大型振动筛动力学分析及动态设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诸如振动筛、振动给料机、振动成型机、捣固机、振动压路机、各类振动台、激振器等振动机械是各工业部门或科学试验的重要设备。这类机械是利用振动特性来满足生产中工艺过程和工作过程的要求。工作过程中,这些复杂的承载条件与长时间的连续工作,其主要结构的零部件始终承受着恶劣的交变载荷,设备结构的损伤是不可避免的。但是,就目前企业对振动筛的使用情况来看,国内产品的使用寿命远低于国外的同类产品。国外大型振动筛采用先进的设计技术和制造技术,生产出了性能优良的大型筛分机械,其无故障运行时间在3,000h以上,大修期在20,000h以上。而国内同类产品的相同技术指标则远低于上述指标。因此机器设备的运行可靠性和工作寿命就成为需要解决的关键问题。对于大型重载机械,这个问题尤其突出。如大型振动筛主要结构件的早期疲劳断裂,就始终是困绕业界的突出问题。采用先进的研发技术,使结构满足所承受的动态载荷以及合理的动态应力分布,是解决运行可靠性和工作寿命的有效方法。
     目前静强度加运动学分析(或简化的动力学分析)的传统设计,大多是采用经验数据和安全系数的设计计算方法,不能准确揭示出结构内部动态应力分布状况,因此不能保证产品结构的设计合理性,直接影响产品的使用性能与寿命。
     本文作者以大型振动筛为研究对象,利用先进的振动测试手段和动力学分析理论,将理论建模与实验建模相结合的动态设计方法完整地应用于大型振动机械动态设计过程。利用有限元分析技术,初步获得原型振动筛的模态参数和模态振型,利用这些参数,对设计结构进行初步修改,并作为物理试验模型的设计依据,同时也作为试验测点布置的主要参考。利用振动测试技术,进行多测点实验建模,获取结构的模态参数和模态振型;在对测试数据进行充分分析的基础上,获得振动位移场(间接获得应力场)及其它动态特征。这些动态参数可作为理论分析模型修
    
     太原理工大学博士研究生学位论文
    正和结构动力学修改的基本依据。解决了传统静态设计方法存在的严重
    不足。
     本研究课题在研究振动筛的工作原理的基础上,对筛面上物料的运
    动学及振动筛动力学进行了详细的分析研究。确定了原型振动筛的工艺
    参数和结构参数。
     通过对振动筛损坏机理的研究,确定了振动筛结构件的材料选择原
    则以及适宜选作振动筛结构用材的金属材料种类。
     本研究课题以30.24m2的大型振动筛作为动态设计的实例开展研究
    工作,同时采用1:3的几何相似模型,进行与振动筛动力学特性的物理
    模拟研究。有限元、边界元等动力学理论分析是建立在模型简化和假设
    的基础之上的,因此其分析结果应用于结构设计,其设计质量和设计精
    度不能完全满足研制高质量、高性能机械结构要求。而以先进振动测试
    技术为手段的实验模态分析,则能够得到结构的真实模态参数和振型。
    理论建模和实验建模的结合,可以充分发挥各自的优势,取长补短,以
    提高机械结构设计质量和设计水平。
     实验建模的实验对象可以采用结构原型也可以是几何相似模型,如
    果存在以下的几种情况之一,应该考虑采用几何相似模型进行试验研究:
    新设备的开发、原型设备的研制成本过高、结构尺寸过大或过小,原型
    设备现场测量不可实现等。
     本项研究采用有限元分析软件对振动筛原型及模型的动态特性进行
    了理论分析。研究结果表明,原型与模型具有确定的动力学相似特性。
    模态试验分析结果也同样使这一特性得到确认。动力学相似这一重要特
    性,是我们深入研究设计大型振动筛的基本条件。
     使用16通道动态测试分析仪和模态分析软件对模型振动筛进行的模
    态试验表明,采用随机激励信号,只要激振力选择适当,能得到振动筛
    比较完整的模态参数和模态振型,可以作为有限元模型修正和结构动力
    学修改的依据。理论建模与实验建模完整的结合,将结构的动力学设计
    应用于大型复杂振动机械的产品设计,开辟了工业产品设计的新思路,
    在研究方法和研究手段上进行了创新性的工作。
     对工业现场使用的设备采用工作模态分析和工作变形模态分析,对
    工作状态下的机电设备变形位移场(或应力场)分布研究进行了有益且
    有效的工作。
    
     太原理工大学博士研究生学位论文
     为了满足振动筛长寿命和高可靠性的要求,采用灵敏度分析技术,
    对振动筛进行了动力学修改,较好的完成了振动筛的动态设计过程。
     隔振是振动筛设计的重要内容,隔振器的性能不仅关系到振动筛本
    身工作性能的好坏,同时也关系到设备振动对基础或构架的影响。好的
    隔振性能还能降低设备的噪声。本文对隔振器的性能进行了研究探讨。
Vibration machines are important in the industry or scientific research experiments such as vibrating screens, vibration feeders, vibrating molding machines, tamping machines, vibrating road rollers, all kinds of vibrating platforms, stimulating vibration machines and so on. These machines satisfy its technological process in producing line and working performance by its vibration characteristics. During the working process, owing to complicated bearing conditions and continuous running of long time, the equipment structure endures variable loads in operation, so the structure failures are inevitable. At present, as far as enterprises use vibrating screen, operating life of the domestic products is much shorter than that of the similar ones abroad. With the advance design and manufacture techniques, some large scale vibrating screens with excellent performances are manufactured abroad. Its un-failure time is more than 3,000 hrs, and overhaul time is more than 20,000 hrs. The same technical targets of the domestic products are much shorter than that of the products abroad. It is a pivotal subject for us to design the large-scale and heavy loading vibrating devices-especially large scale
    
    
    
    burden machines-with high reliability and long operating life. For example, forepart fatigue rupture of primary structure pieces of the large scale vibrating screen is an extrusive question bothering engineering industry all the time. An efficient method insuring high reliability and long operating life is to adopt so advanced investigative technique that the structure can be satisfied with the dynamic load it endures and the reasonable distributing of dynamic stress.
    Presently the conventional design adopting still intension and kinematics analysis mostly uses the calculating method depending on experience data and safety factor. This kind of design can't accurately reveal the distributing of the dynamic stress inside the structure. Therefore the design rationality of the product's structure can't be ensured, which directly infects the use performance and life - span of the product.
    Taking the large scale vibrating screen as the investigative object, the author of this piece utilizes advanced means of vibration testing and dynamics analysis theory, and applies the dynamic design method combining theory modeling with experiment modeling to the dynamic design process of large scale vibrating machines. Using analysis technology of finite element, the mode parameters and the mode shape of the vibrating screen's prototype are obtained primarily. Then according to these parameters, design structures are modified elementarily to be used as the design basis of the physics experiment model and the main reference about how to dispose the experiment measuring point. Testing technology of vibration is used to found the experimental model with multiple testing points to obtain the mode parameters and the mode shape of the structure. Based on sufficient analysis of testing data, vibrating displacement field and any other dynamic characteristics are obtained .So the stress field is obtained indirectly. Modifying the model of theoretic analysis and the structural dynamics can be on the basis of these dynamic parameters. In this way, the shortage of the traditional static design method can be settled well.
    In this investigated subject, on the basis of the vibrating screen's working principle, the kinematics of the materiel on the screen surface and the dynamics of the vibrating screen are analyzed detailedly. Consequently technical and structural parameters of the prototype of the vibrating screen can be confirmed.
    Based on the destroying mechanism of the vibrating screen, the principle of choosing materials for the structural pieces of the vibrating screen and which kind of metal materials is apt to the structure of the vibrating screen are determined.
    In this subject, a large scale vibrating screen about 30.24M2 is taken as
    
    the example to research and a similar physic model (similar factor 1:3) is used to go along with the research of phy
引文
[1] Masri, S.F., and Caughey. T.K. A Non-parametric Identification Technique for Non-linear Dynamic Problems. 1979, ASME J. Appl. Mech., 46, pp. 433-447
    [2] Crawley. E. F., and Aubert. A.C. Identification of Nonlinear Structural Elements by Force-state Mapping. 1986, AIAA J., 24, pp. 155-162
    [3] Crawley. E. F., and O'Donnel. Identification of Nonlinear System Parameters in Joints using the Force-state Mapping Technique. 1986, AIAA Paper 86-1013, pp. 659-667
    [4] M.A. Al-hadid and J. R. Wright. Estimation of Mass and Modal Mass in the Identification of Nonlinear Single and Multi-degree-of-freedom Systems using the Force-state Mapping Approach. Mechanical Systems and Signal Processing, 1992, 6, 383-401
    [5] K. Worden and G. R. Tomlinson. Application of the Restoring force Surface Method to Nonlinear Elements. Proceedings of the 7th International Modal Analysis Conference, 1989, Las Vegas, U.S.A., 1347-1355
    [6] S. Duym and J. Schoukens. Design of Excitation Signals for the Restoring Force Surface Method. Mechanical Systems and Signal Processing, 1995, 9, 139-158
    [7] S. Duym, J. Schoukens and P. Guillaume. A Local Restoring Force Surface Method. Proceedings of the 13th International Modal Analysis Conference, 1995, Nashville, U.S.A., 1392-1399
    [8] Han, S. & Chung, J. W. Retrieving Displacement Signal from Measured Acceleration Signal. Proceedings of the 20th IMAC, CD ROM, 2002
    [9] Jose G. T. Ribeiro & Jaime T. P. Using the FFT-DDI Method to Measure Displacements with Piezoelectric, Resistive and ICP Accelerometers. Proceedings of the 21th IMAC, CD ROM, 2003
    [10] G. Kerschen, V. Lenaerts and J. C. Golinval. VTT Benchmark : Application of the Restoring Force Surface Method. Mechanical Systems and Signal Processing, 2003, 17(1), 189-193
    [11] Simon, M., and Tomlinson, G. R. Use of the Hilbert Transform in Modal Analysis of Linear and Non-linear Structures. 1984, J. Sound Vib., 96, pp. 421-436
    [12] Feldman, M. Nonlinear System Vibration Analysis using the Hilbert Transform-Ⅰ. Free Vibration Analysis Method 'FREEVIB.'. Mech. Syst. Signal Process, 1994, 8, pp. 119-127
    [13] Feldman, M. Nonlinear System Vibration Analysis using the Hilbert Transform-Ⅱ. Free Vibration Analysis Method 'FREEVIB.'. Mech. Syst. Signal Process, 1994, 8, pp. 309-318
    [14] Gifford , S. J., and Tomlinson. G.R. Recent Advance in the Application of Functional Series to Non-linear Structures. J. Sound Vib, 1989, 135, pp. 289-317
    
    
    [15] Leontaritis, I. J., and Billings. S. A. Input-Output Parametric Models for Non-linear Systems: Part Ⅰ-Deterministic Non-linear Systems. Int. J. Control, 1985, 41, pp. 303-328
    [16] Leontaritis, I. J., and Billings. S. A. Input-Output Parametric Models for Non-linear Systems: Part Ⅱ- Stochastic Non-linear Systems. Int. J. Control, 1985, 44, pp. 329-344
    [17] Bendat, J.S., and Piersol, A. G., Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons, 1980, New-York (U.S.A.)
    [18] Choi, D., Chang, J., Stearman, R. O., and Powers, E.J. Bispectral Interaction of Nonlinear Mode Interactions. Proceedings of the 2th International Modal Analysis Conference, 1984, Orlando, FL, pp. 602-609
    [19] Rice, H. J., and Fitzpatrick, J.A. A Procedure for the Identification of Linear and Non-linear Multi-degree-of-freedom Systems. J. Sound Vib., 1991, 149, pp. 397-411
    [20] Rice, H. J., and Fitzpatrick, J.A. The Measurement of Non-linear Damping in Single-degree-of-freedom Systems. ASME J. Vibr. Acoust., 1991, 113, pp. 132-140
    [21] Esmonde, H., Fitzpatrick, J. A., Rice, H. J., and Axisa, F. Modelling and Identification of Non-linear Squeeze Film Dynamics. J. Fluids Struct, 1992, 6, pp. 223 -248
    [22] Richards, C. M., and Singh, R. Identification of Multi-Degree-of-Freedom Non-linear Systems Under Random Excitations by the Reverse-Path Spectral Method. J. Sound Vib., 1998, 213, pp.673-708
    [23] Bendat, J.S., and Piersol, A. G. Nonlinear System Analysis and Identification from Random Data. John Wiley & Sons, 1990, New-York (U.S.A.)
    [24] Adams, D. E., and Allemang, R. J. Characterization of Nonlinear Vibrating Systems using Internal Feeback and Frequency Response Modulation. ASME J. Vibr. Acoust., 1999, 121, pp. 495-500
    [25] Adams, D. E., and Allemang, R.J. A Frequency Domain Method for Estimating the Parameters of a Non-Linear Structural Dynamic Model through Feedback. Mech. Syst. Signal Process., 2000, 14, pp. 637-656
    [26] Woeden, K., and Tomlinson, G. R. Non-linearity in Structural Dynamics: Detection, Identification and Modelling. Institute of Physics Publishing, Bristol, Philadelphia(PA) 2001
    [27] Bendat, J.S. Random Data: Analysis and Measurement Procedures. John Wiley-Interscience, 1986, New-York (NY), second Edition
    [28] G. Kerschen, and J. Golinval. Bayesian Model Screening for the Identification of Nonlinear Mechanical Structures. Journal of Vibration and Acoustics, 2003, 125
    [29] M.I. Kazakevitch, and V. E. Volkova. The development of qualitative methods of investigation of dynamic systems. Structural Dynamics, EURUDYN 2002, Grundmann & Schneller
    
    
    [30] 王立国,胡超,黄文虎.非线性转子轴承系统的稳定性与分岔分析.昆明理工大学学报,Vol.26,No.5,2001
    [31] 关惠玲,张优云等.油膜失稳的非线性振动征兆.机械科学与技术,Vol.20,No.6,2001
    [32] 张卫,朱均.转子轴承系统稳定性灵敏度分析的广义能量法.机械工程学报,1997,33(4)
    [33] 列献栋,李其汉.转静件碰摩模型及不对中转子局部碰摩的混沌特性.航空动力学报 1998,13(4)
    [34] 陆启韶,张思进,王士敏.转子-弹性机壳系统碰摩的分段光滑模型分析.振动工程学报,2000,13(2)
    [35] 郑吉兵,孟光.一种确定非线性裂纹转子解得形式的新方法.力学学报,1998,30(1)
    [36] 郑吉兵,孟光.考虑非线性涡动时裂纹转子的分叉与混沌特性.振动工程学报,1997,10(2)
    [37] 陈予恕,丁千,孟权.非线性转子的低频振动失稳机理分析.应用力学学报,1998,15(1)
    [38] 刘恒,虞烈,谢友柏.非线性不平衡转子轴承系统周期解的预测.航空动力学报 1999,14(1)
    [39] 刘济科,赵令诚,方同.非线性模态分叉与模态局部化现象.力学学报,Vol.27,No.5,1995
    [40] 赵和平,黄宏成等.非线性弹簧汽车悬架动态特性研究.机械强度,2001,23(2)
    [41] 龚宪生,谢志红等.非线性隔振器阻尼特性研究.振动工程学报.Vol.14,No.3,2001
    [42] 刘世勋,杨胜培 振动筛分机的研究方向矿山机械,1997,(10):22~26
    [43] 王正浩,王国业 刘维伟 振动筛的研究现状与发展趋势 沈阳建筑工程学院学报 1999年1月第15卷第1期 P77~81
    [44] 李宏男.利用调液阻尼器减振的结构控制研究进展.地震工程与工程振动,1995,(3):99~109
    [45] 周传荣 结构动态设计 振动、测试与诊断 2001年3月第21卷第1期 p1~5
    [46] 陈新等 编著 机械结构动态设计理论方法及应用 机械工业出版社 1997年8月第1版
    [47] 徐燕申 编著 机电产品现代设计统一培训教材 机械动态设计 机械工业出版社 1992年11月第1版
    [48] 曹树谦,张文德,萧龙翔编著 振动结构模态分析——理论、实验与应用 天津大学出版社2001年3月第一版
    [49] 傅志方.振动模态分析与参数辩识.机械工业出版社.1990
    
    
    [50] 俞云书 结构模态实验分析 宇航出版社2000年7月第一版
    [51] 饶寿期 编 有限元法和边界元法基础 北京航空航天大学出版社 1990年6月第一版
    [52] 沃德·海伦等著[比利时] 白化同,郭继忠译 模态分析理论与试验 北京理工大学出版社 2001年6月第一版
    [53] 张伟,杨绍普等编著 非线形系统的周期振动和分岔 科学出版社 2002年1月第一版
    [54] 闻邦椿,刘树英,何勍 著 振动机械的理论与动态设计方法 机械工业出版社2001年11月第一版
    [55] [美]Willianm T.Thomson胡宗武 等译 振动理论及其应用 煤炭工业出版社 1980年1月第一版
    [56] 严峰主编 严峰 刘焕胜编著 筛分机械,煤炭工业出版社 1995年2月第1版
    [57] 王敦曾等编著,选煤新技术的研究与应用,煤炭工业出版社,1999年8月第1版
    [58] 郑修麟,材料的力学性能,西北工业大学出版社 1999年4月第1版,Pp91~127
    [59] 沈成康 断裂力学 1996年3月第1版
    [60] [美]S.Suresh著,王中光 等译 材料的疲劳 国防工业出版社 1999年5月第二版Pp.1,Pp.8
    [61] 李向东YR—924振动筛筛框结构理论模态分析 矿山机械 1997年第十期
    [62] 秦梁 美国CONN WELD公司的振动筛技术 矿山机械 1997.7
    [63] 高旭 崔文好 振动筛侧板强度有限元分析及试验研究 建筑机械 1999(5)
    [64] 李运忠 振动筛侧板压制工艺设计 中州煤炭 2002年第三期
    [65] 陈文龙 煤用特大型振动筛现状与对策 煤质技术与科学管理 1997年3月 第2期
    [66] 王永岩,邰英楼,孙奇涵 大型直线振动筛动态仿真的研究 计算力学学报 2001年01期
    [67] 梁坤京,白勇军,邵佩森 动态设计在2ZKP3660直线振动筛中的应用 矿山机械 2001年07期
    [68] 梁坤京,白勇军,邵佩森 现代动态设计方法在振动筛研制中的应用 选煤技术 2000年02期
    [69] 马学东 等 2ZKX2148型直线振动筛侧板的有限元动力学分析 鞍山钢铁学院学报 1999年2月 第22卷第1期
    
    
    [70] 吴宏志 李明 陆信 振动筛过共振区的控制——微机共振控制器 选煤技术 第二期1997年4月
    [71] 阮竞兰 振动机械参数优化设计的研究 轻工机械 2002年01期
    [72] 武建珍,郑敏 振动筛常见故障及处理方法 江苏煤炭 2002年01期
    [73] 江体乾工业流变学 化学工业出版社1995年4月第1版
    [74] 王新文,张永忠,马富强 振动筛滚动轴承受力分析 矿山机械1998年7期
    [75] 翁哲如 煤炭筛分楼在振动筛扰力作用下的结构设计 建井技术 1998年10月第5期
    [76] [美]Duane Hanselman,Bruse Littlefield,李人厚,张平安 等译校 精通MATLAB—综合辅导与指南 西安交通大学出版社 1998年1月第一版
    [77] 王学文 潮湿原煤深度筛分理论及大型筛机动态设计的研究 博士学位论文 中国矿业大学 2001年4月
    [78] 秦梁,振动筛可靠性问题及对策,煤矿机械,2000年10月2000年第10期,Pp.32~37
    [79] 郑修麟 金属疲劳的定量理论,西安:西北工业大学出版社,1994
    [80] 海钦 向俞 刘松林等,中国工业材料大典,上卷,黑色金属,上海科学技术文献出版社,1999年版
    [81] 方远翔,陈安宁,董卫平 编著 振动模态分析技术 国防工业出版社 1993年5月第一版Pp173~223
    [82] R.D.库克著,何穷,程耿东译,有限元分析的概念和应用,科学出版社,1981年9月第1版
    [83] 沈鹏程 多变量样条有限元法1997年6月第1版SS号:10070482
    [84] Sam Kassegne, PhD, PE Practical Dynamic Analysis and Design for Engineers and Architects
    [85] Li Wenying, Xiong Shibo DYNAMIC ANALYSIS OF LARGE VIBRATING SCREEN. PROCEEDINGS of IMAC-ⅩⅪ A Conference on Structural Dynamics, February 3-6, 2003 Kissimmee, Florida
    [86] Li Wenying, Dong Liang, Xiong Shibo APPLICATION OF ACOUSTIC INTENSITY MEASUREMENT AND OPERATING MODAL ANALYSIS. PROCEEDINGS of IMAC-ⅩⅪ A Conference on Structural Dynamics, February 3 - 6, 2003 Kissimmee, Florida
    [87] John K.Hicks, Anthony K.Banner, Correlation Considerations Before Model
    
    Updating, Proc. of IMAC_ⅩⅧ: A Conference on Structural Dynamics, SAN ANTONIO, TEXAS, USA, Feb. 2000, pp.571~575
    [88] J.E.MOTTERSILEAD, C. MARES, ETC., Model updating of an aluminum space-frame using different parameters sets, Proc. of IMAC_ⅩⅧ: A Conference on Structural Dynamics, SAN ANTONIO, TEXAS, USA, Feb. 2000, pp.576~583
    [89] Wodzinski, P. Tendencies in screen design, Powder Handling & Processing, 1993, Pol., p 357-361
    [90] Vorster, W.; Hinde, A.; Schiefer, F., Increased screening efficiency using a Kroosher unit coupled with a Sweco screen, Minerals Engineering, South Africa, 2002, p 107-110
    [91] Yaomin, Zhao; Qingru, Chen etc., Development and application of the QGS2020 type piano-wire probability screen, Powder Technology, Beijing China, May 24-25 1996
    [92] Yang, G.-H., Zheng, D.-C. etc., Air classification of moist raw coal in a vibrated fluidized bed, Coal mines, August 2002, p 623-625
    [93] Li, J., Webb, C. A numerical simulation of separation of crop seeds by screening-effect of particle bed depth, Food and Bioproducts Processing, June 2002, p 109-117
    [94] FellerR,Foux A Screening duration and size distribution effect on sizing efficiency JA gri EngngRes,1976,21: 347~351
    [95] Jansen ML, Glastonbury JR The size separation of particles by screening. Powder Tech, Ams-terdam, I968,1:334~340
    [96] 闻邦椿,刘凤翅,振动机械的理论及应用,机械工业出版社,北京,1982
    [97] 刘尔烈主编,崔恩第,徐振铎,有限单元法及程序设计 天津大学出版社,1999年7月第一版
    [98] 张阿舟,姚起航 等编著 振动控制工程,航空工业出版社
    [99] 左鹤声,彭玉莺 编著 振动试验模态分析,1995年2月第1版
    [100] Li Wenying (李文英), Mi Zhaoyang(米朝阳),Wu Wangguo(武望国) Xiong Shibo (熊诗波)The Application of Experimental Modal Analysis Technique to
    
    Structural Design of Linear Vibrating Screen, Coal Journal of China, 2004 第一期
    [101] 丛爽 编著 面向MATLAB工具箱的神经网络理论与应用 中国科学技术大学出版社 1998合肥
    [102] N. Modal Excitation Products Zonic Corporation, Milord, Ohio, USA, 1981.
    [103] J/T/Broch Mechanical Vibration and Shock Measurements Bruel & Kjr, Nrum, Denmark, 1984.
    [104] N. Master Catalogue Kjr, Nrum, Denmark, 1989.
    [105] N. Long Stroke Shaker APS, Carlsbad, California, USA.
    [106] Bentley J. Principles of Measurement Systems Longham, London & New York, USA.
    [107] N. Accelerometer Instruction &Selection Manual. Entran Devices Inc., Fairfield, N, J., USA, 1992
    [108] Brain J. Schwarz & Mark Richardson Structural Modification Using Higher Order Elements. Presented at 15th IMAC Conference February, 1997
    [109] Mark H. Richardson. Is It a Mode Shape, or an Operating Deflection Shape? Sound & Vibration Magazine 30th Anniversary Issue March, 1997
    [110] Brain J. Schwarz & Mark Richardson INTRODUCTION TO OPERATING DEFLECTION SHAPES. CSI Reliability Week, Orlando, FL October, 1999
    [111] Brain Schwarz & Mark Richardson. MEASURING OPERATING DEFLECTION SHAPES UNDER NON-STATINARY CONDITIONS Presented at IMAC 2000. February 7-10 2000
    [112] 张阿舟,姚起杭等编著。振动控制工程。航空工业出版社 1989年7月第一版
    [113] 金正中,李诗龙。振动筛隔振器设计。矿山机械,2001.07
    [114] 管荣根,顾玲,吴筱春。机械振动特性和减振方法的探讨。机械设计与制造,2001年4月第二期
    [115] 管荣根,张瑞宏,顾玲。机械隔振装置的振动特性分析。机械设计与制造,2002年7月,第四期。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700