低聚果糖生产相关酶的分离纯化及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低聚果糖是一种在高等植物和微生物中分布甚广的天然寡聚糖。通常所指的低聚果糖是通过β-(2-1)糖苷键在蔗糖分子的果糖残基上连接1~3个果糖分子而形成的果糖寡聚体蔗果三糖、蔗果四糖、蔗果五糖及其混合物。由于低聚果糖具有难消化、低热量、抗糖尿病、降血脂、增殖双歧杆菌、抗龋齿及美容等独特的生理功能,现已作为一类重要的保健食品和蔗糖替代品广泛使用。工业上,主要以高浓度蔗糖作底物用微生物酶法生产低聚果糖。
     本实验室筛选到了一株低聚果糖高产菌黑曲霉SIPI-602。我们采用凝胶过滤层析的方法对黑曲霉SIPI-602转化蔗糖的产物进行了分离纯化,得到了在HPLC上呈单峰的三聚糖和四聚糖,其保留时间分别与蔗果三糖和蔗果四糖一致。并且用~(13)C-NMR和MS对其结构进行了鉴定,确定它们分别为蔗果三糖和蔗果四糖。
     在低聚果糖生产过程中,发生转移反应的同时往往会出现水解反应,影响了低聚果糖的转化率和产品中低聚果糖的含量。但目前对水解反应的本质尚未取得共识。一般认为,催化水解反应和转移反应的是同一个酶,但对于这一酶的归属有不同的观点,有人认为它属于转移酶,也有人称其为糖苷酶;还有个别学者认为水解反应为杂酶污染所致。为了加深对低聚果糖生产相关酶的了解,我们对黑曲霉SIPI-602产生的与低聚果糖生产相关的酶进行了分离纯化和性质研究。分离到了β-果糖基转移酶和β-呋喃果糖苷酶两个酶,其中β-果糖基转移酶可以催化蔗糖分子上果糖基的转移,生成低聚果糖;而β-呋喃果糖苷酶则可以将蔗糖和低聚果糖水解成葡萄糖和果糖。这有助于确定低聚果糖产生酶的归属和解释低聚果糖生产过程中的水解反应。此外,应用β-果糖基转移酶纯酶对提高低聚果糖的转化率以及进一步研究高浓度低聚果糖的生产均有重要意义。
     低聚果糖生产相关酶的分离纯化包括用球磨机破碎细胞、硫酸铵分级沉淀、Octyl-Sepharose CL-4B疏水层析、Q-Sepharose Fast Flow阴离子交换层析、Sephacryl S-300凝胶过滤层析等步骤。两个蛋白在SDS-聚丙烯酰胺凝胶电泳上均呈单带,用SDS-PAGE测得β-果糖基转移酶和β-呋喃果糖苷酶的分子量分别为98.86KD和84.92KD。
    
     一
     日一果糖基转移酶催化蔗糖转化成蔗果三糖的Km和Vmax分别为0.78mol/L
     和斗.30mmol/min/L;将蔗果三糖转化成蔗果四糖的 Km和 Vmax分别为 0.34mol/L
     和 0二ommol/min/L。葡萄糖是 p一果糖基转移酶的竞争性抑制剂,其 Ki=
     1.36mol几。6一果糖基转移酶反应的最适pH和最适温度分别为牛5~6.0和 55
     ’C。6一果糖基转移酶在中性条件、50oC以下稳定性良好。6一果糖基转移酶转化
     蔗糖生成低聚果糖的反应进程实验表明,高浓度的底物有利于提高反应速度和转化
     率,产物中果糖含量亦较低,说明提高底物浓度可以抑制水解反应的发生。
     旦一陕哺果糖苦酶水解蔗糖生成葡萄糖和果糖的 Km和 Vmax 值分别为
     0.025mol/L和 l.39。mol/min/L。葡萄糖对6一吱哺果糖昔酶没有影响;而果糖是
     6一味g南果糖昔酶的竞争性抑制剂,Ki=10.05mmol/L。fi一味哺果糖苦酶在酸性
     条件稳定,反应活性高。6一映哺果糖昔酶在40℃活力最高,在65℃以下稳定。
     通过对菌丝体、6一果糖基转移酶与p一吠哺果糖苦酶的混合物及纯的p一果糖基
     转移酶转化蔗糖生成低聚果糖的反应进程的比较,考察了p一陕哺果糖昔酶对p一
     果糖基转移酶反应进程的影响。结果表明6一吠哺果糖苦酶对低聚果糖生成速率和
     最终产率均有影响。结果还提示在用菌丝体转化蔗糖过程中低聚果糖可能会诱导出
     更多的6一味哺果糖苦酶。
Purification and properties of the enzymes related to the production of fructooligosaccharides from Aspergillus niger SIPI-602
    ABSTRACT:Fructooligosaccharides(FOS) are a class of natural oligosaccharides existing widely in many kinds of higher plants and microorganisms. They are mainly composed of l-kestose(GF2), nystose(GF3), 1F- 3 -fructofuranosyl nystose (GF4) in which two, three, and four fructosyl units are bound at the $ -2,1 position of sucrose(GF),
    respectively.
    Because of their specific physiological characteristics, i.e., low caloric, non-digestible, noncariogenic, selectively stimulating bifidobacteria growth, antidiabete, FOS have become a class of important health food and alternative sweetener. FOS can be obtained by enzymatic action of a fungal enzyme system, fructosyl transferase on sucrose.
    Previously, we isolated a FOS-producing fungus, Aspergillus niger SIPI-602. The products converted by Aspergillus niger SIPI-602 mycelia were purified and a pure trisaccharide and a pure tetrasaccharide were obtained. The HPLC chromatograms of both the trimer and tetramer showed single peak and their retention times were identical with GF2 and GF3, respectively. In addition, the structures of the trisaccharide and tetrasaccharide were determined by 13C-NMR and MS.
    Then, we purified two enzymes related to the FOS production from A.niger SIPI-602, in which P -fructosyltransferase (FTase) converted sucrose into fructooligosaccharides, while ?> -fructofuranosidase hydrolyzes sucrose and fructooligosaccharides into fructose and glucose.
    The purification protocol consisted of the following procedures: ball milling, ammonium sulfate precipitation and hydrophobic, anion-exchange and gel filtration chromatographies. Both the two enzymes showed single band on SDS-PAGE and the molecular weights of FTase and FFase were 98.86KD and 84.92KD by SDS-PAGE, respectively.
    The properties of FTase and FFase were also investigated. The Km and Vmax values of FTase with sucrose as a substrate were 0.78mol/L and 4.30mmol/min/L by using the Lineweaver-Buek plot, respectively and the Km and Vmax values of FTase using GFi as a substrate were 0.34mol/L and 0.20mmol/min/L. Glucose was a
    
    
    
    competitive inhibitor. FTase was most active at pH4.5-6.0 and at 55"C and stable up to 50 at pH5.8 for one hour of incubation and from pH6.0 to 8.0 at 40癈 in one hour of incubation. The time-course of the formation of FOS from sucrose indicated that the reaction rates increased at a high initial sucrose concentration and the fructose concentration increased at a low sucrose concentration.
    The Km and Vmax values of FFase for hydrolyzing sucrose into glucose and fructose were 0.025mol/L and 1.39rnmmol/rnin/L respectively. Glucose didn't affect FFase activation and fructose was a competitive inhibitor for FFase. FFase was more active and more stable at acidic conditions. The optimal temperature of FFase was 40癈 and the enzyme was stable below 65癈. The time-course for mycelia, FTase and FFase mixture , and pure FTase were compared respectively and it was confirmed that FFase would slow the time-course of FTase and decrease the FOS concentration in the final product. The results also indicated FOS could induce FFase increase in the reaction course catalyzed by mycelia.
引文
[1] Yun JW. Fructooligosaccharides-occurrence, preparation, and application[J]. Enzyme Microb Technol, 1996, 19(8) : 107-117.
    [2] 于敏,魏华,王水永等,低聚果糖的利用与开发[J],食品工业, 1998, (4) : 33-35.
    [3] 江波,王璋,低聚果糖-一种具有优越生理学特性的新型食品甜味剂[J],无锡轻工 业大学学报, 1995, 14(2) : 183-186.
    [4] Bhatia IS, Nandra KS. Studies on fructosyl transferase from Agave americana[J]. Phytochemistry, 1979, 18:923-927.
    [5] Nandra KS , Bhatia IS. In vivo biosynthesis of glucofructosans in Agave americana[J]. Phytochemistry, 1980, 19: 965-966.
    [6] Bhatia 1S, Satyanarayana MN, Srinivasan M. Transfructosidase from Agave vera cru mill[J]. Biochem J, 1955,61: 171-174.
    [7] Satyanarayana MN. Biosynthesis of oligosaccharides and fructans in Agave vera cruz 1. Properties of a partially purified transfructosylase[J]. Indian J Biochem Biophys, 1976, 13:261-266.
    [8] Satyanarayanm MN. Biosynthesis of oligosaccharides and fructans in Agave vera cruz 2. Biosynthesis of oligosaccharides[J]. Indian J Biochem Biophys, 1976, 13: 398-407.
    [9] Shiomi N, Yamada J, Izawa M. Isolation and identification of fructooligosaccharides in roots of asparagus (Asparagus officinalis L.)[J]. Agric Biol Chem, 1976, 40: 567-575.
    [10] Darbyshire B, Henry RJ. The distribution of fructans in onions[J]. New Phytol, 1978,81:29-34.
    [11] Singh R, Bhatia S. Substrate specificity of fructosyltransferase from chicoy roots[J]. Phytochemistry, 1971, 10: 2037-2039.
    [12] Allen PI, Bacon JSD. Oligosaccharides formed from sucrose by fructose-transferring enzymes of higher plants[J]. Biochem J, 1956, 63: 200-206.
    [13] Edelman I, Jefford TG. The metabolism of fructose polymers in plants: Transfructosylation in tubers of Helianthus tuberosus[J]. Biochem J, 1964, 93: 148.
    [14] Chandorkar KR, Collins FW. De novo synthesis of fructooligosaccharides in leaf disks of certain Asteraceae[J]. Can. J. Bot, 1974, 50: 295-303.
    
    
    [15] Nagamatsu Y, Yahata M, Fukada T, et al. Identification of 1-kestose and neokestose-based oligofructans in Lvcoris radiata herb tissues[J]. Agric Biol Chem, 1990, 54: 1291-1292.
    [16] Chandorkar KR, Collins FW. Enzymological aspects of de novo synthesis of fructo-oligosaccharides in leaf disks of certain Asteraceae 4. The activity of sucrose-sucrose l-fructosyltransferase[J]. Can J Bot, 1974, 52: 1369-1377.
    [17] .Tambara Y, Hormazza JV, Perez C, et al. Structural analysis and optimized production of fructo-oligosaccharides by levansucrase from Acetobacter diazotrophicus SRT4[J]. Biotechnol Lett, 1999, 21: 117-121.
    [18] Jung KH, Lim JY, Yoo SJ, et al. Production of fructosyltransferase from Aureobasidiumpullulans[J]. Biotechnol Lett, 1987, 9: 703-708
    [19] Yun JW, Jung KH, Oh JW, et al. Semibatch production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans[J]. Appl Biochem Biotechnol, 1990, 24/25: 299-308.
    [20] Smith JM, Grove D, Luenser SJ, et al. Process for the production of fructose-transferase enzyme[P].US patent 4,309,505, 1982.
    [21] Patil VB, Patil NB. Purification and immobilization of fructosyltransferase for production of fructo-oligosaccharides from sucrose[J]. Indian J Exp Biol, 1999, 37(8) : 830-834.
    [22] Hayashi S, Ito K, Nonoguchi M, et al. Immobilization of a fructosyl-transferring enzyme from Aureobasidium pullulans sp. on Shirasu porous glass[J]. J Ferment Bioeng, 1991,72:68-70.
    [23] Fujita K, Hara K, Hashimoto H, et al. Purification and some properties of β fructofuranosidase from Arthrobactcr sp. K-I[J]. Agric Biol Chem 1990, 54: 913-919.
    [24] Duan KJ, Chen JS, Sheu DC. Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microb Technol, 1994, 16: 334-339.
    [25] Hidaka H, Himyama M, Sumi NA. A fructo-oligosaccharide producing enzyme from Aspergillus niger ATCC 20611[J]. Agric Biol Chem, 1988, 52: 1181-1187.
    
    
    [26] Pazur JH. Transfructosidation reactions of an enzyme of Aspergillus oryzae[J]. J Biol Chem, 1952, 199: 217-225.
    [27] Muranmtsu MJ, Kainuma S, Miwa T, et al. Structures of some fructooligo-saccharides produced from sucrose by mycelia of Aspergillus sydowi IAM-2544[J]. Agric Biol Chem, 1988, 52: 1303-1304.
    [28] Park JP, Bae JT, Yun JW. Critical effect of ammonium ions on the enzymatic reaction of a novel transfructosylating enzyme for frutooligosaccharide production from sucrose[J]. Biotechnol Lett, 1999, 21: 987-990.
    [29] Dickerson AG. A 3-D-fructofuranosidase from Clavicep purpurea[J]. Biochem J, 1972, 129:263-272.
    [30] Gupta AK, Bhatia IS. Glucofructosan biosynthesis in Fusarium oxysporum[J]. Phytochemistry, 1980, 19: 2557-2563.
    [31] Jang ky, Hang YD. Transfructosylating enzyme activity of Penicillium roquefortii[J]. Lett Appl Microbiol, 1996, 22(6) : 397-399.
    [32] Usami S, Ishii T, Kirimura K, et al. Production of fructofuranosidase showing fructose-transferring activity by Peniciliium freqitenans (P glabruni)[J]. J Ferment Bioeng, 1991,72:303-305.
    [33] Sealing FJ, Bacon ISO. The action of mold enzymes on sucrose[J]. Biochem J, 1953, 53: 277-285.
    [34] Hankin L, Mcintype JL. Production of kestose (fructosyl sucroses) by Phytophthora parasitica var. nicolianae[J]. Appl Environ Microbial, 1977, 33: 522-524.
    [35] Takeda H, Sato K, Kinoshita S, et al. Production of 1-kestose by Scopulariopsis brevicaulis[J]. J Ferment Bioeng, 1991, 77: 386-389.
    [36] Straathof AJJ, Kieboom APG, van Bekkum. Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose[J]. Carbohydr Res, 1986, 146: 154-159.
    [37] Arcamone F, CassinelH G, Ferni G, et al. Ergolamine production and metabolism of Clavicepspurpurea strain 275 Fl in stirred fermenters[J]. Can J Microbial, 1970, 16: 923-931
    [38] Gross D. Nonreducing oligosaccharides. In: Methods in Carbohydrate Chemistry[M]. Vol. I (Whistler RL and Wolfrom ML Eds.). New York:Academic Press, 1962, 360-364.
    
    
    [39] Kamerling JP, Vliegenthart JFG, Kahl W, et al. Isolation and identification of nystose from seeds of the horse chestnut (Aesculus hippocastanum)[J]. Carbohydr Res, 1972, 25: 293.
    [40] Hidaka H, Harayama M, Sumi N. A fructooligosaccharide-producing Enzyme from Aspergillus niger ATCC 20611[J]. Agric Biol Chem, 1988, 52(5): 1181-1187.
    [41] Hidaka H, Eida T, Saitoh Y. Industrial Production of fructooligosaccharides and its application for human and animals[J]. Nippon Nogeikagaku Kaishi, 1987, 61: 915-923.
    [42] 日高秀昌,栄田利章.糖転移反応利用糖製造法[J].Bio Industry, 1984,1(1):5-13.
    [43] Hidaka H., Eida T. The effect of fructooligosaccharides on improving intestinal microflora and reduction of putrescent substances in the digestive tract[J]. The Food Industry, 1988, 31(15): 52-58.
    [44] 潘国熙.一种新颖保健性甜味剂—低聚果糖.广西轻工业,1995,(1):7-8.
    [45] 孔德力,章学钦.高纯度低聚果糖生产技术的探讨[J].食品科技,1999,3:27—31.
    [46] Spiegel JE. Safety and benefits of fructooligosaccharides as food ingredients[J]. Food Technol, 1994, (1): 86-89.
    [47] Yun JW, Kang SC, Song SK. Continuous production of Fructo-oligosaccharides from sucrose by immobilized fruoctosyl-transferase[J]. Biotechnol Techniq, 1995, 9(11): 805-808.
    [48] Hayashi S, Tubouchi M, Takasaki Y, et al. Long-Term continuous reaction of immobilized β-fructofuranosidase [J]. Biotechnol Lett, 1994, 16(3): 227-228.
    [49] Yun JW, Lee MG, Song SK. Batch production of high content fructooligosaccharides by the mixed-enzyme system of β-fructofuranosidase and glucose oxidase[J]. J Ferment Bioeng 1994, 77: 159-163.
    [50] Jung KH, Kim JH, Jeon YJ, et al. Production of high Fructo-oligosaccharide syrup with two enzyme system of fructosyltransferase and Glucose oxidase[J]. Biotechnol Lett, 1993, 15(1): 65-70.
    [51] Yun JW, Song SK. Production of high-content fructooligosacchandes by the mixedenzyme system of fructosyltransferase and glucose oxidase[J]. Biotechnol Lett, 1993, 15:573-576.
    
    
    [52] Hayashi S, Nonokuchi M, Imada K, et al. Production of fructosyl-transferring enzyme by Aureobasidium sp ATCC 20524[J]. J Ind Microbiol 1990, 5: 395-400.
    [53] Jung KH, Yun JW, Kang KR, et al. Mathematical model for enzymatic production of fructooligosacchandes from sucrose[J]. Enzyme Microb Technol, 1989,11:491-494.
    [54] Duan KJ, Sheu DC, Chen JS. Purification and characterization of β-fructo-furanosidase from Aspergillus japonicus[Y\. Biosci Biotech Biochem, 1993, 57(11) : 1811-1815.
    [55] Hirayama M, Sumi N, Hidaka H. Purification and properties of a fructooligo-saccharid-producing P-fructofuranosidase from Aspergillus niger ATCC 20611[J]. Agric Biol Chem, 1989, 53(3) : 667-673.
    [56] Hatakeyama Y, Takeda H, Ool T, et al. Kinetic parameters of β-fructofuranosidase from Scopulariopsis brevicanlis[J]. J Ferment Bioeng, 1996, 81(6) : 518-523.
    [57] Su YC, Sheu CS. Recovery and Properties of a Fructooligosaccharides-producing 3-fructofuranosidase from Aspergillus japonicus OCRC 38011[J]. Proc Natl Sci counl, Repub China B, 1993, 17(2) : 62-69.
    [58] 赵玉秀,金之男,吴志龙等,低聚果糖转移酶的分离纯化及性质研究[J],中国医药 工业杂志, 2000, 31(6) : 247-250.
    [59] Chang CT, Lin YY, Tang MS, et al. Purification and properties of β-fructofuranosidase from Aspergillus oryzae ATCC 76080[J]. Biochem Mol Biol Int, 1994, 32(2) : 269-277.
    [60] Yun JW, Noh JS, Lee MG, et al. Production of fructo-oligosaccharides by the mixed-enzyme system of fructosyltransferase and glucose isomerase[J]. J Korean Inst Chem Eng, 1993, 31: 846-851.
    [61] Park YK, Almeida MM. Production of Fructooligosaccharides from sucrose by a Transfructosylase from Aspergillus niger[J]. Word J Microbiol Biotechnol, 1991, 7: 331-334.
    [62] Duan KJ, Chen JS, Sheu DC. Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[J]. Enzyme Microb Technol, 1994, 16: 334-339.
    
    
    [63] Kim MH, In MJ, Cha HJ, et al. An empirical rate equation for the fructooligosacchride-producing reaction catalyzed by β-fructofuranosidase[J]. J Ferment Bioeng, 1996, 82: 458-463.
    [64] Lee WC, Chiang CJ and Tsai PY. Kinetic modeling of fructo-oligosaccharide production catalyzed by immobilized β-fructofuranosidase[J]. Ind Eng Chem Res, 1999, 38: 2564-2570.
    [65] 日高秀昌,平山匡男.転移行微生物.植物酵素[J].化学生物,23(9):600-605.
    [66] Song DD, Jacques NA. Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975[J]. Biochem J, 1999, 341: 285-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700