脊髓灰质炎病毒Sabin Ⅰ在SARS患者中的检测及其病毒拯救
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重急性呼吸综合症(Severe acute respiratory syndrome,SARS)是2003年出现的新发传染病,其病情重,死亡率高,严重危害人类健康。虽然SARS的病原已确定为SARS相关冠状病毒(SARS-CoV),国内外研究也检测了SARS患者标本中的腺病毒、呼吸道合胞病毒、亨德拉病毒(hendra virus)、尼帕病毒(nipah virus)、流感病毒、人偏肺病毒等其他病原体,但是未曾检测过脊髓灰质炎病毒。我们在研究SARS的过程中发现SARS患者标本中可能有肠道病毒属的脊髓灰质炎病毒疫苗株SabinⅠ存在,为确证这个结果,本研究采用世界卫生组织推荐的分离脊髓灰质炎病毒的方法和人横纹肌肉瘤细胞系(human rhabdomyosarcoma,RD),对取自SARS患者的咽拭子标本进行病毒分离并成功获得病毒,通过中和试验和间接免疫荧光染色证实属于脊髓灰质炎病毒Ⅰ型,随后利用逆转录-聚合酶链反应、cDNA末端快速扩增(RACE)等分子生物学技术分段扩增病毒基因组并测序,从基因水平进一步证实其为脊髓灰质炎病毒SabinⅠ型疫苗类似株。在确定从SARS患者标本中分离获得脊髓灰质炎病毒SabinⅠ型疫苗类似株后,需要从流行病学角度进一步分析其是否在更多患者中存在,因此本研究根据获得的病毒基因组序列设计针对5′-UTR、VP3–VP1和2C-3A区3个部位的引物分别扩增SARS患者标本中提取的RNA,结果显示38.5%(5/13)的唾液标本、37.5%(3/8)的痰标本、71.4%(5/7)的尿液标本、100%(5/5)的咽拭子标本和100%(6/6)的粪便标本中可以扩增出脊髓灰质炎病毒SabinⅠ核酸,证实71.4% (15/21)的SARS患者体内存在脊髓灰质炎病毒SabinⅠ型且480和2795位点出现回复突变,其中扩增阳性患者的死亡率高于扩增阴性患者;研究结果同时显示SARS患者的肠道和肾组织中可以检测到脊髓灰质炎病毒SabinⅠ存在。为防止实验结果的假阳性,研究中设置了严格的对照并重复验证结果,其中对照样本的扩增结果显示取自25个健康人和25例肝炎患者的50份粪便标本仅1份阳性(2%),与患者组相比,其差异具有显著性意义(p﹤0.01)。虽然在患者中没有发现脊髓灰质炎相关症状体征,排除了疫苗相关麻痹型脊髓灰质炎的可能,但是由于研究组患者均为成年人,其体内脊髓灰质炎病毒SabinⅠ的存在提示在脊髓灰质炎的流行病学监测体系中,除了15岁以下的儿童,还需要加强对成人特别是严重呼吸道感染和免疫功能受损人群的病毒学检测和抗体检测,对血清脊髓灰质炎病毒中和抗体滴度显著下降的人群应该及时加强免疫。尽管标本检测得到了阳性结果,但是由于未能系统收集并检测各种标本,导致结果分析受到限制,对脊髓灰质炎病毒SabinⅠ型疫苗类似株在SARS的发生发展中是否起作用以及有何种作用尚不能确定。
     SARS患者体内脊髓灰质炎病毒Ⅰ型疫苗类似株的首次发现表明需要加强脊髓灰质炎病毒疫苗株尤其是SabinⅠ的实验研究,由于目前广泛应用口服减毒活疫苗,且不断出现疫苗相关麻痹型脊髓灰质炎,如何降低SabinⅠ基因组的回复突变率以减少疫苗衍生脊髓灰质炎病毒的产生是当务之急。如果能通过改造病毒的基因组使其在不降低免疫效果和安全性的前提下减少回复突变率,将有助于降低疫苗相关麻痹型脊髓灰质炎的发病率,而研究病毒基因组的功能首先需要构建感染性cDNA克隆拯救病毒。为此,在一次性扩增脊髓灰质炎病毒SabinⅠ基因组全长7441个核苷酸难度较大的情况下,本研究利用SabinⅠ基因组序列中2470位的限制性内切酶NheⅠ识别位点和5601位的限制性内切酶BglⅡ识别位点,通过分别扩增基因组1nt-2497nt、2412nt-5616nt和5588nt-7441nt核苷酸序列并插入克隆载体,然后分步酶切连接的方法成功获得脊髓灰质炎病毒SabinⅠ感染性cDNA克隆。在感染性克隆构建成功后开展了SabinⅠ病毒拯救研究,本文在转录获得病毒RNA的步骤中,没有选择常用但是昂贵、费力的体外转录,而是首次在脊髓灰质炎病毒拯救中利用近年来开始出现的真核表达载体细胞内表达T7RNA聚合酶后转录RNA的技术,结果成功拯救SabinⅠ,从而为进一步研究脊髓灰质炎病毒SabinⅠ的基因功能奠定了基础。核定位信号有助于将蛋白质从细胞胞浆内转运到细胞核内,以往有关包括脊髓灰质炎病毒在内的肠道病毒拯救的研究中,体内拯救时细胞内表达的T7RNA聚合酶都没有涉及核定位信号,为了解核定位信号对病毒拯救效果的影响,本研究在拯救病毒时分别构建了含与不含SV40大T抗原核定位信号PKKKRKV的T7RNA聚合酶真核表达质粒,然后将其分别与脊髓灰质炎病毒SabinⅠ感染性cDNA克隆共转染细胞,结果发现虽然表达含或不含核定位信号的T7RNA聚合酶都能够拯救病毒,但是表达含核定位信号的T7RNA聚合酶拯救病毒的效果要优于不含核定位信号的T7RNA聚合酶,提示脊髓灰质炎病毒SabinⅠ感染性cDNA克隆的转录优势部位可能在细胞核内,推测其与细胞核内转录因子等转录相关分子较多有关,这是在肠道病毒拯救机制研究中的首次发现。由于脊髓灰质炎病毒SabinⅠ型的自然复制主要在胞浆内,研究结果显示病毒自然复制与病毒拯救的差异,从而有助于脊髓灰质炎病毒细胞内拯救机制的研究。
     为寻找降低脊髓灰质炎病毒SabinⅠ回复突变率的方法,本研究采用单引物二次PCR的方法将SabinⅠ感染性cDNA克隆3D聚合酶第64位甘氨酸突变为丝氨酸并成功获得拯救病毒,初步结果显示突变后SabinⅠ感染性克隆的病毒拯救效率下降,为下一步研究突变后拯救病毒的生长特性、毒力和回复突变率奠定了基础。
     总之,本研究首次发现成人SARS患者体内存在脊髓灰质炎病毒疫苗株SabinⅠ,并发现在T7RNA聚合酶中插入核定位信号有助于脊髓灰质炎病毒的拯救,这些结果有助于脊髓灰质炎流行病学和脊髓灰质炎病毒拯救机制的研究。
Although the causative agent of SARS has been identified as a novel coronavirus,called SARS-associated coronavirus (SARS-CoV), other pathogens, includingadenoviruses, respiratory syncytial virus, hendra virus, nipah virus, influenza virus andhuman metapneumovirus have also been detected in some patients with SARS.However, the detection of poliovirus in SARS patients has not been reported so far.
     In 2003, when we tried to isolate SARS-CoV in the throat swab specimen of aSARS patient, poliovirus was detected by electron microscope detection andreverse-transcriptase polymerase chain reaction (RT-PCR) assay. To confirm this result,poliovirus was isolated and purified by using human rhabdomyosarcoma (RD) cell line,which was recommended by World Health Organization as suitable manipulation forpoliovirus. The isolation was further characterized by neutralization test and indirectimmunofluorescence staining assay, as well the whole genome sequence by RT-PCRand 5’RACE amplification. All of the results indicated that our isolation was OPV-likepoliovirus type 1. In addition, to investigate whether this poliovirus type 1 wasprevalent in other SARS patients, we collected the specimens from SARS patientsincluding urine, throat swab, sputum, saliva and stool specimen. Viral RNA wasextracted and amplified by primers targeted the 5′-UTR, VP3–VP1 and 2C-3A regionsof poliovirus SabinⅠ. It indicated that 38.5%(5/13) of saliva specimens, 37.5%(3/8) ofsputum specimens, 71.4%(5/7) of urine specimens, 100%(5/5)of throat swabs and100%(6/6) of stool specimens were positive for OPV-like poliovirus 1, which showedthat 15 of 21 (71.4%) SARS patients were positive for OPV-like poliovirus 1, with thereverse mutation of 480G→A and 2795A→G. By contrast, only 1 of 50 (2%) stoolspecimens from 25 healthy individuals and 25 patients with hepatitis A or hepatitis Binfection, was positive for OPV-like poliovirus 1 (p﹤0.01). On the other side, wedemonstrated the distribution of OPV-like poliovirus 1 among the different organs inSARS patient, with that kidney and small intestine were positive and brain, lung, liver,spleen or pancreas were negative.
     Although the impossibility of vaccine-associated paralytic poliomyelitis in SARSpatients, the OPV-like poliovirus 1 existing in adult patients of SARS suggested that the virological testing and antibody testing should be strengthened in adults especially inpopulations with severe respiratory infection or impaired immunity, besides childrenyounger than 15-years old. It also indicated that adults with poor immunity againstpoliovirus should be inoculated with poliovirus vaccine to strengthen their immunityagainst this virus. However, the inadequate data of SARS specimens collection limitedthe analysis of the exact relationship between OPV-like poliovirus 1 andSARS/SARS-CoV. The role of OPV-like poliovirus 1 on SARS was unknown andneeds further research.
     The existence of OPV-like poliovirus 1 in SARS patients indicated that we shouldgive more attention to this virus. For the extensive use of OPV worldwide currently it isurgent to find the way to decrease the reverse mutation rate of SabinⅠgenome so as toreduce the vaccine derived poliovirus and thus vaccine-associated paralyticpoliomyelitis. If the reverse mutation rate could be lowered by modifying theSabinⅠgenome, with the same immunological effect and safety, it will facilitate thereduction of morbidity of vaccine-associated paralytic poliomyelitis. Construction ofinfectious cDNA clone to rescue virus was the important way to study the function ofvirus genome. Thus, the fragments of 1nt-2497nt, 2412nt-5616nt and 5588nt-7441ntwere amplified and cloned into T vector, followed by digestion with restriction enzymeand ligation step by step, using the NheⅠsite in 2470nt and BglⅡsite in 5601nt. Thefull-length SabinⅠinfectious cDNA clone was then constructed successfully. Instead ofexpensive and difficult extracellular transcription, we used nonviral eukaryoticexpression vector to express T7 RNA polymerase intracellularly to transcript SabinⅠRNA and then resue the virus. This successful poliovirus SabinⅠrescuing systemprovided important implications for further research on function of viral gene.
     Nuclear localization signals can help to transport proteins from cell plasma tonuclei. It has not been related to poliovirus rescuing in previous reports. In present studyeukaryotic vector expressing T7 RNA polymerase with/without SV40 large T antigennuclear localization signal PKKKRKV was constructed. After coinfection withSabinⅠinfectious cDNA clone on vero cells, the vector expressing T7 RNA polymerasewith nuclear localization signal showed better result of rescuing virus than that withoutnuclear localization signal. It indicated that the advantageous position of RNAtranscription with SabinⅠinfectious cDNA clone was probably existed in cell nucleus,which may due to more amount of transcription associated molecules in nucleus thanthose in cytoplasm. This is the first report on research of enterovirus rescuing mechanism.
     Moreover, to find the way of decreasing the reverse mutation rate, rescued viruswas acquired with Gly→Ser in 64 position in 3D polymerase region, and the primaryresults showed that the mutation contributed to decreased rescuing efficiency. It lays thefoundation for further research on characteristics of mutated rescued poliovirus.
引文
[1] Lyons T, Murray KE, Roberts AW, et al. Poliovirus 5'-terminal cloverleaf RNA isrequired in cis for VPg uridylylation and the initiation of negative-strand RNAsynthesis[J]. J Virol. 2001,75(22):10696-10708.
    [2] Shiroki K, Ishii T, Aoki T, et al. A new cis-acting element for RNA replicationwithin the 5' noncoding region of poliovirus type 1 RNA[J]. J Virol. 1995,69(11):6825-6832.
    [3] Brown DM, Kauder SE, Cornell CT, et al. Cell-dependent role for the poliovirus 3'noncoding region in positive-strand RNA synthesis[J]. J Virol. 2004,78(3):1344-1351.
    [4] Cameron CE, Suk Oh H, Moustafa IM. Expanding knowledge of P3 proteins inthe poliovirus lifecycle[J]. Future Microbiol. 2010,5(6):867-881.
    [5] World Health Organization. Vaccine-derived polioviruses--update[J]. WklyEpidemiol Rec. 2006,81:398-404.
    [6] Kawamura N, Kohara M, Abe S, et al. Determinants in the 5' noncoding region ofpoliovirus Sabin 1 RNA that influence the attenuation phenotype [J]. J Virol. 1989,63(3):1302-1309.
    [7] Gromeier M, Mueller S, Solecki D, et al. Determinants of poliovirusneurovirulence[J]. J Neurovirol. 1997,3(Suppl 1):S35-S38.
    [8] Bouchard MJ, Lam DH, Racaniello VR. Determinants of attenuation andtemperature sensitivity in the type 1 poliovirus Sabin vaccine[J]. J Virol. 1995,69(8):4972-4978.
    [9] Friedrich F. Neurologic complications associated with oral poliovirus vaccine andgenomic variability of the vaccine strains after multiplication in humans[J]. ActaVirol,1998,42(3):187-194.
    [10] Minor PD, Macadam AJ, Stone DM, et al. Genetic basis of attenuation of theSabin oral poliovirus vaccines[J]. Biologicals,1993,21 (4):357-363.
    [11] Minor PD. The molecular biology of poliovaccines[J]. J Gen Virol,1992, 73( Pt12):3065-3077.
    [12]金奇.医学分子病毒学[M].北京:科学出版社,2001:497-509.
    [13] Brown DM, Cornell CT, Tran GP, et al. An authentic 3' noncoding region isnecessary for efficient poliovirus replication[J]. J Virol. 2005, 79(18):11962-11973.
    [15] CastellóA, Alvarez E, Carrasco L. The multifaceted poliovirus 2A protease:regulation of gene expression by picornavirus proteases [J].J Biomed Biotechnol.2011,2011:369648.
    [16] Jurgens CK, Barton DJ, Sharma N, et al. 2Apro is a multifunctional protein thatregulates the stability, translation and replication of poliovirus RNA[J]. Virology.2006,345(2):346-357.
    [17] Paul AV, van Boom JH, Filippov D, et al. Protein-primed RNA synthesis bypurified poliovirus RNA polymerase[J]. Nature 1998,393:280-284.
    [18] Paul AV, Rieder E, Kim DW, et al. Identification of an RNA hairpin in poliovirusRNA that serves as the primary template in the in vitro uridylylation of VPg[J]. JVirol. 2000,74(22):10359-10370.
    [19] Rieder E, Paul AV, Kim DW, et al. Genetic and biochemical studies of polioviruscis-acting replication element cre in relation to VPg uridylylation[J]. J Virol.2000,74(22):10371-10380.
    [20] Rossmann MG, He Y, Kuhn RJ. Picornavirus-receptor interactions[J]. TrendsMicrobiol. 2002,10(7):324-331.
    [21] Pelletier I, Duncan G, Pavio N, et al. Molecular mechanisms of polioviruspersistence: key role of capsid determinants during the establishment phase[J].Cell Mol Life Sci. 1998,54(12):1385-1402.
    [22] Novak JE, Kirkegaard K. Improved method for detecting poliovirus negativestrands used to demonstrate specificity of positive-strand encapsidation and theratio of positive to negative strands in infected cells[J]. J Virol. 1991, 65(6):3384-3387.
    [23] Park N, Katikaneni P, Skern T, et al. Differential targeting of nuclear pore complexproteins in poliovirus-infected cells[J]. J Virol. 2008,82(4):1647-1655.
    [24] Sharma R, Raychaudhuri S, Dasgupta A. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off[J].Virology. 2004,320(2):195-205.
    [25] Almstead, L. L., and P. Sarnow. Inhibition of U snRNP assembly by a virus-encoded proteinase[J]. Genes Dev. 2007,21:1086–1097.
    [26] Strauss JH, Strauss EG. Viruses and human disease[M].北京:科学出版社,2006:63-64.
    [27] Centers for Disease Control and Prevention (CDC). Progress toward interruption ofwild poliovirus transmission--worldwide, 2008[J]. MMWR Morb Mortal WklyRep. 2009,58(12):308-312.
    [28] World Health Organization. Polio global eradication initiative.http://www.polioeradication.org/
    [29] Grard G, Drexler JF, Lekana-Douki S, et al. Type 1 wild poliovirus and putativeenterovirus 109 in an outbreak of acute flaccid paralysis in Congo, October-November 2010[J]. Euro Surveill. 2010,15(47).pii:19723.
    [30]张玲霞,周先志.现代传染病学[M].第2版.北京:人民军医出版社,2010:338-341.
    [31] Centers for Disease Control and Prevention (CDC). Progres s toward interruptionof wild poliovirus transmission--worldwide, January 2010-March 2011[J].MMWR Morb Mortal Wkly Rep. 2011,60(18):582-586.
    [32] Jenkins HE, Aylward RB, Gasasira A, et al. Implications of a circulatingvaccine-derived poliovirus in Nigeria[J]. N Engl J Med. 2010,362(25):2360-2369.
    [33] No authors. Outbreak of type-1 wild poliovirus in adults, Namibia, 2006[J]. WklyEpidemiol Rec. 2006,81(45):425-430.
    [34] CDC. Outbreaks Following Wild Poliovirus Importations—Europe, Africa, andAsia, January 2009-September 2010[J].MMWR,2010,59(43):1393-1399.
    [35]中华人民共和国卫生部.疾病预防控制和爱国卫生工作简报第5期
    [2011-12-31].http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohjbyfkzj/s7915/201201/53969.htm
    [36]莫想换,毛东波.2000~2004年东莞市疫苗相关麻痹型脊髓灰质炎病例流行病学分析[J].华南预防医学,2006,32(3):33-34.
    [37] Liang X, Zhang Y, Xu W, et al. An Outbreak of Poliomyelitis Caused by Type 1Vaccine-Derived Poliovirus in China[J]. J Infect Dis. 2006, 194:545-551.
    [38] World Health Organization. Global update on vaccine-derived polioviruses,January 2006-August 2007[J]. Wkly Epidemiol Rec. 2007,82(39):337-343.
    [39] Centers for Disease Control and Prevention (CDC). Acute flaccid paralysisassociated with circulating vaccine-derived poliovirus -Philippines, 2001[J].MMWR Morb Mortal Wkly Rep. 2001,50:874-875.
    [40] Kew O, Morris-Glasgow V, Landaverde M, et al. Outbreak of poliomyelitis inHispaniola associated with circulating type 1 vaccine-derived poliovirus[J].Science. 2002,296:356-359.
    [41] Pallansch MA, Sandhu HS. The eradication of polio-progress and challenges[J]. NEngl J Med. 2006,355(24):2508-2511.
    [42] Arita I, Nakane M, Fenner F. Public health:Is polio eradication realistic[J]. Science.2006,312(5775):852-854.
    [43] Wassilak S, Pate MA, Wannemuehler K, Jenks J, Burns C, Chenoweth P, AbanidaEA, Adu F, Baba M, Gasasira A, Iber J, Mkanda P, Williams AJ, Shaw J, PallanschM, Kew O. Outbreak of type 2 vaccine-derived poliovirus in Nigeria: emergenceand widespread circulation in an underimmunized population[J]. J Infect Dis. 2011Apr 1;203(7):898-909.
    [44] Aylward RB, Maher C. Interrupting poliovirus transmission - new solutions to anold problem[J]. Biologicals. 2006,34(2):133-139.
    [45] Estívariz CF, Watkins MA, Handoko D, et al. A large vaccine-derived poliovirusoutbreak on Madura Island--Indonesia, 2005[J]. J Infect Dis. 2008,197(3):347-354.
    [46] Shimizu H, Thorley B, Paladin F J, et al. Circulation of type 1 vaccine -derivedpoliovirus in the Philippines in 2001[J]. J Virol, 2004,78(24):13512-13521.
    [47]张延龄,张晖.疫苗学[M].北京,科学出版社,2006:1169.
    [48]王佳,庄辉,李杰,等.脊髓灰质炎疫苗衍生病毒的感染及预防[J].传染病信息,2005;18(2):58-60.
    [49] Arya SC, Agarwal N. Prospective inactivated or live poliovirus vaccine:effectiveness in the 21st Century[J]. Expert Rev Vaccines. 2009,8 (2):127-130.
    [50] Lee SY, Hwang HS, Kim JH, et al. Immunogenicity and safety of a combineddiphtheria, tetanus, acellular pertussis, and inactivated poliovirus vaccine(DTaP-IPV) compared to separate administration of standalone DTaP and IPVvaccines: a randomized, controlled study in infants in the Republic of Korea[J].Vaccine. 2011,29(8):1551-1557.
    [51] Diaz-Mitoma F, Halperin SA, Tapiero B, et al.Safety and immunogenicity of threedifferent formulations of a liquid hexavalent diphtheria- tetanus-acellular pertussis-inactivated poliovirus-Haemophilus influenzae b conjugate-hepatitis B vaccine at 2,4, 6 and 12-14 months of age[J]. Vaccine. 2011,29(6):1324-1331.
    [52] Li RC, Li FX, Li YP, et al. Immunogenicity and safety of a pentavalent acellularpertussis combined vaccine including diphtheria, tetanus, inactivated poliovirusand conjugated Haemophilus Influenzae type b polysaccharide for primaryvaccination at 2, 3, 4 or 3, 4, 5 months of age in infants in China[J]. Vaccine.2011,29(10):1913-1920.
    [53] Verdijk P, Rots NY, Bakker WA. Clinical development of a novel inactivatedpoliomyelitis vaccine based on attenuated Sabin poliovirus strains[J]. Expert RevVaccines. 2011,10(5):635-644.
    [54] Bakker WA, Thomassen YE, van't Oever AG, et al. Inactivated polio vaccinedevelopment for technology transfer using attenuated Sabin poliovirus strains toshift from Salk-IPV to Sabin-IPV[J]. Vaccine. 2011,29(41):7188-7196.
    [55] John TJ, Jain H, Ravishankar K, et al. Monovalent type 1 oral poliovirus vaccineamong infants in India: report of two randomized double-blind controlled clinicaltrials[J]. Vaccine. 2011,29(34):5793-5801.
    [56] Sutter RW, John TJ, Jain H, et al. Immunogenicity of bivalent types 1 and 3 oralpoliovirus vaccine: a randomised, double-blind, controlled trial[J]. Lancet. 2010,376(9753):1682-1688.
    [57] No authors. Advisory Committee on Poliomyelitis Eradication: recommendationson the use of bivalent oral poliovirus vaccine types 1 and 3[J]. Wkly EpidemiolRec. 2009,84(29):289-290.
    [58] Minor P. Vaccine-derived poliovirus (VDPV): Impact on poliomyelitis eradication[J]. Vaccine. 2009,27(20):2649-2652.
    [59] Pliaka V, Filliponi ME, Kyriakopoulou Z, et al. Retrospective molecular andphenotypic analysis of poliovirus vaccine strains isolated in Greece[J]. ClinMicrobiol Infect. 2011,17(10):1554-1562.
    [60] Almond JW. The attenuation of poliovirus neurovirulence[J]. Annu Rev Microbiol.1987;41:153-180.
    [62] Georgescu MM, Balanant J, Macadam A, et al. Evolution of the Sabin type 1poliovirus in humans: characterization of strains isolated from patients withvaccine-associated paralytic poliomyelitis[J]. J Virol. 1997,71(10):7758-7768.
    [63] Li J, Zhang LB, Yoneyama T, et al. Genetic basis of the neurovirulence of type 1polioviruses isolated from vaccine-associated paralytic patients[J]. Arch Virol.1996,141(6):1047-1054.
    [64] Friedrich F, Filippis AM, Ferreira FC, et al. Genomic characterization of type 1Sabin-related polioviruses isolated in Brazil[J]. Acta Virol. 1995,39(1):23-29.
    [65] Chi CY, Tseng FC, Liu DP, et al. Investigations of clinical isolations of oralpoliovirus vaccine strains between 2000 and 2005 in southern Taiwan[J]. J ClinVirol. 2009,45(2):129-134.
    [66] Zhang Y, Wang H, Zhu S, et al. Characterization of a rare natural intertypic type2/type 3 penta-recombinant vaccine-derived poliovirus isolated from a child withacute flaccid paralysis[J]. J Gen Virol. 2010,91(Pt 2):421-429.
    [67]安军静,朱晖,严冬梅,等.中国2009年Ⅰ型脊髓灰质炎病毒基因特征分析[J].中国疫苗和免疫,2010,16(2):115-121.
    [68] Combiescu M, Guillot S, Persu A, et al. Circulation of a type 1 recombinantvaccine-derived poliovirus strain in a limited area in Romania[J]. Arch Virol.2007,152(4):727-738.
    [69] Rezapkin GV,Alexander W, Dragunsky E,et al.Genetic stability of Sabin I strain ofpoliovirus:implications for quality control of oral poliovirus vaccine[J].Virology,1998,245(2):183-187.
    [70]张勇,祝双利,赵蓉,等.中国急性弛缓性麻痹(AFP)病例中脊髓灰质炎病毒疫苗株VP1区基因变异的研究[J].病毒学报,2004,20(1):28-33.
    [71]许文波,张勇,严冬梅,等.Ⅰ型疫苗衍生脊髓灰质炎病毒循环的发现和基因特点[J].中国计划免疫,2005,11(4):252-259.
    [72]夏伟,李黎.原发性免疫缺陷病和疫苗衍生脊髓灰质炎病毒的研究进展[J].中国疫苗和免疫,2010,16(3):279-292.
    [73]徐艺,夏雪琴,刘西珍,等.陕西省脊髓灰质炎病毒检测分析[J]。中国公共卫生,2010, 26(9):1126-1127.
    [74]宋立,张少华,王荣,等.西安市1995-2008年检出脊髓灰质炎疫苗病毒的急性弛缓性麻痹病例流行病学分析[J].微生物学免疫学进展,2010,38(3):32-35.
    [75]蒋玉艳,钟革,班华国,等.广西AFP病例脊髓灰质炎病毒核苷酸变异情况分析[J].中国热带医学,2011,11(5):550-551.
    [76] Yan D, Li L, Zhu S, et al. Emergence and localized circulation of a vaccine-derivedpoliovirus in an isolated mountain community in Guangxi, China[J]. J ClinMicrobiol. 2010,48(9):3274-3280.
    [77] Zhang Y, Yan D, Zhu S, et al. Type 2 vaccine-derived poliovirus from patients withacute flaccid paralysis in china: current immunization strategy effectivelyprevented its sustained transmission[J]. J Infect Dis. 2010,202(12):1780-1788.
    [79] World Health Organization, WHO Vaccine Preventable Diseases MonitoringSystem. http://apps.who.int/immunization_monitoring/en/globalsummary/scheduleselect.cfm
    [80]郑海学,常艳艳,靳野,等.以T7 RNA聚合酶为基础的病毒拯救系统研究进展[J].动物医学进展,2007,28(11):62-65.
    [81]黄耀伟,李龙,于涟。人类及动物RNA病毒的反向遗传系统[J].生物工程学报,2004,20(3):311-318.
    [82] Kurosu T, Khamlert C, Phanthanawiboon S, et al. Highly efficient rescue of denguevirus using a co-culture system with mosquito/mammalian cells[J]. BiochemBiophys Res Commun. 2010,394(2):398-404.
    [83] Li C, Han W, Zhang Y, et al.A Sabin 1 poliovirus-based vaccine vector transfectsVero cells with high efficiency[J]. Cytotechnology. 2007, 54(3):169-179.
    [84] Freiberg A, Dolores LK, Enterlein S, et al. Establishment and characterization ofplasmid-driven minigenome rescue systems for Nipah virus: RNA polymerase I-and T7-catalyzed generation of functional paramyxoviral RNA[J]. Virology.2008,370(1):33-44.
    [85] Pachler K, Mayr J, Vlasak R. A seven plasmid-based system for the rescue ofinfluenza C virus[J]. J Mol Genet Med. 2010,4:239-246.
    [86] Qi X, Gao Y, Gao H, et al. An improved method for infectious bursal disease virusrescue using RNA polymerase II system[J]. J Virol Methods. 2007,142(1-2):81-88.
    [87] Ben Abdeljelil N, Khabouchi N, Mardassi H. Efficient rescue of infectious bursaldisease virus using a simplified RNA polymerase II-based reverse genetics strategy[J]. Arch Virol. 2008,153 (6):1131-1137.
    [88] Borman AM, Le Mercier P, Girard M, et al. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins[J].Nucleic Acids Res. 1997,25(5):925-932.
    [89] Clarke DK, Sidhu MS, Johnson JE, et al. Rescue of mumps virus from cDNA[J]. JVirol. 2000,74(10):4831-4838.
    [90] Das SC, Baron MD, Skinner MA, et al. Improved technique for transientexpression and negative strand virus rescue using fowlpox T7 recombinant virus inmammalian cells[J]. J Virol Methods. 2000,89 (1-2):119-127.
    [91] Wagner E, Engelhardt OG, Gruber S, et al. Rescue of recombinant Thogoto virusfrom cloned cDNA[J]. J Virol. 2001,75(19):9282-9286.
    [92] Kovacs GR, Parks CL, Vasilakis N, et al. Enhanced genetic rescue of negative-strand RNA viruses: use of an MVA-T7 RNA polymerase vector and DNAreplication inhibitors[J]. J Virol Methods. 2003,111(1):29-36.
    [93] Takeda M, Ohno S, Seki F, et al. Efficient rescue of measles virus from clonedcDNA using SLAM-expressing Chinese hamster ovary cells[J]. Virus Res.2005,108(1-2):161-165.
    [94] Nakatsu Y, Takeda M, Kidokoro M, et al. Rescue system for measles virus fromcloned cDNA driven by vaccinia virus Lister vaccine strain[J]. J Virol Methods.2006,137(1):152-155.
    [95] Baron MD, Barrett T. Rescue of rinderpest virus from cloned cDNA[J]. J Virol.1997,71(2):1265-1271.
    [96] Peeters BP, de Leeuw OS, Koch G, et al. Rescue of Newcastle disease virus fromcloned cDNA: evidence that cleavability of the fusion protein is a majordeterminant for virulence[J]. J Virol. 1999,73 (6):5001-5009.
    [97] Boot HJ, ter Huurne AA, Peeters BP, et al. Efficient rescue of infectious bursaldisease virus from cloned cDNA: evidence for involvement of the 3'-terminalsequence in genome replication[J]. Virology. 1999,265(2):330-341.
    [98] Gassen U, Collins FM, Duprex WP, et al. Establishment of a rescue system forcanine distemper virus[J]. J Virol. 2000,74(22):10737-10744.
    [99] Boot HJ, Dokic K, Peeters BP. Comparison of RNA and cDNA transfectionmethods for rescue of infectious bursal disease virus[J]. J Virol Methods.2001,97(1-2):67-76.
    [100] Yunus AS, Khattar SK, Collins PL, et al. Rescue of bovine respiratory syncytialvirus from cloned cDNA: entire genome sequence of BRSV strain A51908[J].Virus Genes. 2001,23(2):157-164.
    [101] Lowen AC, Noonan C, McLees A, et al. Efficient bunyavirus rescue from clonedcDNA[J]. Virology. 2004,330(2):493-500.
    [102] Ikegami T, Won S, Peters CJ, et al. Rescue of infectious rift valley fever virusentirely from cDNA, analysis of virus lacking the NSs gene, and expression of aforeign gene[J]. J Virol. 2006,80(6):2933-2940.
    [103] Billecocq A, Gauliard N, Le May N, et al. RNA polymerase I-mediatedexpression of viral RNA for the rescue of infectious virulent and avirulent RiftValley fever viruses[J]. Virology. 2008,378(2):377- 384.
    [104] Zheng H, Tian H, Jin Y, et al.Development of a hamster kidney cell lineexpressing stably T7 RNA polymerase using retroviral gene transfer technology forefficient rescue of infectious foot-and-mouth disease virus[J]. J Virol Methods.2009,156(1-2):129-137.
    [105] Kobayashi T, Ooms LS, Ikizler M, et al. An improved reverse genetics system formammalian orthoreoviruses[J]. Virology. 2010,398(2):194- 200.
    [106] Ghanem A, Kern A, Conzelmann KK. Significantly improved rescue of rabiesvirus from cDNA plasmids[J]. Eur J Cell Biol. 2012,91(1):10-16.
    [107] Feng H, Wei D, Nan G, et al. Construction of a minigenome rescue system forNewcastle disease virus strain Italien[J]. Arch Virol. 2011,156(4): 611-616.
    [108] Yap CC, Ishii K, Aoki Y, et al. A hybrid baculovirus-T7 RNA polymerase systemfor recovery of an infectious virus from cDNA[J]. Virology. 1997,231(2):192-200.
    [109] Agapov EV, Frolov I, Lindenbach BD, et al. Noncytopathic Sindbis virus RNAvectors for heterologous gene expression[J]. Proc Natl Acad Sci U S A. 1998,95(22):12989-12994.
    [110] Theriault S, Groseth A, Neumann G, et al. Rescue of Ebola virus from cDNAusing heterologous support proteins[J]. Virus Res. 2004,106 (1):43-50.
    [111] Kaur J, Tang RS, Spaete RR, et al. Optimization of plasmid-only rescue of highlyattenuated and temperature-sensitive respiratory syncytial virus (RSV) vaccinecandidates for human trials[J]. J Virol Methods. 2008,153(2):196-202.
    [112] Jiang Y, Liu H, Liu P, et al. Plasmids driven minigenome rescue system forNewcastle disease virus V4 strain[J]. Mol Biol Rep. 2009,36(7): 1909-1914.
    [113] de Wit E, Spronken MI, Vervaet G, et al. A reverse-genetics system for InfluenzaA virus using T7 RNA polymerase. J Gen Virol. 2007,88(Pt 4):1281-1287.
    [114]李平花,白兴文,曹伟军,等.含RGD受体结合位点口蹄疫病毒Asia1/JS/China/2005株的拯救及初步鉴定[J].微生物学报,2009,49(7):943-948.
    [115] Heikkil O, Kainulainen M, Susi P. A combined method for rescue of modifiedenteroviruses by mutagenic primers, long PCR and T7 RNA polymerase-driven invivo transcription[J]. J Virol Methods. 2011,171 (1):129-133.
    [116]王殿丽.核定位信号结构特点及工作原理[J].中华实验和临床感染病杂志(电子版),2009,3(2) :48-52.
    [117]曹震宇,吴克复.核定位信号的研究进展[J].国外医学输血及血液学分册,23(5):311-313.
    [118]刘朝晖,邵宁生.核定位信号的研究进展[J].军事医学科学院院刊,2003,27(3):216-219.
    [119]赵元茵,王元忠,曹念,等.核定位信号及其分析策略[J].中国生物化学与分子生物学报,2009,25(8):683-689.
    [120] Graci JD, Harki DA, Korneeva VS, et al. Lethal mutagenesis of poliovirusmediated by a mutagenic pyrimidine analogue[J]. J Virol. 2007,81(20):11256-11266.
    [121] Cornell CT, Brunner JE, Semler BL. Differential rescue of poliovirus RNAreplication functions by genetically modified RNA polymerase precursors[J]. JVirol. 2004,78(23):13007-13018.
    [122] Liu Y, Franco D, Paul AV, et al. Tyrosine 3 of poliovirus terminal peptide VPg(3B)has an essential function in RNA replication in the context of its precursor protein,3AB. J Virol. 2007,81(11):5669-5684.
    [123] Nugent CI, Johnson KL, Sarnow P, et al. Functional coupling between replicationand packaging of poliovirus replicon RNA[J]. J Virol. 1999,73(1):427-435.
    [124] Cello J, Paul AV, Wimmer E. Chemical synthesis of poliovirus cDNA: generationof infectious virus in the absence of natural template[J]. Science. 2002,297(5583):1016-1018.
    [125] World Health Organization. Summary of probable SARS cases with onset ofillness from 1 November 2002 to 31 July 2003.http://www.who.int/csr/sars/country/table2004_04_21/en/.
    [126] Peiris JS, Lai ST, Poon LL, et al. Coronavirus as a possible cause of severe acuterespiratory syndrome[J]. Lancet. 2003,361(9366):1319 -1325.
    [127] Rosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus inpatients with severe acute respiratory syndrome[J]. N Engl J Med. 2003,348(20):1967-1976.
    [128] Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated withsevere acute respiratory syndrome[J]. N Engl J Med. 2003,348(20):1953-1966.
    [129] Poutanen SM, Low DE, Henry B, et al. Identification of severe acute respiratorysyndrome in Canada[J]. N Engl J Med. 2003,348(20):1995- 2005.
    [130] Chan PK, Tam JS, Lam CW, et al. Human metapneumovirus detection in patientswith severe acute respiratory syndrome[J]. Emerg Infect Dis. 2003,9(9):1058-1063.
    [131] Kuiken T, Fouchier RA, Schutten M, et al. Newly discovered coronavirus as theprimary cause of severe acute respiratory syndrome[J]. Lancet. 2003,362(9380):263-270.
    [132] Zhao Z, Zhang F, Xu M, et al. Description and clinical treatment of an earlyoutbreak of severe acute respiratory syndrome(SARS) in Guangzhou, PR China[J].J Med Microbiol. 2003,52(Pt 8):715-720.
    [133] World Health Organization. Manual for the virologic investigation of polio.WHO/EPI/GEN/97.01:25-33.http://whqlibdoc.who.int/hq/1997/WHO_EPI_GEN_97.01.pdf.
    [134] Boot HJ, Sonsma J, van Nunen F, et al. Determinants of monovalent oral poliovaccine mutagenesis in vaccinated elderly people[J]. Vaccine. 2007, 25(24):4706-4714.
    [135] Martín J, Odoom K, Tuite G, et al. Long-term excretion of vaccine-derivedpoliovirus by a healthy child[J]. J Virol. 2004;78 (24):13839-13847.
    [136] Buonagurio DA, Coleman JW, Patibandla SA, et al. Direct detection of Sabinpoliovirus vaccine strains in stool specimens of first-dose vaccinees by a sensitiveReverse Transcription-PCR method[J]. J Clin Microbiol. 1999,37(2):283-289.
    [137] Bellmunt A, May G, Zell R, et al. Evolution of poliovirus type I during 5.5 yearsof prolonged enteral replication in an immunodeficient patient[J]. Virology.1999,265(2):178-184.
    [138] Grotto I, Handsher R, Gdalevich M, et al. Decline in immunity to polio amongyoung adults[J]. Vaccine. 2001,19(30):4162-4166.
    [139] Nates SV, Martinez LC, Barril PA, et al. Long-lasting poliovirus-neutralizingantibodies among Argentinean population immunized with four or five oral poliovaccine doses 1 month to 19 years previously[J]. Viral Immunol. 2007,20(1):3-10.
    [140] Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis ofSARS[J]. J Exp Med. 2005,202(3):415-424.
    [141] Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratorysyndrome (SARS): a report from China[J]. J Pathol. 2003, 200(3):282-289.
    [142] Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratorysyndrome[J]. Am J Pathol. 2007,170(4):1136-1147.
    [143] Choi KW, Chau TN, Tsang O, et al. Outcomes and prognostic factors in 267patients with severe acute respiratory syndrome in Hong Kong[J]. Ann Intern Med.2003,139(9):715-723.
    [144] Peiris JS, Yuen KY, Osterhaus AD, et al. The severe scute respiratory syndrome[J].N Engl J Med. 2003;349(25):2431-41.
    [145] Liu CL, Lu YT, Peng MJ, et al. Acute respiratory syndrome Vis-à-Vis onsetclinical and laboratory features of severe of fever[J]. Chest. 2004,126(2):509-517.
    [146] Li AM, Ng PC. Severe acute respiratory syndrome (SARS) in neonates andchildren[J]. Arch Dis Child Fetal Neonatal Ed. 2005,90(6):F461- 465.
    [147] World Health Organization. Polio laboratory manual WHO/IVB/04.10:6-7.http://www.who.int/vaccines/en/poliolab/WHO-Polio-Manual-9.pdf
    [148]张岩,季圣翔,张晓丽,等.2010年山东省环境污水中脊髓灰质炎病毒的监测及其基因特征分析[J].病毒学报,2011,27(4):337-341.
    [149] Gavrilin GV, Cherkasova EA, Lipskaya GY, et al. Evolution of circulating wildpoliovirus and of vaccine-derived poliovirus in an immunodeficient patient: aUnifying Model[J]. J Virol. 2000,74(16): 7381-7390.
    [150] Arya SC, Agarwal N. Regarding "type 2 vaccine-derived poliovirus from patientswith acute flaccid paralysis in China: current immunization strategy effectivelyprevented its sustained transmission[J]. J Infect Dis. 2011,203(12):1875.
    [151] World Health Organization. Case Definitions for Surveillance of Severe AcuteRespiratory Syndrome (SARS). http://www.who.int/csr/sars/casedefinition/en/.
    [152] Friedrich F. Genomic modifications in Sabin vaccine strains isolated fromvaccination-associated cases, healthy contacts and healthy vaccines[J]. Acta Virol.1996,40(3):157-170.
    [153] Stockman LJ, Massoudi MS, Helfand R, et al. Severe acute respiratory syndromein children[J]. Pediatr Infect Dis J. 2007,26(1):68-74.
    [154] Hon KL, Leung CW, Cheng WT, et al. Clinical presentations and outcome ofsevere acute respiratory syndrome in children[J]. Lancet. 2003,361(9370):1701-1703.
    [155] Bitnun A, Allen U, Heurter H, et al. Children hospitalized with severe acuterespiratory syndrome-related illness in Toronto[J]. Pediatrics. 2003;112(4):e261-e268.
    [156] Shulman LM, Manor Y, Sofer D, et al. Neurovirulent vaccine-derived poliovirusesin sewage from highly immune populations[J]. PLoS ONE. 2006,1:e69.
    [157]段术琴.成人脊髓灰质炎临床符合病例的调查分析与思考[J].医学动物防制,2010,26(5):431-432.
    [158] Vignuzzi M, Wendt E, Andino R. Engineering attenuated virus vaccines bycontrolling replication fidelity[J]. Nat Med. 2008,14(2):154-161.
    [159] Horie H, Miyazawa M, Ota Y, et al. Analysis of the accumulation of mutants inSabin attenuated polio vaccine viruses passaged in Vero cells[J]. Vaccine.2001,19(11-12):1456-1459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700