基于非线性转子动力学的水轮发电机组振动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力发电系统是一类机械、电磁和水力等因素相互影响、相互制约的复杂非线性动力系统,其运行过程中水电机组振动故障的产生和发展包含了大量不确定性因素,难以用传统建模理论与方法进行精确的数学模型描述。同时,随着水电在电力能源结构中所占比重逐渐增大,且机组单机容量和水头的大幅提高,机组振动问题日益突出,对电网的安全稳定运行造成的影响也日益凸显。因此,迫切需要深入研究不同机组振动故障的产生及其相互作用机理,揭示系统参数对机组轴系振动稳定性及失稳影响的规律,为进一步提高我国水电机组的设计和运行水平提供重要的理论依据和技术支撑。本文以非线性转子动力学理论和方法为基础,建立不同振动故障作用下机组轴系非线性动力学模型和运动微分方程,综合运用分岔图、Poincare截面图、轴心轨迹图、时域波形图和幅值谱图等多种手段,系统地研究了转定碰摩与轴承松动耦合故障下机组轴系的动态响应、联轴器综合不对中下机组的动力学行为、机组轴系的非线性电磁振动特性和水轮机密封系统对机组振动及稳定性的影响等。论文主要的研究成果如下:
     (1)综合考虑裂纹深度对转轴刚度的影响以及开闭函数的连续性,提出一种新的裂纹开闭规律,构建了裂纹和碰摩耦合故障转子系统的运动微分方程,分析了不同故障下转子系统的分岔与混沌行为,研究了定子径向刚度、裂纹深度和裂纹角度等系统参数对耦合故障转子系统动力学特性的影响。研究表明,随着定子径向刚度的增大,转子碰摩力不断增大逐渐成为主导因素,使系统响应由混沌运动不断向周期运动演变;不同裂纹深度和裂纹角度下转子系统随转速变化表现出不同的分岔演化过程,在临界转速附近,其响应逐渐由复杂的混沌运动向周期4运动不断演变,在超临界转速区则以拟周期运动为主要形式,且出现了不同的倍周期运动。
     (2)针对轴承松动易导致发电机转子与定子发生碰摩的问题,考虑发电机定子与基础间的连接刚度和阻尼,建立了轴承松动与碰摩耦合故障下水轮发电机组非线性动力学模型,分析了机组转频比、转子质量偏心及摩擦系数等参数对转子、定子及松动轴承的振动影响,重点研究了发生碰摩时定子响应的非线性动力学行为。分析发现,刚度比不影响碰摩的发生区域,系统响应随转频比和摩擦系数变化存在周期运动、倍周期运动和拟周期运动等,幅值频谱中出现幅值较大的谐波分量;随着转子质量偏心的增大,转子与定子发生碰摩的区域不断增大,且在两个不同的转频区间内都有碰摩现象发生,其响应出现了拟周期运动。
     (3)在分析刚性联轴器综合不对中运动机理的基础上,建立了水轮发电机组轴系综合不对中的动力学模型,分析了该系统随机组转速、不对中平行量及不对中偏角等参数变化的非线性动力学行为。研究发现,随着不对中故障的增大,系统响应存在有周期运动、周期3运动及复杂的拟周期运动。在拟周期运动区域,转子和转轮的幅值谱图中除1倍频外,还存在幅值较大的低频分量,特别是在0.3-0.4倍频处,且不对中平行量对转子的振动影响较大;在转速上升的过程,转子和转轮响应均为周期运动,其振幅不断变化,当转速进一步增大时,系统响应会由周期运动演变为拟周期运动,呈现出丰富的非线性动力学行为。
     (4)根据电磁拉力与转子偏心的非线性关系,将气隙磁导展开为Fourier级数,推导出不平衡磁拉力的具体解析表达式,建立了水轮发电机组轴系非线性电磁振动的动力学模型,研究了机组转速、励磁电流及转子质量偏心等系统参数对机组轴系振动的影响。结果表明,随着机组转速上升过程中,发电机转子在1-1.5倍频和0.5-1倍频处出现了谐波分量,转轮则在0.5-1倍频处存在幅值较大的低频分量;随着励磁电流和转子质量偏心的增大的变化,系统响应存在周期运动和复杂的拟周期等,系统振幅不断变化,转子的1倍频幅值不断增大,高频分量不断减少,而转轮的1倍频幅值不断减小,低频分量不断增多。
     (5)针对随着水轮发电机组轴系结构参数的提高,作用在水轮机转轮上的密封水流激振力将显著增大,容易导致机组异常振动的问题,采用Muszynska非线性密封力模型,建立了密封激振力作用下水轮发电机组密封轴系非线性动力学模型,系统地分析了机组导轴承的振动特性和水轮机转轮的动态稳定性。研究表明,各导轴承运动振幅随转子质量偏心的增大不断变化;水轮机转轮受到非线性密封力作用后发生自激振动,呈现出复杂的动力学行为;密封结构的各主要参数对机组主轴系统稳定性有很大的影响。
Hydroelectric system is a complex nonlinear dynamic hydro-mechanical-electrical system. As the system is running, there are a number of uncertain factors in the generation and development of vibration fault of hydropower generating unit, which are difficult to describe accurately using mathematical models. And, with the proportion of energy in the power structure, and the rapid increase of the single unit capacity and head of the hydropower generating units, vibration problems have become increasingly prominent, which serious threaten to the safe and reliable operation of the hydroelectric plant, even power grid. Once a failure for generating units occurs, it may cause the plant to non-planned shutdown or reduce capacity, even serious heavy casualties and serious damage to the system. Therefore, to further improve our design and operation of hydroelectric generating units and provide important theoretical and technical support, we must study on mechanism of different vibration faults and interaction between them and reveal influence of fault factors to the unit vibration stability and instability law. In this paper, based on nonlinear rotor dynamics theory and methods, many approaches such as bifurcation diagram, Poincare map, axis orbit, time domain waveform and amplitude spectrum diagram are employed to analyze the vibration characteristics on shaft system which including dynamic behavior of the rotor system with rotor rub-impact and bearing loose coupling faults, the dynamic response of generator rotor and turbine runner with comprehensive misalignment, nonlinear electromagnetic vibration characteristics of unit shaft and the analysis of turbine vibration and stability of the turbine seal system with considering the vibration of universal operation of the unit. The main contents of the paper as follows:
     (1) With considering the crack depth to shaft stiffness and continuous of switching function of crack, an improved switching crack model in a beam is presented. Dynamic characteristics of a rotor-bearing system with rub-impact and transverse crack are attempted. Due to the presence of coupling faults, the system becomes highly nonlinear. The stiffness of stator, crack depth, crack angle effects on the response of a rotor are investigated using numerical method. Various nonlinear phenomena compressing periodic, quasi-periodic and chaotic motions with rotating speed as a control parameter in the rotor system are analyzed. The research results show that as the increase of the stiffness, rub forces increase and gradually come to be the dominant factor, leading responses of the rotor evolving from chaos to periodic motions. In the cases of different cracks depth and crack angular, the responses of the rotor system present different bifurcation trajectory. Within the subcritical speed range responses of the rotor evolves from complex chaotic motion to four-periodic motion and within supercritical speed range mainly are quasi-periodic motions.
     (2) In order to solve the fault problems of the bearing looseness and rotor local rubbing caused by some nonlinear factors, considering the rigidity and damping between the stator and foundation, a dynamic model for the hydroelectric generating unit with coupling faults of bearing looseness and rub-impact is established. The nonlinear dynamic behaviors of the shaft system are analyzed, as ratio of rotation frequency, mass eccentricity of rotor and friction coefficient varied. The focus is mainly on the process of the stator-rotor rub-impact. The results show that the stiffness is unrelated to the range of rub occurring, and various non-linear phenomena compressing periodic, three-period and quasi-periodic motions occurs at different speed and there are some low frequencies with large amplitude in the amplitude spectrum Moreover, the speed range of rotor rub-impact enlarges constantly and dynamic responses of the system are complex as the increasing of mass eccentricity of the rotor.
     (3) Based on movement mechanism of rigid coupling with misalignment, a dynamic model for the shaft system with coupling faults of misalignment and rub-impact is established. The dynamic behaviors of the generator rotor and turbine runner are investigated, as rotating speed, parallel misalignment and angular misalignmen varied. Various nonlinear phenomena compressing periodic, three-periodic and quasi-periodic motions in the system are observed. The results reveal that when response is quasi-periodic motion, there are some low frequencies with large amplitude, especially at the 0.3-0.4X-ratational speed. While the speed goes up, their responses are periodic motion and the amplitudes are constantly changing and the responses will evolve from periodic motion to quasi-periodic motion as the increase of the speed.
     (4) According to nonlinear relation of unbalanced magnetic pull (UMP) and mass eccentricity of the rotor, the air-gap permeance is expressed as a Fourier series. Then the analytical expression of UMP is derived and the kinetic equation is set up to describe electromagnetic vibration of the shaft system. Numerical method is adopted to analyze the nonlinear dynamic response of the rotor and runner with rotation speed, exciting current and mass eccentricity of the rotor as a control parameter, respectively. Simulation results display that There are many harmonics with large amplitude at the 1~1.5X and 0.5~1X for generator rotor and at the 0.5~1X for turbine runner as the speed increasing. As the increase of exciting current and mass eccentricity, various nonlinear phenomena compressing periodic and complicated quasi-periodic motions in the system are observed, and the amplitude at the 1X increases and high frequency components decrease for the generator rotor, but it is opposite for the turbine runner.
     (5) As the structural parameters of hydroelectric generating units shaft increase, the flow induced force imposed on the hydraulic turbine runner will significantly increase, which easily causes abnormal vibration of the unit. According to the problem, the Muszynska's model of the nonlinear seal force is applied to building the dynamic equation of the shaft system with flow induced force. The vibration characteristics of the guide bearings at different mass eccentricity and dynamic stability of the hydraulic turbine rotor is analyzed. The results show that the vibration amplitude of three guide bearings is constantly changing with the increase of mass eccentricity. There is occurrence of Hopf bifurcation after threshold speed is exceeded and rich nonlinear motions such as periodic and quasi-periods, for hydraulic turbine runner. The main parameters of the sealed structure have important impaction the stability of the rotor system.
引文
[1]韩志勇,张国祥.科学发展观指导下的水电能源开发政策研究.水力发电,2008,34(3):1-4.
    [2]周建平.水电工程勘察设计项目经理实用指南.北京:中国电力出版社,2007.
    [3]安学利.水力发电机组轴系振动特性及其故障诊断策略:[博士学位论文],华中科技大学:华中科技大学图书馆,2009,12.
    [4]宋志强,水电站机组及厂房结构耦合振动特性研究:[博士学位论文],大连理工大学:大连理工大学图书馆,2009,12.
    [5]R. Gastao, S. Ailton. Power Swing Produced by Hydropower Unite. Proceedings of IAHR 11th Symposium, Amsterdam,1982.
    [6]S. Erikkson, K. Erikkson. Advanced systems detect turbine vibrations. Modern Power System,1991.
    [7]乔卫东,马薇,刘宏昭,等.基于非线性模型的水轮发电机组轴系耦合动力特性分析.机械强度,2005,27(3):312-315.
    [8]马震岳,董毓新.水轮发电机组动力学.大连:大连理工大学出版社,2003.
    [9]王银玲.水轮机主轴轴心轨迹的数值仿真分析:[硕士学位论文],华中科技大学:华中科技大学图书馆,2007,6.
    [10]陈拥军.随机转子动力学与控制及旋转柔性圆盘动力学:[博士学位论文],浙江大学:浙江大学图书馆,2006,7.
    [11]闻邦椿,武新华,丁千,等.故障旋转机械非线性动力学的理论与试验.北京:科学出版社,2004.
    [12]F. Chu, Z. Zhang. Bifurcation and chaos in a rub-impact Jeffcott rotor system. Journal of Sound and Vibration,1998,210(1):1-18.
    [13]E.V. Karpenko, M. Wiercigroch, M.P. Cartmell. Regular and chaotic dynamics of a discontinuously nonlinear rotor system. Chaos, Solitons and Fractals,2002.13: 1231-1242.
    [14]M. Karlberg, J.O. Aidanpaa. Numerical investigation of an unbalanced rotor system with bearing clearance. Chaos, Solitons and Fractals,2003,18:653-664.
    [15]J.Y.Cao, C.B. Ma, Z.D. Jiang, et al. Nonlinear dynamic analysis of fractional order rub-impact rotor system. Communications in Nonlinear Science Numerical Simulation,2011,16:1443-1463.
    [16]B.O. Al-Bedoor. Transient torsional and lateral vibrations of unbalanced rotors with rotor-to-stator rubbing. Journal of Sound and Vibration,2000,229(3):627-645.
    [17]李永强,刘杰,刘宇,等.碰摩转子弯扭摆耦合振动非线性动力学特性.机械工程学报,2007,43(2):44-49.
    [18]Z.W. Yuan, F.L. Chu, S.B. Wang, et al. Influence of rotor's radial rub-impact on imbalance responses. Mechanism and Machine Theory,2007,42:1663-1667.
    [19]X.L. An, J.Z. Zhou, X.Q. Xiang, et al. Dynamic response of a rub-impact rotor system under axial thrust. Archive of Applied Mechanics,2009,79(11):1009-1018.
    [20]S. Edwards, A. W. Lees, M. I. Friswell. The influence of torsion on rotor/stator contact in rotating machinery. Journal of Sound and vibration,1999,225(4): 767-778.
    [21]Z.C. Sun, J.X. Xu, T. Zhou. Analysis on complicated characteristics of a high-speed rotor system with rub-impact. Mechanism and Machine Theory,2002,37:659-672.
    [22]W.M. Zhang, G. Meng. Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS. Sensors and Actuators A,2006,127:163-178.
    [23]G. Meng, W.M. Zhang, H. Huang, et al. Micro-rotor dynamics for micro-electro-mechanical systems (MEMS). Chaos, Solitons and Fractals,2009,40: 538-562.
    [24]李振平,张金换,金志浩,等.碰摩转子-轴承系统非线性动力学行为研究.航 空动力学报,2004,19(2):179-183.
    [25]孟泉,王洪礼.碰摩转子-滑动轴承系统的分岔与混沌.机械强度,2004,26(6):596-599.
    [26]杜元虎,张松鹤,昂雪野,等.碰摩转子-轴承系统周期运动稳定性分析.汽轮机技术,2005,47(3):170-172.
    [27]刘长利,夏春明,郑建荣,等.碰摩和油膜耦合转子系统周期运动分岔分析,振动与冲击,2008,27(5):88-88.
    [28]C.W. Chang-Jian, C.K. Chen. Non-linear dynamic analysis of rub-impact rotor supported by turbulent journal bearings with non-linear suspension. International Journal of Mechanical Science,2008,50:1090-1113.
    [29]马辉,陈雪莲,王凯,等.油膜失稳引起的轴承碰摩故障研究.东北大学学报(自然科学版),2007,28(9):1313-1316.
    [30]何韶君,张松鹤.非线性弹性碰摩转子周期运动稳定性分析.机械科学与技术,2007,26(10):1317-1320.
    [31]吴敬东,王娜,侯秀丽,等.非稳态油膜力作用下非线性刚度转子系统的碰摩故障分析.中国机械工程,2007,18(15):1850-1854.
    [32]罗跃纲,金志浩,刘长利,等.非线性摩擦力对碰摩转子-轴承系统混沌运动的影响.东北大学学报(自然科学版),2003,24(9):843-846.
    [33]陈宏,张晓伟,李小彭,等.不对称润滑对碰摩转子-轴系系统的动力学影响.振动、测试与诊断,2005,25(1):13-16.
    [34]吴敬东,刘长春,王宗勇,等.非对称转子系统的碰摩运动研究.振动工程学报,2006,19(1):37-41.
    [35]王正浩,袁惠群,范改燕.考虑轴初弯曲时转子系统局部碰摩的分叉与混沌行为.机械设计,2008,25(2):37-41.
    [36]李成英,王剑.局部碰摩与油膜力耦合作用下对轴承-转子-定子系统分叉与混 沌行为的影响.机械强度,2006,28(1):123-126.
    [37]袁惠群,吴英祥,李东,等.滑动轴承-转子-定子系统耦合故障的非线性动力学特性.东北大学学报(自然科学版),2006,27(5):520-523.
    [38]Y.S. Choi. Investigation on the whirling motion of full annular rotor rub. Journal of Sound and Vibration,2002,258(1):191-198.
    [39]F.L. Chu, W.X. Lu. Experimental observation of nonlinear vibrations in a rub-impact rotor system. Journal of Sound and Vibration,2005,283:621-643.
    [40]E.V. Karpenko, M. Wiercigroch, E.E. Pavlovskaia, et al. Experimental verification of Jeffcott rotor model with preloaded snubber ring. Journal of Sound and Vibration, 2006,298:907-917.
    [41]刘长利,姚红良,张晓伟,等.碰摩转子轴承系统非线性振动特征的实验研究.东北大学学报(自然科学版),2003,24(10):970-973.
    [42]朱占方,褚福磊.碰摩转子系统动力学特性的实验研究.汽轮机技术,2005,47(3):190-192.
    [43]向玲,胡爱军,唐贵基,等.转子动静碰摩故障仿真与试验研究.润滑与密封,2005,171(5):78-80.
    [44]王正浩,袁惠群,张宇.实验转子系统的动力学行为.机械设计,2009,26(1):4-8.
    [45]G. Adiletta, A.R. Guido, C. Rossi. Chaotic motions of a rigid in short journal bearings. Nonlinear Dynamics,1996,10:251-269.
    [46]Jiun-Shen Wang, Cheng-Chi Wang. Nonlinear dynamic and bifurcation analysis of short aerodynamic journal bearings. Tribology International,2005,38:740-748.
    [47]焦映厚,李明章,陈照波.不同油膜力模型下转子-圆柱轴承系统的动力学分析.哈尔滨工业大学学报,2007,39(1):46-50.
    [48]G. Capone. Descrizion analitica del campo di forze fluidodinamico nei cuscinetti cilindrici cubrificati. L Energia Elettrica,1991,3(1):105-110.
    [49]张文,郑铁生,马建敏,等.油膜轴承瞬态非线性油膜力的力学建模及其表达式.自然科学进展,2002,12(,3):255-260.
    [50]杨金福,杨昆,于达仁.滑非线性动态油膜力及π油膜力分解的特性研究.动力工程,2005,25(6):700-775.
    [51]陈予恕,丁千,孟泉.非线性转子的低频振动失稳机理分析.应用力学学报,1998,15(1):113-117.
    [52]徐小峰,张文.一种非稳态油膜力模型下刚性转子的分岔和混沌特性.振动工程学报,2000,13(2):247-253.
    [53]赵永辉,李海涛,罗文波,等.非线性转子-轴承系统的分叉行为研究.哈尔滨工业大学学报,2000,32(1):19-22.
    [54]张新江,武新华,夏松波,等.弹性转子-轴承-基础系统的非线性振动研究.振动工程学报,2001,14(2):228-232.
    [55]J.I. Inayat-Hussain, H. Kanki, N.W. Mureithi. Chaos in the unbalance response of a rigid rotor in cavitated squeeze-film dampers without centering springs. Chaos, Solitons and Fractals,2002,13:929-945.
    [56]J.P. Jing, G. Meng, Y. Sun, et al. On the oil-whipping of a rotor-bearing system by a continuum model. Applied Mathematical Modeling,2005,29:461-475.
    [57]F.C. Helio, L.C. Katia, N. Rainer. Whirl and whip instabilities in rotor bearing system considering a nonlinear force model. Journal of Sound and Vibration,2008, 317:273-293.
    [58]Cheng-Ying Lo, Cai-Wan Chang-Jian. Nonlinear dynamics of a flexible rotor supported by turbulent journal bearings with couple stress fluid. Chaos, Solitons and Fractals,2008,37:1002-1024.
    [59]韩清凯,任云鹏,刘柯,等.转子系统油膜失稳故障的振动实验分析.东北大学学报(自然科学版),2003,24(10):959-961.
    [60]徐福根,徐培民.转子油膜失稳现象实验研究.安徽工业大学学报,2007,24(2):186-190.
    [61]马辉,李朝峰,轩广进,等.转子系统油膜失稳故障的时频特征分析.振动与冲击,2010,29(2):193-198.
    [62]冷淑香,崔颖,黄文虎,等.线性与非线性油膜力模型下转子振动稳定性对比研究.汽轮机技术,2003,45(5):298-300.
    [63]陈宏,宋明凯,张晓伟,等.不同润滑油粘度对碰摩转子-轴承系统动力学行为的影响.东北大学学报(自然科学版),2004,25(8):782-785.
    [64]杨金福,杨昆,付忠广,等.滑动轴承非线性动态油膜力的解析模型研究.润滑与密封,2007,32(9):68-72.
    [65]吴其力,荆珂.非线性油膜力作用下双跨转子系统动力学特性研究.辽宁石油化工大学学报,2008,28(2):53-57.
    [66]刘占生,赵广,龙鑫.转子系统联轴器不对中研究综述.汽轮机技术,2007,49(5):321-325.
    [67]夏松波,张新江,刘占生.实验转子系统的动力学行为.机械设计,2009,26(1):4-8.
    [68]黄典贵.平行不对中和不平衡故障转子扭振特征的研究.机械工程学报,1998,34(5):91-100.
    [69]张新江,焦映厚,张玉国,等.旋转机械不对中故障特征提取及诊断方法研究.汽轮机技术,1999,41(2):104-107.
    [70]J.K. Sinha, A.W. Lees, M.I. Friswell. Estimating unbalance and misalignment of a flexible rotating machine from a single run-down. Journal of Sound and Vibration, 2004,272:967-989.
    [71]T.H. Patel, A.K. Darpe. Experimental investigations on vibration response of misaligned rotors. Mechanical System and Signal Processing,2009,23:2236-2252.
    [72]T.H. Patel, A.K. Darpe. Vibration response of misaligned rotors. Journal of Sound and Vibration,2009,325:609-628.
    [73]B. Slim, A.H. Molka, M. Mohamed, et al. Dynamic behaviour of hydrodynamic journal bearings in presence of rotor spatial angular misalignment. Mechanism and Machine Theory,2009,44:1548-1559.
    [74]韩捷,石来德.转子系统齿式联接不对中故障的运动学机理研究.振动工程学报,2004,17(4):416-420.
    [75]G.Q. Dong, Y.H. Cui, Z.R. Wang, et al. Dynamic response of large increased pressure wind tunnel rotor-gear coupling system with parallel misalignment. Journal of Harbin Institute of Technology,2008,15(1):71-76.
    [76]何成兵,顾煜炯,杨昆.齿式联接不对中转子的弯扭耦合振动特性分析.机械强度,2005,27(6):725-729.
    [77]赵广,刘占生,叶建槐.齿式联轴器不对中啮合力模型及其对转子系统动力学特性影响.哈尔滨工程大学学报,2009,30(1):33-39.
    [78]K.M. Al-Hussain, I. Redmond. Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment. Journal of Sound and Vibration, 2002,249(3):483-498.
    [79]A.W. Lees. Misalignment in rigidly coupled rotors. Journal of Sound and Vibration, 2007,305:261-271.
    [80]李明.平行不对中转子系统的非线性动力学行为.机械强度,2005,27(5):580-585.
    [81]李兴阳,陈果.转子-滚动轴承系统不对中-碰摩耦合故障动力学分析.飞机设计,2009,29(3):71-80.
    [82]侯海云,李业农.不同轴承联合作用下转子系统的不平衡响应.南通职业大学学报,2010,24(1):90-94.
    [83]Z. Ji, J.W. Zu. Method of multiple scales for vibration analysis of rotor-shaft system with non-linear bearing pedestal model. Journal of Sound and Vibration, 1998,218(2):293-305.
    [84]F.L. Chu, Y. Tang. Stability and non-linear responses of a rotor-bearing system with pedestal looseness. Journal of Sound and Vibration,2001,241(5):879-893.
    [85]A. Muszynska, P. Goldman. Chaotic response of unbalanced rotor bearing stator systems with looseness or rubs. Chaos, Solitons and Fractals,1995,5(9): 1683-1704.
    [86]刘元峰,赵玫,朱厚军.转子有碰摩和支承松动故障时的混沌特性研究.振动与冲击,2002,21(4):36-38.
    [87]罗跃纲,曾海泉,李振平.基础松动-碰摩转子系统的混沌特性研究.振动工程学报,2003,16(2):184-188.
    [88]罗跃纲,张松鹤,杜元虎.非线性弹性转子-轴承系统基础松动的动态特性.仪器仪表学报,2008,29(4):462-465.
    [89]昂雪野,张松鹤.转子-定子系统松动-碰摩耦合故障的动态响应分析.汽轮机技术,2004,46(4):275-277.
    [90]陈恩利,王洪礼,何田.转子系统支承松动的分岔特性与故障诊断.润滑与密封,2007,29(3):387-389.
    [91]罗跃纲,杜元虎,任朝晖,等.双跨转子-轴承系统松动-碰摩耦合故障的非线性特性.农业机械学报,2008,39(11):180-183.
    [92]李东,袁惠群,吴立明.弹性支承双跨碰摩故障转子系统非线性特性.振动、测试与诊断,2009,29(4):414-418.
    [93]张靖,闻邦椿.松动-碰摩耦合故障转子系统振动特性分析.机械科学与技术,2005,24(2):182-185.
    [94]张靖,闻邦椿.两端支座松动转子系统的频率特性分析.中国机械工程,2008,19(1):68-71.
    [95]任朝晖,陈宏,马辉,等.双盘悬臂转子-轴承系统基础松动故障分析.农业机械学报,2007,38(11):196-201.
    [96]马辉,孙伟,王学军,等.转子系统松动故障特征分析.东北大学学报(自然科学版),2009,30(3):400-404.
    [97]R. Gasch, M. Person, B. Weitz. Dynamic behavior of the Laval rotor with a cracked hollow shaft-a comparison of crack models, in:on Institution of Mechanical Engineers Conference, Vibration in Rotating Machinery, Edinburgh, UK,1988, C314/88:463-471.
    [98]I.W. Mayes, W.G.R. Davies. Analysis of the response of a Multi-rotor-bearing system containing a transverse crack in a rotor. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1984,106:139-145.
    [99]高建民,朱晓梅.转轴上裂纹开闭模型的研究.应用力学学报,1992,9(1):108-112.
    [100]陈永国,赵玫,朱厚军.横向裂纹转子几种裂纹开闭模型的比较.华北水利水电学院学报,2000,21(4):34-38.
    [101]钱征文,程礼,张海威.两种裂纹转子模型的稳定性分析.汽轮机技术,2009,51(1):21-24.
    [102]程礼,钱征文,赵兵兵,等.非线性呼吸行为对待横向裂纹Jeffcott转子稳定性的影响.应用力学学报,2010,27(2):219-225.
    [103]C.A. Papadopoulos. The strain energy release approach for modeling cracks in rotors:A state of the art review. Mechanical Systems and Signal Processing,2008, 22:763-789.
    [104]林言丽,褚福磊.裂纹转子的刚度模型.机械工程学报,2008,44(1):114-120.
    [105]王宗勇,林伟,闻邦椿.开闭裂纹转轴刚度的解析研究.振动与冲击,2010,29(9):69-72.
    [106]A.S. Sekhar, B.S. Prabhu. Condition monitoring of cracked rotors through transient response. Mechanism and Machine Theory,1998,33(8):1167-1175.
    [107]王立平,杜润生,史铁林,等.转子开闭裂纹的计算机仿真与特性分析.中国机械工程,2000,11(7):721-723.
    [108]X.F. Li, P.Y. Xu, T.L. Shi, et al. Nonlinear analysis of a cracked rotor with whirling. Applied Mathematics and Mechanics,2002,23(6):721-731.
    [109]W.Y. Qin, G. Meng, T. Zhang. The swing vibration, transverse oscillation of cracked rotor and the intermittence chaos. Journal of Sound and Vibration,2003, 259(3):571-583.
    [110]X.L. Leng, G. Meng, T. Zhang, et al. Bifurcation and chaos response of a cracked rotor with random disturbance. Journal of Sound and Vibration,2007,299: 621-632.
    [111]杨积东,徐培民,闻邦椿.裂纹转子分岔、混沌行为研究.固体力学学报,2002,23(1):115-119.
    [112]朱厚军,赵玫.裂纹转子振动特性分析.应用力学学报,2001,18(4):65-70.
    [113]A.K. Darpe, K. Gupta, A. Chawla. Transient response and breathing behaviour of a cracked Jeffcott rotor. Journal of Sound and Vibration,2004,272:207-243.
    [114]何成兵,顾煜炯,杨昆.裂纹转子弯扭耦合振动瞬态分析.振动、测试与诊断,2006,26(3):226-230.
    [115]Yongfeng Yang, Xingmin Ren, Weiyang Qin, et al. Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dynamics,2010,61:183-192.
    [116]Fangyi Wan, Qingyu Xu, Songtao Li. Vibration analysis of cracked rotor sliding bearing system with rotor-stator rubbing by harmonic wavelet transform. Journal of Sound and Vibration,2004,271:507-518.
    [117]李振平,金志浩,徐培民,等.含横向裂纹的弹性转子-轴承系统的动力学研究.振动工程学报,2003,16(4):468-471.
    [118]孙保苍.动态油膜-裂纹转子系统非线性行为研究.农业机械学报,2004,35(5):170-173.
    [119]刘长利,夏春明,郑建荣,等.裂纹和油膜耦合故障转子周期运动分岔分析.振动、测试与诊断,2008,28(1):35-38.
    [120]罗跃纲,闻邦椿.双跨转子系统裂纹-松动耦合故障的非线性响应.航空动力学报,2007,22(6):996-1001.
    [121]Yanli Lin, Fulei Chu. The dynamic behavior of a rotor system with a slant crack on the shaft. Mechanical System and Signal Processing,2010,24:522-545.
    [122]郑艳平,朱厚军.裂纹转子的实验研究.汽轮机技术,2006,48(5):364-366.
    [123]T. Zhou, Z.C. Sun, J.X. Xu, et al. Experimental analysis of cracked rotor. Journal of Dynamic Systems, Measurement, and Control,2005,127:313-320.
    [124]T.H. Patel, A.K. Darpe. Vibration response of a cracked rotor in presence of rotor-stator rub. Journal of Sound and Vibration,2008,317:841-865.
    [125]杨永峰,任兴民,秦卫阳,等.单盘裂纹转子次谐波共振实验研究.机械科学与技术,2008,27(11):1397-1400.
    [126]杨晓明,马震岳,张振国.水轮机迷宫密封系统非线性动力稳定性研究.大连理工大学学报,2007,47(1):95-100.
    [127]A. Muszynska. Improvements in lightly loaded rotor/bearing and rotor/seal models. ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988,110:129-136.
    [128]A. Muszynska, D.E. Bently. Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. Journal of Sound and Vibration,1990,143(1): 103-124.
    [129]陈予恕,丁千,侯书军.非线性转子-密封系统的稳定性和Hopf分叉.振动工程学报,1997,10(3):368-374.
    [130]Q. Ding, J.E. Cooper, A.Y.T. Leung. Hopf bifurcation analysis of a rotor seal system. Journal of Sound and Vibration,2002,252(5):817-833.
    [131]李松涛,许庆余,万方义.迷宫密封转子系统非线性动力稳定性的研究.应用力学学报,2002,19(2):27-30.
    [132]J. Hua, S. Swaddiwudhipong, Z.S. Liu, et al. Numerical analysis of nonlinear rotor-seal system. Journal of Sound and Vibration,2005,283:525-542.
    [133]Songtao Li, Qingyu Xu, Xiaolong Zhang. Nonlinear dynamic behaviors of a rotor-labyrinth seal system. Nonlinear Dynamics,2005,283:525-542.
    [134]李忠刚,孔达,焦映厚,等.转子-密封系统非线性动力学特性分析.振动与冲击,2009,28(6):159-163.
    [135]姚宝恒,杨霞菊,刘岩.非线性非稳态油膜支撑的密封-转子系统流体激励行为.上海交通大学学报,2005,39(2):320-323.
    [136]Mei Cheng, Guang Meng, Jianping Jing. Non-linear dynamics of a rotor-bearing-seal system. Archive of Applied Mechanics,2006,76:215-227.
    [137]成玫,荆建平,孟光.转子-轴承-密封系统的非线性动力学研究.振动与冲击,2006,25(5):171-174.
    [138]刘焰明,朱汉华,范世东,等.转子-轴承-密封耦合系统的非线性振动特性研究.润滑与密封,2009,34(1):32-35.
    [139]M. Cheng, G. Meng, J.P. Jing. Numerical and experimental study of a rotor-bearing-seal system. Mechanism and Machine Theory,2007,42:1043-1057.
    [140]X.Y. Shen, J.H. Jia, M. Zhao, et al. Experimental and numerical analysis of nonlinear dynamics of rotor-bearing-seal system. Nonlinear Dynamics,2008,53: 31-44.
    [141]沈小要,赵玫.转子-轴承-密封系统非线性动力学理论和试验研究.噪声与振动控制,2009,(6):67-71.
    [142]叶建槐,刘占生.非线性转子-密封系统稳定性与分岔.航空动力学报,2007,22(5):779-784.
    [143]姚德臣,殷玉枫,朱建儒.非线性松动转-密封系统的耦合振动分析.机械科学与技术,2009,28(10):1379-1383.
    [144]高崇仁,殷玉枫,姚德臣,等.非线性裂纹转子密封系统的耦合振动分析.机械设计与研究,2009,25(1):27-31.
    [145]张伟.水轮发电机组轴系统动力学研究:[硕士学位论文].大连理工大学:大连理工大学图书馆,2008,6.
    [146]李苹,窦海波,王正.水轮发电机组主轴系统的建模及其非线性瞬态响应.清华大学学报(自然科学版),1998,38(6):123-128.
    [147]F.Z. Feng, F.L. Chu. Dynamic analysis of a hydraulic turbine unit. Mechanics Based Design of Structures and Machines,2001,29(4):505-531.
    [148]冯辅周,褚福磊,张正松,等.大型抽水蓄能机组轴系的动特性研究.振动、测试与诊断,1999,1(4):313-319.
    [149]李郁侠,吴子英,原大宇,等.基于传递矩阵法的大型水轮发电机组主轴系统非线性瞬态响应数学模型.水利水电技术,2002,33(7):21-23.
    [150]刘保国,张信志.水轮发电机组主轴系统非线性动力学问题的计算分析.中国机械工程,2001,12(8):939-942.
    [151]姚大坤,邹经湘,赵树山.刚度对三峡水轮发电机组轴系稳定性的影响.电站系统工程,2005,21(3):51-53.
    [152]张鹏,周碧英.大型水轮发电机组轴系振动稳定性分析.中国农村水利水电,2007,(9):131-134.
    [153]曾嫣,杨成民.三峡水轮发电机组轴系振动计算分析.黑龙江电力,2007,29(1):12-14.
    [154]杨晓明,马震岳,黄军义.导轴承与推力轴承耦合作用下水电机组的横向振动 研究.水力发电学报,2007,26(6):132-136.
    [155]付波,周建中,彭兵,等.固定式刚性联轴器不对中弯扭耦合振动特性.华中科技大学学报,2007,35(4):96-99.
    [156]安学利,周建中,刘力,等.水轮发电机组横向振动特性分析.润滑与密封,2008,33(12):40-43.
    [157]R.K. Gustavsson, J. Aidanpaa. Evaluation of impact dynamics and contact forces in a hydropower rotor due to variations in damping and lateral fluid forces. International Journal of Mechanical Sciences,2009,51:653-661.
    [158]李龙,张伟.立式水电机组轴承油膜压力分布计算.水电能源科学,2010,28(9):121-124.
    [159]荣吉利,王世忠,黄文虎,等.水轮发电机组轴系横向自振特性的有限元分析.振动与冲击,1997,16(2):17-21.
    [160]郭晓红,张旭红.水轮发电机组振动的计算分析.电力学报,1998,13(1):12-14.
    [161]杨晓明,马震岳.水轮发电机组轴系统稳定性分析及抗振设计.水电能源科学,2005,23(4):70-72.
    [162]Y.C. Peng, X.Y. Chen, K.W. Zhang. Numerical research on water guide bearing of hydro-generator unit using finite volume method. Journal of Hydrodynamics,2007, 19(5):635-642.
    [163]宋志强,马震岳,张运良,等.考虑厂房基础耦联作用的水轮发电机组轴系统动力反应分析.振动与冲击,2008,27(6):158-161.
    [164]Z.Y. Ma, Z.Q. Song. Nonlinear dynamic characteristic analysis of the shaft system in water turbine generator set. Chinese Journal of Mechanical Engineering,2009, 22 (1):124-131.
    [165]杨晓民,张振国.水轮发电机组支承结构对机组轴系动力特性的影响.水利学报,2010,41(4):483-487.
    [166]S.H. Wei, L.J. Zhang. Vibration analysis of hydropower house based on fluid-structure coupling numerical method. Water Science and Engineering,2010, 3(1):75-84.
    [167]T.P. Holopainen, A. Tenhunen, E. Lantto, et al. Unbalanced magnetic pull induced by arbitrary eccentric motion of cage rotor in transient operation. Part 1:Analytical model. Electrical Engineering,2005,88:13-24.
    [168]T.P. Holopainen, A. Tenhunen, E. Lantto, et al. Unbalanced magnetic pull induced by arbitrary eccentric motion of cage rotor in transient operation. Part 2: Verification and numerical parameter estimation. Electrical Engineering,2005,88: 25-34.
    [169]曲凤波,孙玉田,曲大庄.水轮发电机的不平衡磁拉力.大电机技术,1997,(4):1-3.
    [170]姚大坤,林权.不平衡磁拉力引起水轮发电机转子的超/次谐波共振.大电机技术,1998,(1):1-5.
    [171]邱家俊,蔡赣华,贾武同.大型水轮发电机组弹性轴系由电磁参数激发的弯扭耦合振动的研究.机械工程学报,1998,34(6):66-72.
    [172]邱家俊,李文兰,杨志安.水轮发电机定子系统电磁激发惨-强联合共振.固体力学学报,1999,20(1):35-45.
    [173]杨志安,邱家俊,李文兰.发电机转子气隙磁非线性耦合振动分析.振动工程学报,2000,13(2):170-177.
    [174]杨志安,李文兰,邱家俊.发电机组轴系电磁激发扭振主共振与奇异性.天津大学学报,2007,40(7):864-868.
    [175]杨志安,李文兰,邱家俊.发电机组轴系电磁激发横扭耦合振动.天津大学学报,2008,41(5):583-588.
    [176]周理兵,马志云.大型水轮发电机不同工况下不平衡磁拉力.大电机技术,2002,(2):26-29.
    [177]L. Wang, R.W. Cheung, Z.Y. Ma, et al. Finite-element analysis of unbalanced magnetic pull in a large hydro-generator under practical operations. IEEE Transactions on Magnetics,2008,44(6):1558-1561.
    [178]D. Guo, F. Chu, D. Chen. The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor. Journal of Sound and Vibration, 2002,254(2):297-312.
    [179]郭丹,何永勇,褚福磊.不平衡磁拉力及对偏心转子系统振动的影.工程力学,2003,20(2):116-121.
    [180]姚大坤,邹经湘,黄文虎,等.水轮发电机转子偏心引起的非线性电磁振动.应用力学学报,2006,23(3):334-337.
    [181]D.K. Yao, J.X. Zou, D.Z. Qu, et al. Resonance of electromagnetic and mechanic coupling in hydro-generator. Journal of Harbin Institute of Technology (New Series),2006,13(5):531-534.
    [182]陈贵清,董保珠,邱家俊.电磁作用激发的水电机组转子轴系振动研究.力学季刊,2010,31(1):108-112.
    [183]赵磊,张立翔.水轮发电机转子轴系电磁激发横-扭耦合振动分析.中国农村水利水电,2010,3:136-139.
    [184]宋志强,马震岳.考虑不平衡电磁拉力的偏心转子非线性振动分析.振动与冲击,2010,29(8):169-173.
    [185]R.K. Gustavsson, J. Aidanpaa. The influence of nonlinear magnetic pull on hydropower generator rotors. Journal of Sound and Vibration,2006,297:551-562.
    [186]N.L.P. Gustavsson, J. Aidanpaa. Dynamic consequences of electromagnetic pull due to deviations in generator shape. Journal of Sound and Vibration,2007,301: 207-225.
    [187]徐进友,刘建平,宋轶民,等.考虑电磁激励的水轮发电机组扭转振动分析.天津大学学报,2008,41(12):1411-1416.
    [188]徐进友,刘建平,宋轶民,等.水轮发电机转子非线性电磁振动的幅频特性.中国机械工程,2010,21(3):348-351.
    [189]R. Mack, P. Drtina, E. Lang. Numerical prediction of erosion on guide vanes and in labyrinth seals in hydraulic turbines. Wear,1999,233-235:685-691.
    [190]吴钢,张克危,戴勇峰,等.低比转速转轮泄漏量对水电机组抬机的影响.水力发电学报,2004,23(4):106-111.
    [191]吴钢,张克危,戴勇峰.转轮间隙及密封结构对混流式水电机组安全运行的影响.大电机技术,2005,(1):44-48.
    [192]戴勇峰,王海,张克危,等.混流可逆式转轮轴向水推力研究.水力发电学报,2005,24(2):105-109.
    [193]肖黎.水轮发电机组的随机振动分析.长江科学院院报,2009,26(9):62-65.
    [194]李兆军,杨旭娟,蔡敢为,等.水流激励对水轮机主轴系统扭振固有频率的影响.广西大学学报(自然科学版),2009,34(6):755-758.
    [195]R.F. Xiao, Z.W. Wang, Y.Y. Luo. Dynamic stresses in a Francis turbine runner based on fluid-structure interaction analysis. Tinghua Science and Technology, 2008,13(5):587-592.
    [196]F.J. Wang, X.Q. Li, J.M. Ma, et al. Experimental investigation of characteristic frequency in unsteady hydraulic behaviour of a large hydraulic turbine. Journal of Hydrodynamics,2009,21(1):12-19.
    [197]黄剑峰,张立翔,何士华.混流式水轮机全流道三维定常及非定常流数值模拟.中国电机工程学报,2009,29(2):87-94.
    [198]宋兵伟,马震岳,堀口祜憲,等.混流式水轮机进动过程中上冠间隙内流场特性分析.水电能源科学,2010,28(5):112-116.
    [199]X. Escaler, E. Egusquiza, M. Farhat, et al. Detection of cavitation in hydraulic turbines. Mechanical System and Signal Processing,2006,20:983-1007.
    [200]马薇,梁武科,南海鹏,等.混流式水轮机转轮密封间隙值对机组稳定性的影响.水力发电学报,2010,29(4):219-223.
    [201]王洪,沈东,张思青,等.水轮发电机组转子轴承系统振动机理和振动响应研究.云南水力发电,2002,18(2):69-72.
    [202]者建伦,王胜.水轮发电机组振动的分析与处理.大电机技术,2003,(4):35-38.
    [203]黄汤民,黄竹霞.水力发电机组的振动特征.水利水电技术,2003,34(7):53-57.
    [204]R. Cardinal, R. Nordmann, A. Sperber. Dynamic simulation of non-linear models of hydroelectric machinery. Mechanical System and Signal Processing,1993,7(1): 29-41.
    [205]张立,罗兴锜,郭鹏程.大型水轮发电机组轴系非线性瞬态响应分析.水力发电,2006,32(5):48-51.
    [206]乔卫东,刘宏昭,马薇,等.水轮发电机组轴系非线性动力学模型的建立.西安理工大学学报,2004,20(2):122-125.
    [207]曹颜玉.滑动轴承-转子系统油膜失稳分析:[硕士学位论文].天津大学:天津大学图书馆,2007,6.
    [208]曾复,吴昭同,严拱标.裂纹转子的分岔与混沌特性分析.振动与冲击,2000,19(1):40-42.
    [209]R. Gasch. A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. Journal of Sound and Vibration,1993,160(2):313-332.
    [210]J.J. Sinou, A.W. Lees. A non-linear study of a cracked rotor. European Journal of Mechanics A/Solids,2007,26:152-170.
    [211]杨积东,许培民,闻邦椿.裂纹扩展对转子动特性的影响.东北大学学报,2001,22(2):203-206.
    [212]罗跃纲,王培昌,闻邦椿.双跨转子-轴承系统裂纹-碰摩故障的非线性响应研究.工程力学,2006,23(5):147-151.
    [213]邓传志.典型滑动轴承油膜力解析模型的对比分析及试验研究:[硕士学位论文].华北电力大学:华北电力大学图书馆,2009,1.
    [214]刘元峰.多故障转子系统非线性特性及转子故障信号分析方法的研究:[博士学位论文].上海交通大学:上海交通大学图书馆,2003,5.
    [215]安学利,周建中,向秀桥,等.刚性联接平行不对中转子系统振动特性.中国电机工程学报,2008,28(11):77-81.
    [216]刘玉敬,王殿武.发电机组转子不对中故障的诊断.中国设备工程,2005,(3):51-53.
    [217]Belmans R, Vandenput A, Geysen W. Calculation of the flux density and the unbalanced pull in two pole induction machine. Archive fur Elektrotechnik,1987, 70(1):151-161.
    [218]A. Tenhunen. Spatial linearity of an unbalanced magnetic pull in induction motors during eccentric rotor motions. Computation and Mathematics in Electrical and Electronic Engineering,2003,22(4):862-876.
    [219]郭丹.水轮发电机组电磁振动研究综述.第十届全国设备监测与诊断技术学术会议,2000,399-403.
    [220]姜培林,虞烈.电机不平衡磁拉力及其刚度的计算.大电机技术,1998,(4):32-34.
    [221]王正伟,喻疆,方源,等.大型水轮发电机组转子动力学特性分析.水力发电学报,2005,24(4):62-66.
    [222]姜培林,虞烈.水轮机阶梯式口环水封的转子动力特性系数的计算.水力发电学报,1998,63(4):56-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700