] 张经,应时理.长江口中的颗粒态重金属,中国主要河口的生物地球化学研究(张经主编),海洋出版社(北京):1996:146-159.
    [228]GaoA. G., D. L. Cai and S. L. Gao. Geochemical characteristics of the elements in the sediment of the Yangtze estuary, Proc. of the Japan-China Joint workshop on the cooperative study of the marine environment, edited by M. Watanabe and M. Y. Zhu, Research report of the National Institute for Environmental Studies, Japan, 1999: No. 151: 151-158.
    [229]唐运千,卢冰.长江口有机物质的生物地球化学特征,中国主要河口的生物地球化学研究(张经主编),海洋出版社(北京),1996:107-132.
    [230]赵学坤、杨桂朋.海洋沉积物中稠环芳烃的研究进展,海洋科学,2000,24(12):16-20.
    [231]陈静生,高学民,M.Qi等.我国东部河流沉积物中的多氯联苯,环境科学学报,1999,19(6):614-618.
    [232]邓南圣,吴峰.环境化学教程.武汉大学出版社,30-46,66-76,112-113
    [233]浙江大学普通化学教研组.高等教育出版社,2000,147-151
    [234]Ahn J. H., Grant S. B. Size Distribution, Sources, and Seasonality of Suspended Particles in Southern California Marine Bathing Waters. Environmental Science & Technology. 2007, 41,695-702
    [235]印永嘉,奚正楷,李大珍.物理化学简明教程.高等教育出版社,418-435
    [236]戴树桂.主编.环境化学.高等教育出版社,2002,118-160
    [237]Chester, R., 2000. Marine Geochemistry. Blackwell Science, Malden.
    [238]Brown J, Coiling A, Park D, Phillips J, Rothery D, Wright J. Ocean chemistry and deep-sea sediments. Pergamon Press. 26-36
    [239]Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern Epieontinental-shelf setting: The Yellow Sea. Marine Geology, 1991, 98:51-72
    [240]Clemens R, Patrice D C. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 2000; 34: 5084-5091.
    [241]David B. Tracking Hexavalent Cr in Groundwater. Science 2002; 295, 2024-2025.
    [242]Fernandes H M. Heavy metal distribution in sediments and ecological risk assessment: the role of diagenetic processes in reducing metal toxicity in bottom sediments. Environ Pollut 1997; 97(3), 317-325.
    [243]Giusti L. Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Environ Int 2001.26. 275-286.
    [244] Critto A, Cation C, Marcomini A. Screening ecological risk assessment for the benthic community in the Venice lagoon (Italy). Environ Int 2005, 31, 1094-1100.
    [245] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 1980, 14, 975-1001.
    [246] Ip, C.C.M., Li, X.D., Zhang, G., Wai, O.W.H., Li, Y.S. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution 2007, 147, 311-323.
    [247] James P S, Raveendrav V I, Timthy E F. 1995. Multivariate Statistical Examination of Spatial and Temporal Patterns of Heavy Metal Contamination in New Bedford Harbor Marine Sediments. Environ Sci Technol 1995, 29, 1781-1788.
    [248] Kostas D D, Thomas P O. Normalization elemental sediment contamination in the coastal United States. Environ Sci Technol 1995; 29: 470-477.
    [249] Long, E.R., MacDonald, D.D., Smith, S.L., Calder, F.D. Incidence of adverse biological effects within range of chemical concentrations in marine and estuarine sediments. Environ. Manage. 1995, 19, 18-97.
    [250] M(u|¨)ller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 2, 109-118.
    [251] National Standard of PR China, 2002. Marine Sediment Quality (GB 18668-2002). Standards Press of China, Beijing (in Chinese).
    [252] Qin, Y.S., Zhao, Y.Y., Chen, L.R., Zhao, S.L., 1990. Geology of Bohai Sea. China Ocean Press, Beijing, 3-200 pp.
    [253] Sandra C, Pierre G, Marco P, M Helena C. Delineation of Estuarine Management Areas Using Multivariate Geostatisties: The Case of Sado Estuary. Environ Sci Technol 2003; 37, 4052-4059.
    [254] SOA (State Oceanic Administration of China), 2003. China ocean environmental quality bulletin of 2002[EB]. WWW Page, http://www.soa.gov.cn.
    [255] SOA (State Oceanic Administration of China), 2004. China ocean environmental quality bulletin of 2003[EB]. WWW Page, http://www.soa.gov.cn.
    [256] SOA (State Oceanic Administration of China), 2005. China ocean environmental quality bulletin of 2004[EB]. WWW Page, http://www.soa.gov.en.
    [257] SOA (State Oceanic Administration of China), 2006. China ocean environmental quality bulletin of 2005[EB]. WWW Page, http://www.soa.gov.cn.
    [258] SOA (State Oceanic Administration of China), 2007. China ocean environmental quality bulletin of 2006[EB]. WWW Page, http://www.soa.gov.cn.
    [259] SOA (State Oceanic Administration of China), 2008. China ocean environmental quality bulletin of 2007[EB]. WWW Page, http://www.soa.gov.cn.
    [260] Yang M C, Chi Q H, Gu T X, Wang C S. The chemical compositions of the upper continental crust. Science In China, 1997, 27(3), 193-199. (In Chinese)
    [261] 任美锷.黄河的输沙量:过去、现在和将来--距今15万年以来的黄河泥沙收支表.地球科学进展,2006,21(6):551-563
    [262] 叶庆华,陈沈良,黄狮,薛允传,田国良,陈述彭,石亚男,刘庆生,刘高焕.近、现代黄河尾闾摆动及其亚三角洲体发育的景观信息图谱特征.中国科学D辑:地球科学,2007,37(6):813-823
    [263] 吴德星,万修全,鲍献文,牟林,兰健.渤海年和年夏季温盐场及环流结构的比较.科学通报,2004,49(3),287-292
    [264] 雷坤,孟伟,郑丙辉,侯小珉,孙贻超.渤海湾西岸入海径流量和输沙量的变化及其环境效应.环境科学学报,2007,27(12):2052-2059
    [265] 王海宁.滦河近期人海量分析.河北水利科技,1999,20(4):31-33
    [266] 赵一阳,鄢明才.中国浅海沉积物地球化学.科学出版社.2005
    [267] 文启忠,刁桂仪,潘景瑜等。黄土高原黄土的平均化学成分与地壳克拉克值的类比。土壤学报,1996,33(3):225-231
    [268] Wedepohl, K. H. Handbook of Geochemistry. Vol:l, 248 (Springer, Berlin, 1969)
    [269] 张义丰、李凤新.黄河、滦河三角洲的物质组成及其来源.海洋科学,1983,3:15-18
    [270] 陈丽蓉,栾作峰,郑铁民,徐文强,董太禄.渤海沉积物中的矿物组合及其分布特征的研究.海洋与湖沼,1980,11(1):46-64
    [271] Arimoto, R., Duce, R. A., Ray, B. J., et al, 1985. Atmospheric trace elements at Enewetak Atoll Ⅱ. Transport to the ocean by wet and dry deposition. Journal of Geophysical Research 90 (C), 2319-2408.
    [272] Chen, L. Q., Wang, Z. H., Yang, X. L., Yu, Q., 1999. Characteristics of metals in atmosphere over the western Taiwan Strait Ⅱ. Sources and fluxes. Acta Oceanologica Sinica 21(1), 23-31.
    [273] Chen, X. M., Feng, L. J., Zhang, A. H., Qi, J. H., Zhang, M. P., Li, X. G., 2003. Deposition fluxes of several metals in TSP in Qingdao region. Marine Environmental Science 22(4), 18-21. (in Chinese)
    [274] Cooper, D. J., Watxon, A. J., Nightingale, P. D., 1996. Large decrease in ocean-surface CO_2 fugacity in response to in situ iron fertilization. Nature 383(6600), 511-513.
    [275] Dockery, D. W., Arden, P. C., Xu, X. P., Spengler, J. D., Ware, J. H., Fay B G, Apenzier F E. 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329 (24), 1753-1759.
    [276] Duce, R. A., Lissps, Merrill, J. T., et al, 1991. The atmospheric input of trace species to the world ocean [J]. Biogeochemical Cycles 5(3), 193-259.
    [277] Duce, R. A., Unni, C. K., Ray, B. J., Prospere, J. M., Merrill, J. T., 1980. Long-range atmospheric transport of soil dust from Asia to the tropical north Pacific: temporal variability. Science 209, 1522-1524.
    [278] Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D.Drewnick, F., Hings, S., Jung, D., Borrmann, S., Andreae, M. O., 2006. Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles. Science 312, 1375-1378.
    [279] Fang, M., Zheng, M., Wang, F., Chim, K. S., Kot, S. C., 1999. The long-range transport of aerosols from Northern China to Hong Kong-A multi-technique study. Atmospheric Environment 33, 1 803-1 817.
    [280] Fu, P. J., Wang, S. H., Chen, C. H., 1998. The hot discussion about climate change: the climate effects of aerosols. Advance in Earth Sciences 13 (4), 388-392. (in Chinese)
    [281] Guo, Z. G., Sheng, L., Feng, J., Fang, M., 2003. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China. Atmospheric Environment 37, 1825-1834.
    [282] Huang, S. H., Jiang, W. M., Wang, D. F., Zhang, G. J., 1989. The distribution of the acidity of precipitation in cities and aerosol washout. Seientia Meteorologiea Sinica 9(2), 177-183.
    [283] http://www.stats-qd.gov.cn/.
    [284] In, H. J., Park, S. U., 2002. A simulation of long-range transport of yellow sand observed in April 1998 in Korea. Atmospheric Environment 36,4173-4187.
    [285] Lefevre, N., Watson, A. J., 1999. Modeling the geochemical cycle of iron in the ocean and its impact on atmospheric CO_2 concentrations. Global Biogeochemical Cycles 13(3),727-736.
    [286] Li, A. C, Chen, L. R., 1997. Characteristics of eolian dust over the Eastern China Seas. Chinese Journal of Oceanology and Limnology 15(2), 113-117.
    [287] Liu, Y., Zhou, M. Y., 1999. Temporal and spatial characteristic of aerosols over the East China Sea Acta Oceanologica Sinica 21(1), 32-40.
    [288] Luo, Y. R., 2001. Analysis of the 1980's atmospheric aerosol optical depth over China. Acta Meteorologica Sinica 59 (1), 77-87.
    [289] Martin, J.H., 1992. Iron as a limiting factor in oceanic productivity. Environmental Science Research 43,123-137.
    [290] Martin, J. H., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371,123-129.
    [291] Meinrat, O., Andreae, and Paul, J. Crutzen, 1997. Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry. Science 276:1052-1058.
    [292] Qian, Y., Fu, C. B., Wang, S. Y., 1999. Mineral dust and climate change. Advance in Earth Sciences 14(4), 391-394. (in Chinese with English abstract).
    [293] Ridgwell, A. J., Maxlin, M. A., Watson, A. J., 2002. Reduced effectiveness of terrestrial carbon sequestration due to an antagonistic response of ocean productivity. Geophysical Research Letters 29(6), 19/1-19/4.
    [294] Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., 1993a. Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science and Technology 27, 1892-1904.
    [295] S. Tokahoglu and S. Kartal, 2006. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri. Atmospheric Environment 40,2797-2805.
    [296] Schwartz, J., Dockery, D. W., Neas, L. M., 1996. Is daily mortality associated specifically with fine particles? Journal of Air Waste Management Association. 46, 927-939.
    
    [297] Sheng, L. F., Geng, M., Wang, Y. X., et al, 2003. Effects of dust storms on atmospheric aerosols in Qingdao in Spring 2002. Research of Environmental Sciences (in Chinese with English abstract) 16 (5), 11 -17.
    [298] Singh, C.V., 2006. Pattern characteristics of Indian monsoon rainfall using principal component analysis (PCA). Atmospheric Research 79,317-326.
    [299] Su, W. Y, Chen, C. H., 1997. The effects of aerosol optical absorption characteristics on lower atmospheric heating rates. Plateau meteorology 16 (4), 353-358.
    [300] Taylor, S. R., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica. Acta 28,1273-1285.
    [301] Uemastsu, M., Duce, R. A., Prospero, J. M., Chen, L., Merrill, J. T., McDonald, R. L., 1983. Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geophysical Research 88, 5343-5352.
    [302] Wang, M., Hu, M., 2001. Mass Concentration and Major Inorganic Compositions of Coastal Aerosol in Qingdao. Environmental Science 22(1), 6-9.
    [303] Wang, X., Bian, L. G., Lu, C. G., 2003. A Study of Characteristic Parameters of Atmosphere Boundary Layer over Beijing in Urban and Suburban Area in Autumn. Climatic and Environmental Research 8(4), 475-484.
    [304] Watson, A, J., 1999. Iron in the oceans: influences on biology, geochemistry and climate. Progress in Environmental Science 1(4), 345-370.
    [305] Watson, A. J., Bakker, D. C, Ridgwell, A. J., et al, 2000. Effect of iron supply on Southern ocean CO_2 uptake and implications for glacial atmospheric CO_2. Nature 407(6805),730-733.
    [306] Yao, X.H., Lau, A.P.S., Fang, M., Chan, C.K., Hu, M., 2003. Formation and size distribution characteristics of ionic species in atmospheric particulate matter in Beijing, China:-1 inorganic ions. Atmospheric Environment 37,2991-3000.
    [307] Zhang, D. Z., Shi, G Y, Iwasaka, Y., Hu, M., 2000. Mixture of sulfate and nitrate in coastal atmospheric aerosols: individual particle studies in Qingdao, China. Atmospheric Environment 34,2669-2679.
    [308] Zhang, Z. G., Friedlander, S. K., 2000. A comparative study of chemical database for fine particle Chinese aerosols. Environmental Science and Technology 34,4687-4694.
    
    [309] Zheng, M., Guo, Z. G, Fang M., et al., 2005. Dry and wet deposition of elements in H ong Kong. Marine chemistry 97, 124-139.
    [310] Zhuang, G S., Guo, J. H., Yuan, H., et al., 2003. Coulping and feedback between iron and sulphur in air-sea exchange. Chinese Science Bulletin 48 (11), 1080-1086.
    [311] Cheburkin, A.K., Shotyk, W., 1996. An Energy-dispersive mini-probe multi-element analyzer (EMMA) for direct analysis of Pb and other trace elements in peats. Fresenius Journal of Analytical Chemistry 354, 688-691.
    [312] Choi, M.S., Yi, H.I., Yang S.Y., Lee, C.B., Cha, H.J., 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Marine Chemistry 107, 255-274.
    [313] DeMaster, D.J., McKee, B.A., Nittrouer, C.A., Qian, J., Cheng, G, 1985. Rates of sediment accumulation and particles reworking based on radiochemical measurements from shelf deposits in the East China Sea. Continental Shelf Research 4,143-158.
    [314] Foster, GD., Roberts, E.CJr., Gruessner, B., Venlinsky, D.J., 2000. Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Applied Geochemistry 15, 901-915.
    [315] Guo, Z.G., Lin, T., Zhang, G., Zheng M., Zhang, Z.Y., Hao, Y.C., Fang, M., 2007. The sedimentary fluxes of polycyclic aromatic hydrocarbons in the Yangtze River Estuary coastal sea for the past century. Science of the Total Environment 386, 33-41.
    [316] Huh, C.A., Chen, H.Y., 1999. History of lead pollution recorded in East China Sea sediments. Marine Pollution Bulletin 38, 545-549.
    [317] Huh, C.A., Su, C.C., 1999. Sedimentation dynamics in the East China Sea elucidated from~(210)Pb, ~(137)Cs and~(239,240)Pu. Marine Geology 160, 183-196.
    [318] Ip, C.C.M., Li, X.D., Zhang, G., Farmer, J.G., Wai, O.W.H., Li, Y.S., 2004. Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China. Environmental Pollution 132,157-172.
    [319] Jiang, Y.H., Jiang, S.Y., Ling, H.F., Dai, B.Z., 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters 241, 617-633.
    [320] Kylander, M.E., Weiss, D.J., Martinez Cortizas, A., Spiro, B., Garcia-Sanchez, R., Coles, B.J., 2005. Refining the pre-industrial atmospheric Pb isotope evolution curve in Europe using an 8000 year old peat core from NW Spain. Earth and Planetary Science Letters 240,467-485.
    [321] Lima, A.L., Eglinton, T.I., Reddy, C, 2003. High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. Environmental Science and Technology 37, 53-61.
    [322] Lima, A.L., Bergquist, B.A., Boyle, E.A., Reuer, M.K., Dudas, F.O., Reddy, CM., Eglinton, T.I., 2005. High-resolution historical records from Pettaquamscutt River basin sediments: 2. Pb isotopes reveal a potential new stratigraphic marker. Geochimica et Cosmochimica Acta 69,1813-1824.
    [323] Lin, G., 1998. Energy development and environmental constraints in China. Energy Policy 26,119-128.
    [324] Liu, J.P., Xu, K.H., Li, A.C., Milliman, J.D., Velozzi, D.M., Xiao, S.B., Yang, Z.S., 2006. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 85,208-224.
    [325] Moor, H.C., Schaller, T., Sturm, M., 1996. Recent changes in stable lead isotope ratios in sediments of lake Zug, Switzerland. Environmental Science and Technology 30,2928-2933.
    [326] Soto-Jimenez, M.F., Hibdon, S.A., Rankin, C.W., Aggarawl, J., Ruiz-Fernandez, A. C.,Paez-Osuna, F., Flegal A. R., 2006. Chronicling a century of lead pollution in Mexico: stable lead isotopic composition analyses of dated sediment cores. Environmental Science and Technology 40, 764-770.
    [327] Todt, W., Cliff, R.A., Hanser, A., Hofmann, A.W., 1996. Evaluation of a ~(202)Pb-~(205)Pb double spike for high-precision lead isotope analysis. Geophysical Monograph 95,429-437.
    [328] Tuan, C., Ng, L.F., 2007. The place of FDI in China's regional economic development: Emergence of the globalized delta economies. Journal of Asian Economics 18, 348-364.
    [329] Ugur, A., Yener, G., 2001. Accumulation rates and sediment deposition in the Gokova Bay in Aegean Sea Turkish Coast. Applied Radiation and Isotopes 55,581-588.
    [330] Yang, Z., Wang, H., Saito, Y., Milliman, J.D., Xu, K., Qiao, S., Shi, G., 2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research 42, 04407-04417.
    [331] Zhang, G., Parker, A., House, A., Mai, B.X., Li, X.D., Kang, Y.H., Wang, Z.S., 2002. Sedimentary Records of DDT and HCH in the Pearl River Delta, South China. Environmental Science and Technology 36, 3671-3677.
    [332] Zheng, J., Tan, M.G., Shibata, Y., Tanaka, A., Li, Y., Zhang, G.L., Zhang, Y.M., Shan, Z.C., 2004. Characteristics of lead isotope ratios and elemental concentrations in PM_10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmospheric Environment 38,1191-1200.
    [333] Zonta, R., Collavini, F., Zaggia, L., Zuliani, A., 2005. The effect of floods on the transport of suspended sediments and contaminants: a case study from the estuary of the Dese River (Venice Lagoon, Italy). Environment International 31, 948-958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700