含氟聚芳醚酮和聚芳醚砜的合成与表征及作为质子交换膜材料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚芳醚酮和聚芳醚砜以耐热等级高、力学性能优良、介电性能好等优势成为一类重要的高性能聚合物材料。与此同时,在保持此类聚合物固有优良性能的基础上,改善其溶解性能,赋予特定功能,如低介电常数、质子传导性能等,成为又一研究热点,对发挥此类聚合物优势、拓展其应用有重要意义。
     本文以可溶解性、低介电常数和具备质子传导性为目标导向,从分子设计的角度出发,在聚芳醚酮、聚芳醚砜分子链中成功引入了大体积的氟苯侧基,制备了溶解性好、热稳定性高、力学性能优异、介电常数和吸水率低的聚芳醚酮和聚芳醚砜。此外,采用直接聚合法制备了新型磺化聚芳醚酮、磺化聚芳醚砜,并对磺化聚合物的溶解性、热性能、力学性能、吸水率和溶胀度、质子传导率以及甲醇渗透率进行了研究,并以磺化聚合物为质子交换膜组装了H2/O2单电池,初步探讨了其在燃料电池中的应用,主要研究结果如下:
     1、设计并合成了两种新型含氟双酚单体。以对氟苯胺、3,4-二氟苯胺、对苯二醌、锌粉以及盐酸为原料,经由两步耦合反应合成了两种含氟双酚单体:4-氟苯基对苯二酚(3b)和3,4-二氟苯对苯二酚(3c)。通过红外光谱(FT-IR)、核磁共振(NMR)、元素分析(EA)等表征手段对制备的含氟双酚单体结构进行了表征,表明所合成单体与设计的结构完全一致。2、基于新型单体制备了含氟聚芳醚酮和聚芳醚砜。由4-氟苯基对苯二酚和3,4-二氟苯对苯二酚分别于4,4’-二氟二苯甲酮(DFBP)、4,4’-二氯二苯砜(DCDPS),通过芳香族亲核取代反应制备出了含氟苯侧基的聚芳醚酮(4a-c)、聚芳醚砜(5a-c)。FI-IR、NMR以及EA结果表明,4a-c和5a-c试样的分子结构与所期望的相符。4a-c、5a-c的特性粘度分别为0.50~0.92dL/g、0.62~0.81dL/g,说明聚合物具有较高的分子量。
     3、研究了所得4a-c和5a-c聚合物的性能。溶解性能分析表明,4a-c和5a-c在常温或加热状态下均可溶于氯仿(CHCI3)、二甲亚砜(DMSO)、N-甲基-2-吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、四氢呋哺(THF)和浓硫酸中。4a-c的玻璃化转变温度为148~160℃,氮气氛围中10%的热失重温度为544~606℃;5a-c的玻璃化转变温度为177-196℃,氮气氛围中10%的热失重温度为541~571℃。4a-c和5a-c均具有良好的力学性能,其拉伸强度、杨氏模量以及断裂伸长率分别在88.1~104MPa、2.68-3.52GPa和15%-34%之间。1MHz下的介电常数是2.75-3.02,30℃下的吸水率是0.51-0.94%。
     4、制备了磺化聚芳醚酮(SPAEK)。由发烟硫酸和4,4’-二氟二苯甲酮反应制备磺化4,4’-二氟二苯甲酮(SDFBP),利用FT-1R、NMR、EA表征了其结构。以此为共聚单体,与DFBP和4-氟苯基对苯二酚进行共聚,制备磺化聚芳醚酮(SPAEK),并通过调整SDFBP与DFBP的摩尔比来控制聚合物的磺化度在20~100%之间,制得了SPAEK-1~5系列聚合物。采用FT-IR、NMR、EA表征手段验证了其结构。SPAEK-1~5的特性粘度为1.06~1.78dL/g,表明具有较高的分子量,可以成膜。
     5、研究了SPAEK的性能及作为质子交换膜在H2/O2单池中的应用。SPAEK-1~5在NMP、DMSO和DMAc中有良好的溶解性,在氯仿中溶胀,但是不溶于水、甲醇和丙酮,因此既方便成膜,又有耐水和甲醇的性能。聚合物的玻璃化转变温度在176℃以上,并且随着磺化度的增加而提高,对于SPAEK-3~5,在100-350℃范围内已经观察不到明显的玻璃化转变。SPAEK-1~5在250℃下未见明显失重,其热失重曲线上有两个失重平台,分别对应于磺酸根以及分子主链的降解。通过溶液浇铸法制得的SPAEK-1~5膜具有良好的力学性能,其拉伸强度、杨氏模量以及断裂伸长率分别在50.5~70.4MPa、1.04-1.97GPa和12%-23%之间,能满足实际应用的需要。所得SPAEK的溶胀度和吸水率随磺化度增加而增大,随温度升高而增大。磺化度为80%的SPAEK-4在30℃下的吸水率为19.4%、溶胀率为1.3%,在80℃下的吸水率为57.5%、溶胀度为17.9%。质子传导率测试结果表明,随着磺化度以及温度的升高,质子传导率均呈上升趋势。80℃下SPAEK-1~5在水中的质子传导率为4.76×10-3~4×10-1S·cm-1,其中SPAEK-4的质子传导率为1.7×10-1S·cm-1。采用自制的装置测试了常温下SPAEK-1~5勺甲醇渗透率,结果显示仅为同等测试条件下Nafion的1/12~1/8。以SPAEK-4膜为质子交换膜组装了H2/O2单电池,常温下的开路电压为982mV,最大能量密度为114.1mW/cm2.
     6、改进了磺化单体的合成技术并成功制备出磺化聚芳醚砜。通过提高发烟硫酸浓度、延长磺化反应时间和改变盐析途径,成功制备了磺化4,4’-二氯二苯砜(SDCDPS),通过FT-IR、NMR和EA验证了化合物结构。以SDCDPS、DCDPS和4-氟苯基对苯二酚为共聚单体,通过芳香族亲核取代制备含有磺酸基团的聚芳醚砜(SPAES-1~5),调整DCDPS和SDCDPS的摩尔比实现对聚合物磺化度的控制。通过FT-IR、NMR和EA验证了磺化聚芳醚砜的结构,并且产物具有较高分子量。
     7、研究了磺化聚芳醚砜的性能及作为质子交换膜的应用。SPAES-1~5溶解性能的测试结果表明,聚合物在NMP、DMSO、DMAc中有良好的溶解性,在氯仿中溶胀,但是不溶于甲醇、水以及丙酮,这一溶解特性不仅解决了此SPAES膜的成型问题,也满足了作为H2/O2和甲醇燃料电池应用的要求。SPAES-1的玻璃化转变温度为200℃,而对于SPAES-2~5,在100~350℃范围内没有明显的玻璃化转变。所有磺化聚芳醚砜的热失重曲线上都有两个失重平台,分别对应于磺酸基团和聚合物主链的降解。溶液浇铸法制得的SPAES-1~5膜力学性能优异,其拉伸强度、杨氏模量以及断裂伸长率分别在47.3~63.5MPa、1.15-1.91GPa和9.8%-13.2%之间。聚合物的吸水率受温度和磺化度影响较大,80℃下磺化度最高的SPAES-5的吸水率为104.55%,溶胀度为30.28%,说明具有很好的尺寸稳定性。SPAES-1~5的质子传导率随温度和磺化度的增加而提高,在90℃液体水中的质子传导率为1.56×10-3~3.54×10-1S'cm-1。磺化聚芳醚砜的甲醇渗透较低,约为同等测试条件下Nafion的1/12~1/7。以SPAES-4膜为质子交换膜组装了H2/O2单电池,并测试了常温下的电池性能,其开路电压为1000.7mV,最大能量密度为120.6mW/cm2。
Poly(aryl ether ketone)(PAEK) and poly(ary ether sulfone)(PAES) are very important high-performance polymers due to excellent comprehensive properties such as thermo-stability, mechanical, electrical and fire-retardant properties. Meanwhile, to prepare novel PAEK and PAES with good solubility and some new functions on the basis of retaining their inherent has become an important concern to exploit applications of this kind of high performance polymerical materials.
     To pursue good solubility, low dielectric constants and proton conductivity of PAEK and PAES, we commenced the design of design of monomers structure. Based on the synthesis of new monomers, a series of PAEKs and PAESs containing fluorinated in the side chain were prepared and characterized in this dissertation. The obtained polymers had good solubilities, themal and mechanical peoperties, low dielectrical constants and water uptake. Furthermore, novel sulfonated PAEKs and PAESs were prepared via direct polymerization. The sulfonated PAEKs and PAESs had high proton conductivity, moderate water uptake and low swelling ratio. PEMFC were assembled using sulfonated PAEK or PAES as proton exchange membranes, and the performances of fuel cells were studied. The main content is as follows:
     1. Two novel fluorinated bisphenol monomers (4-fluorophenyl)hydroquinone (3b) and (3,4-difluoro phenyl)hydroquinone (3c) were synthesized in two steps by the coupling reaction of (4-fluorophenyl)diazonium chloride and (3,4-difluorophenyl)-diazonium chloride with1,4-benzoquinone in the presence of NaHCO3to yield (4-fluorophenyl)benzoquinone (2b) and (3,4-difluorophenyl) benzoquinone (2c), respectively, followed by reduction with Zn/HCl. The chemical structures of the fluorinated bisphenol monomers were confirmed by FT-IR, NMR and elementary analysis.
     2. A series of PAEK (4a-c)/PAES (5a-c) with fluorinated phenyl in the side chain were synthesized from3b,3c, respectively, with4,4'-diflourobenzophenone (DFBP) and bis(4-chlorophenyl) sulfone (CDPS) via nucleophilic aromatic substitution polycondensation. The structures of the resulting polymers were characterized by FT-IR, NMR and elementary analysis. PAEK (4a-c), PAES (5a-c) had inherent viscosities ranging from0.50~0.92dL/g,0.62~0.81dL/g, respectively, which indicated the obtained polyerms had high molecular weights.
     3. The properties of the obtained polymers were investigated. Polymers4a-c,5a-c were soluble in normal solvents such as chloroform (CHCl3), dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), tetrahydrofuran (THF) and concentrated sulphuric acid. They also showed good thermal stability with glass transition temperatures (Tg) beyond148℃, and10% weight loss temperatures in the range of541~606℃in nitrogen. The films of4a-c and5a-c possessed tensile strengths of88.1-104Mpa, Young's moduli of2.68-3.52GPa, and elongations at break of15%-34%. Moreover, these polymers also displayed low dielectric constants of2.75-3.02(at1MHz) and low water absorptions.
     4. Sulfonated4,4'-diflourobenzophenone (SDFBP) were synthesized from DFBP and fuming sulfuric acid. Poly(ether ether ketone)s (SPAEK-1~5) containing sodium sulfonate groups were synthesized directly using SDFBP, DFBP and3b as comonomers. The sulfonation degree of the polymers was controlled between0.2-1.0by varying the molar ration of SDFBP and DFBP. The structures of the sulfonated PAEKs were confirmed well by FT-IR, NMR and elementary analysis. SPAEK-1~5had inherent viscosities ranging from1.06~1.78dL/g.
     5. The performances of SPAEK-1-5and their application in H2/O2single cell were explored. All the prepared SPAEKs could dissolve in NMP, DMSO and DMAc, swell in CHCl3, but not dissolve in water, methanol and acetone. The Tg s of all the sulfonated polymers were over176℃, and increased with increasing sulfonation degree. No obvious glass transition was observed for SPAEK-3~5in the range of 100~350℃. Two weight loss steps were observed in the TGA curves of SPAEK-1~5. corresponding to the decomposition of the sulfonic acid group and the main polymer chain, respectively. The films of SPAEK-1~5prepared by solution-casting had tensile strengths of50.5-70.4Mpa, Young's moduli of1.04~1.97GPa, and elongations at break of12%~23%, which could meet the requirement in pratical application. The water uptake and swelling ration in liquid water increased with temperature and sulfonation degree. The water uptake and swelling ration were19.4%,1.3%respectively at30℃and57.5%,17.9% respectively at80℃. The proton conductivity of SPAEK-1-5also increased with sulfonation degree and temperature and reached to4.76×10-3~4×10-1S·cm-1at80℃. Under the same test condition the methonal permeability of these sulfonated PAEKs was1/12~1/8of Nafion's. The membrane derived from SPAEK-4was used to fabricate MEA, and the MEA properties were then evaluated in single PEMFC. At room temperature the open-circuit voltage was982mV, and the highest power density was114.1mW/cm2.
     6. The synthesis of sulfonated bis(4-chlorophenyl) sulfone (SDCDPS) from DCDPS and fuming sulfuric acid. Poly(ether ether sulfone)s (SPAES-1~5) containing sodium sulfonate groups were synthesized directly using SCDPS, DCPS and3b as comonomers. The sulfonation degree of the polymers was controlled by varying the molar ration of SCDPS and DCPS. The structures of the sulfonated PAESs were confirmed well by FT-IR, NMR and elementary analysis.
     7. The properties of SPAES-1~5and their application in H2/O2single cell were studied. All the obtained SPAESs could dissolve in NMP, DMSO and DMAc, swell in CHCl3, but not dissolve in water, methanol and acetone. The Tg of SPAES-1was200℃, but no obvious glass transition was observed for SPAES-2-5in the range of100~350℃. There were two weight loss steps in the TGA curves of SPAEK-1~5, corresponding to the decomposition of the sulfonic acid group and the main polymer chain, respectively. The films of SPAES-1~5prepared by solution-casting had tensile strengths of47.3~63.5MPa, Young's moduli of1.15~1.91GPa, and elongations at break of9.8%~13.2%. The water uptake and swelling ration in liquid water were greatly affected by sulfonation degree and temperature. For example, the water uptake of SPAES-5reached104.55%and its swelling ratio was30.28%at80℃. The proton conductivity of SPAES-1-5increased with sulfonation degree and temperature and reached to1.56×10-3~3.54×10-1S·cm-1at90℃. At the same test condition the methonal permeability of these sulfonated PAESs was1/12-1/7of Nafion's.The MEA was assembled with membrane derived from SPAES-4,and the properties were then evaluated in single PEMFC. At room temperature the open-circuit voltage was1000.7mV, and the highest power density was120.6mW/cm2.
引文
1. Bicakci S and Cakmak M. Development of structural hierarchy during uniaxial drawing of PEEK/PEI blends from amorphous precursors. Polymer 2002,43:149-157.
    2. Aldred PL, Colquhoun HM, Williams DJ, and Blundell DJ. Critical Role of Diffraction Simulation in Establishing the Crystal and Molecular Structures of Poly(biaryl ether ketone)s. Macromolecules 2002,35:9420-9425.
    3. Atkinson JR, Hay JN, and Jenkins MJ. Enthalpic relaxation in semi-crystalline PEEK. Polymer 2002,43:731-735.
    4. Chang LL, Huang BS, and Woo EM. Melting and morphology in melt-crystallized meta-linked poly(aryl ether ketone). Polymer 2001,42: 8395-8405.
    5. Li XG, Huang MR, Kresse I, and Springer J. Gas transport in bisphenol A poly(ether ether ketone ketone) membrane. Polymer 2001,42:8113-8124.
    6. Boinard E, Pethrick RA, and MacFarlane CJ. The influence of thermal history on the dynamic mechanical and dielectric studies of polyetheretherketone exposed to water and brine. Polymer 2000,41:1063-1076.
    7. Gotham KV and Turner S. Poly(ether sulphone) as an engineering material. Polymer 1974,15:665-670.
    8. Wang ZG, Chen TL, and Xu JP. Gas and water vapor transport through a series of novel poly(aryl ether sulfone) membranes. Macromolecules 2001,34: 9015-9022.
    9. Hajatdoost S, Sammon C, and Yarwood J. FTIR-ATR studies of diffusion and perturbation of water in polyelectrolyte thin films. Part 4. Diffusion, perturbation and swelling processes for ionic solutions in SPEES/PES membranes. Polymer 2002,43:1821-1827.
    10. Kim J-P, Kang J-W, Kim J-J, and Lee J-S. Fluorinated poly(arylene ether sulfone)s for polymeric optical waveguide devices. Polymer 2003,44: 4189-4195.
    11. Chisari V, Mamo A, Recca A, Siracusa V, Carter JT, and McGrail PT. Poly(ether sulphone) copolymers with novel reactive chain-ends. Polymer 2000,41:2001-2008.
    12. Rose JB. Preparation and properties of poly(arylene ether sulphones). Polymer 1974,15:456-465.
    13. Ohno M, Takata T, and Endo T. Synthesis of a novel naphthalene-based poly(arylene ether-ketone) by polycondensation of 1,5-bis(4-fluorobenzoyl)-2,6-dimethylnaphthalene with bisphenol A. J. Polym. Sci., Part A:Polym. Chem.1995,33:2647-2655.
    14. Ji XL, Yu DH, Zhang WJ, and Wu ZW. The multiple melting behaviour of immiscible poly(ether ether ketone)/poly(ether diphenyl ether ketone) blend. Polymer 1997,38:3501-3504.
    15. Ling Ji X, Wan Jin Z, and Wu ZW. Miscibility of poly(ether ether ketone)/poly(ether diphenyl ether ketone) blends. Polymer 1996,37: 4205-4208.
    16. Cao J, Su W, Wu Z, Kitayama T, and Hatada K. Synthesis and properties of poly(ether ether ketone)-poly(ether sulfone) block copolymers. Polymer 1994, 35:3549-3556.
    17. Tullos GL, Cassidy PE, and St. Clair AK. Polymers derived from hexafluoroacetone:12F-poly(ether ketone). Macromolecules 1991,24: 6059-6064.
    18. Alain M. Jonas TPR, and Do Y. Yoon. Synchrotron X-ray Scattering Studies of Crystallization of Poly(ether-ether-ketone) from the Glass and Structural Changes during Subsequent Heating-Cooling Processes. Macromolecules 1995,28:8491-8503
    19. 赵晓刚,冀克俭,邓卫华,梁勇芳.高性能聚芳醚酮的发展及应用.工程 塑料应用2009,37:80-83.
    20. 蹇锡高,孟跃忠,郑海滨,阿兰S·海.含二氮杂萘酮结构的聚醚酮及制备法.中国专利1995.:93109179[P].
    21. Risse W and Sogah DY. Synthesis of soluble high molecular weight poly(aryl ether ketones) containing bulky substituents. Macromolecules 1990,23: 4029-4033.
    22. Wijers MC, Jin M, Wessling M, and Strathmann H. Supported liquid membranes modification with sulphonated poly(ether ether ketone): Permeability, selectivity and stability. J. Membr. Sci.1998,147:117-130.
    23. Mu JX WY, Jiang ZH. Synthesis and characterzation of Poly(aryl ether ketone)s with 2-(4-phenoxyphenyl). Polym. Prepr.2004,45:1128-1129.
    24. Mu JX JZ, Wang YS, Na H, Wu ZW.. The synthesis and characterization of superbranched PAEKs. Polym. Prepr.2002,43:1103-1105.
    25. Chen J MJ, Jiang ZH. Synthesis and structural Characterization of Hyperbranched Poly(arly ether ketone)s from A2+B3 systems. Polym. Prepr. 2004,45:1126-1130.
    26. Mu JX ZC, Jiang ZH, Wang LF. Synthesis and polymorphism of a hyperbranched prepolymer of poly(aryl ether ketone)s containing 1,3-bis(4-flurobenzoy) benzene. Polym. Prepr.2004,45:1130-1131.
    27. Mu JX WG, Wang Y, Chen J, Jiang ZH. Synthesis and characterization of a dendritical prepolymer of poly(ether ether ketone)s (PEEK). Polym. Prepr. 2003,44:418-419.
    28. Wang D, Zhang S, Zhang Y, Wang H, Mu J, Wang G, and Jiang Z. Preparation and nonlinear optical characterization of a novel hyperbranched poly(aryl ether ketone) end-functionalized with nickel phthalocyanine. Dyes and Pigments 2008,79:217-223.
    29. Yue X, Zhang H, Chen W, Wang Y, Zhang S, Wang G, and Jiang Z. Crosslinkable fully aromatic poly(aryl ether ketone)s bearing macrocycle of aryl ether ketone. Polymer 2007,48:4715-4722.
    30. Yue X, Niu Y, Guan S, Li A, Zhang H, and Jiang Z. Synthesis and Characterization of Poly(ether ether ketone)s with (2,5-dihydroxy)phenyl Side Group. J. Macromol. Sci., Pure Appl. Chem.2007,44:535-540.
    31. 杨利国,姚雷,王永国,贲腾,张万金.电活性聚芳醚酮类环状分子的合成和性质.高等学校化学学报2008,29:655-657.
    32. 杨利国,金海燕,王永国,崔岩,曹晖,贲腾,张万金.含联萘基团的手性聚芳醚酮类环状齐聚物修饰电极的制备及其对色氨酸/磷钨杂多酸超分子化合物的手性识别.高等学校化学学报2009,30:1235-1239.
    33. Wang G, Jiang Z, Zhang S, Chen C, and Wu Z. Synthesis and characterization of thermotropic liquid crystalline poly(aryl ether ketone) copolymers with pendant 3-(trifluoromethyl) phenyl groups. Polym. Int.2006,55:657-661.
    34. Sun Q, Wang J, Liu C, Song Y, and Jian X. Lyotropic liquid crystalline poly(aryl ether ketone) copolymer containing phthalazinone moiety and biphenyl mesogen. Eur. Polym. J.2007,43:3683-3687.
    35. Zhang S, Fu L, Liu J, Yang D, Gao Z, Jia M, Zheng Y, and Wu Z. Synthesis and thermotropic liquid crystalline behaviour of novel poly(aryl ether ketone)s with a lateral methoxy group. Macromol. Chem. Phys.2000,201:649-655.
    36. Qi Y, Ding J, Day M, Jiang J, and Callender CL. Cross-Linkable Highly Fluorinated Poly(Arylene Ether Ketones/Sulfones) for Optical Waveguiding Applications. Chem. Mater.2005,17:676-682.
    37. Dhara MG and Banerjee S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Mater Sci.2010,35:1022-1077.
    38. Kimura K, Tabuchi Y, Yamashita Y, Cassidy PE, Fitch JW, and Okumura Y. Synthesis of novel fluorine-containing poly(aryl ether ketone)s. Polym. Adv. Technol.2000,11:757-765.
    39. Liu BJ, Hu W, Chen CH, Jiang ZH, Zhang WJ, and Wu ZW. Synthesis and characterization of trifluoromethylated poly(aryl ether ketones)s. Polym. Adv. Technol.2003,14:221-225.
    40. Liu BJ, Hu W, Chen CH, Jiang ZH, Zhang WJ, Wu ZW, and Matsumoto T. Soluble aromatic poly(ether ketone)s with a pendant 3,5-ditrifluoromethylphenyl group. Polymer 2004,45:3241-3247.
    41. Liu BJ, Hu W, Jin YH, Chen CH, Jiang ZH, Wu ZW, Matsumoto T, and Matsumura A. Aromatic polyethers with a 4-chloro-3-trifluoromethylphenyl group. Macromol. Chem. Phys.2004,205:1677-1683.
    42. Ma XY, Liu BJ, Wang D, Wang GB, Guan SW, and Jiang ZH. Synthesis and characterization of fluorinated poly(aryl ether ether ketone)s ten-ninated with a phenylethynyl group. Mater. Lett.2006,60:1369-1373.
    43. Ma XY, Lv ZH, Wang D, Guan SW, Chen CH, Wang GB, Zhang DM, and Jiang ZH. Crosslinkable fluorinated poly(aryl ether ketone)s containing pendent phenylethynyl moieties for optical waveguide devices. J. Photochem. Photobiol., A 2007,188:43-50.
    44. Mercer FW, Fone MM, and McKenzie MT. Synthesis and characterization of fluorinated poly(aryl ether ketone)s containing 1,4-naphthalene moieties. J. Polym. Sci., Part A:Polym. Chem.1997,35:521-526.
    45. Niu YM, Zhu XL, Liu LZ, Zhang Y, Wang GB, and Jiang ZH. Synthesis and characterization of poly(aryl ether ketone) with trifluoromethyl-substituted benzene in the side chain. React. Funct. Polym.2006,66:559-566.
    46. Park SK and Kim SY. Synthesis of Poly(arylene ether ketone)s Containing Trifluoromethyl Groups via Nitro Displacement Reaction. Macromolecules 1998,31:3385-3387.
    47. Liu BJ, Wang GB, Hu W, Jin YH, Chen CH, Jiang ZH, Zhang WJ, Wu ZW, and Wei Y. Poly(aryl ether ketone)s with (3-methyl)phenyl and (3-trifluoromethyl)phenyl side groups. J. Polym. Sci., Part A:Polym. Chem. 2002,40:3392-3398.
    48. Jones DJ and Roziere J. Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. J. Membr. Sci.2001,185:41-58.
    49. Nunes SP, Ruffmann B, Rikowski E, Vetter S, and Richau K. Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. J. Membr. Sci.2002,203:215-225.
    50. Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, and Kaliaguine S. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci.2000,173:17-34.
    51. Li L, Zhang J, and Wang YX. Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci.2003,226:159-167.
    52. Liu BJ, Hu W, Kim YS, Zou HF, Robertson GP, Jiang ZH, and Guiver MD. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane. Electrochim. Acta 2010,55: 3817-3823.
    53. Liu B, Hu W, Robertson GP, Kim YS, Jiang Z, and Guiver MD. Sulphonated Biphenylated Poly(aryl ether ketone)s for Fuel Cell Applications. Fuel Cells 2010,10:45-53.
    54. Xiao G, Sun G, and Yan D. Polyelectrolytes for Fuel Cells Made of Sulfonated Poly(phthalazinone ether ketone)s. Macromol. Rapid Commun.2002,23: 488-492.
    55. Wang F, Li JK, Chen TL, and Xu JP. Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics. Polymer 1999,40:795-799.
    56. Wang F, Hickner M, Kim YS, Zawodzinski TA, and McGrath JE. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes. J. Membr. Sci. 2002,197:231-242.
    57. Wang F, Chen TL, Xu JP, Liu TX, Jiang HY, Qi YH, Liu SZ, and Li XY. Synthesis and characterization of poly(arylene ether ketone) (co)polymers containing sulfonate groups. Polymer 2006,47:4148-4153.
    58. Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski TA, and McGrath JE. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization. Macromol. Symp. 2001,175:387-396.
    59. Liu BJ, Kim DS, Murphy J, Robertson GP, Guiver MD, Mikhailenko S, Kaliaguine S, Sun YM, Liu YL, and Lai JY. Fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s (SPFEEKK) for fuel cell applications. J. Membr. Sci.2006,280:54-64.
    60. Ishikawa J-i, Fujiyama S, Inoue K, Omi T, and Tamai S. Highly sulfonated poly(aryl ether ketone) block coplymers having a cross-linking structure. J. Membr. Sci.2007,298:48-55.
    61. Guo M, Liu B, Guan S, Li L, Liu C, Zhang Y, and Jiang Z. Novel sulfonated poly(ether ether ketone)s containing nitrile groups and their composite membranes for fuel cells. J. Power Sources 2010,195:4613-4621.
    62. Liu B, Robertson GP, Guiver MD, Sun Y-M, Liu Y-L, Lai J-Y, Mikhailenko S, and Kaliaguine S. Sulfonated poly(aryl ether ether ketone ketone)s containing fluorinated moieties as proton exchange membrane materials. J. Polym. Sci., Part B:Polym. Phys.2006,44:2299-2310.
    63. Xing P, Robertson G, Guiver M, Mikhailenko S, and Kaliaguine S. Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer 2005,46:3257-3263.
    64. Shin CK, Maier G, and Scherer GG. Acid functionalized poly(arylene ether)s for proton-conducting membranes. Journal of Membrane Science 2004,245: 163-173.
    65. Liu S and Chen T. Novel sodium sulfonate-functionalized poly(ether ether ketone)s derived from 4,4'-thiodiphenol. Polymer 2001,42:3293-3296.
    66. Lin HD, Zhao CJ, Cui ZM, Ma WJ, Fu TZ, Na H, and Xing W. Novel sulfonated poly(arylene ether ketone) copolymers bearing carboxylic or benzimidazole pendant groups for proton exchange membranes. J. Power Sources 2009,193:507-514.
    67. Hu H, Xiao M, Wang SJ, and Meng YZ. Poly (fluorenyl ether ketone) ionomers containing separated hydrophilic multiblocks used in fuel cells as proton exchange membranes. Int. J. Hydrogen Energy 2010,35:682-689.
    68. Zhong SL, Liu CG, and Na H. Preparation and properties of UV irradiation-induced crosslinked sulfonated poly(ether ether ketone) proton exchange membranes. J. Membr. Sci.2009,326:400-407.
    69. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, and Kaliaguine S. Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci., Part A:Polym. Chem.2004,42:2866-2876.
    70. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, and Kaliaguine S. Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer 2005,46:3257-3263.
    71. Jeong MH, Lee KS, and Lee JS. Synthesis and characterization of sulfonated poly(arylene ether ketone) copolymers containing crosslinking moiety. J. Membr. Sci.2009,337:145-152.
    72. Li HT, Cui ZM, Zhao CJ, Wu J, Fu TZ, Zhang Y, Shao K, Zhang HQ, Na H, and Xing W. Synthesis and property of a novel sulfonated poly(ether ether ketone) with high selectivity for direct methanol fuel cell applications. J. Membr. Sci.2009,343:164-170.
    73. Wang F, Chen TL, and Xu JP. Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol. Chem. Phys.1998,199:1421-1426.
    74. Gao Y, Robertson GP, Guiver MD, Mikhailenko SD, Li X, and Kaliaguine S. Synthesis of Poly(arylene ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materials. Macromolecules 2004,37:6748-6754.
    75. Xiao GY, Sun GM, Yan DY, Zhu PF, and Tao P. Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization. Polymer 2002,43: 5335-5339.
    76. Guo MM, Liu BJ, Guan SW, Li L, Liu C, Zhang YH, and Jiang ZH. Novel sulfonated poly(ether ether ketone)s containing nitrile groups and their composite membranes for fuel cells. J. Power Sources 2010,195:4613-4621.
    77. Qipeng G. Phase behaviour in epoxy resin containing phenolphthalein poly(ether ether sulphone). Polymer 1993,34:70-76.
    78. Ayambem A, Mecham SJ, Sun Y, Glass TE, and McGrath JE. Endgroup substituent effects on the rate/extent of network formation and adhesion for phenylethynyl-terminated poly(arylene ether sulfone) oligomers. Polymer 2000,41:5109-5124.
    79. Barikani M and Mehdipour-Ataei S. Synthesis, characterization, and thermal properties of novel arylene sulfone ether polyimides and polyamides. J. Polym. Sci., Part A:Polym. Chem.2000,38:1487-1492.
    80. Rikukawa M and Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci.2000,25:1463-1502.
    81. Kricheldorf HR and Bier G. New polymer synthesis. IX. Synthesis of poly(ether sulfone)s from silylated diphenols or hydroxybenzoic acids. J. Polym. Sci., Part A:Polym. Chem.1983,21:2283-2289.
    82. Gerbi DJ, Dimotsis G, Morgan JL, Williams RF, and Kellman R. The effect of water on the formation of polyarylethers via phase-transfer-catalyzed nucleophilic aromatic substitution. J. Polym. Sci., Part C:Polym. Lett.1985, 23:551-556.
    83. Akutsu F, Takahashi K, Kasashima Y, Inoki M, and Naruchi K. Synthesis and properties of poly(arylene ether sulfone)s and poly(arylene ether ketones) derived from 4,4"-dihydroxy-o-terphenyl. Macromol. Rapid Commun.1995, 16:495-501.
    84. 童永芬,宋才生,温红丽,谌烈,刘晓玲.含甲基侧基聚芳醚砜醚酮酮的合成与表征.高分子材料科学与工程2005,21:162-165.
    85. Newton AB and Rose JB. Relative reactivities of the functional groups involved in synthesis of poly(phenylene ether sulphones) from halogenated derivatives of diphenyl sulphone. Polymer 1972,13:465-474.
    86. Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, and Staniland PA. Synthesis and properties of polyaryletherketones. Polymer 1981,22: 1096-1103.
    87. Liu W, Chen T, and Xu J. Gas permeation behavior of phenolphthalein based heat-resistant polymers PEK-C and PES-C. J. Membr. Sci.1990,53:203-213.
    88. Meyer GW, Tan B, and McGrath JE. Solvent-resistant polyetherimide network systems via phenylethynylphthalic anhydride endcapping. High Perform. Polym.1994,6:423-435.
    89. Meyer GW, Pak SJ, Lee YJ, and McGrath JE. New high-performance thermosetting polymer matrix material systems. Polymer 1995,36: 2303-2309.
    90. Ates S, Dizman C, Aydogan B, Kiskan B, Torun L, and Yagci Y. Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups. Polymer 2011,52:1504-1509.
    91. Liu F, Ding J, Li M, Day M, Robertson G, and Zhou M. Preparation of Highly Fluorinated Poly(ether sulfone)s under Mild Polycondensation Conditions Using Molecular Sieves. Macromol. Rapid Commun.2002,23:844-848.
    92. Masaki S, Sato N, Nishichi A, Yamazaki S, and Kimura K. Fluorinated poly(aryl thioether)s and poly(aryl sulfone)s derived from 2,3,4,5,6-pentafluorobenzoic acid. J. Appl. Polym. Sci.2008,108:498-503.
    93. 姜振玉,黄海蓉,陈建定.含六氟异丙烷结构的聚芳醚酮和聚芳醚砜的合成与性能.华东理工大学学报(自然科学版)2007:345-349.
    94. Poppe D, Frey H, Kreuer KD, Heinzel A, and Mulhaupt R. Carboxylated and Sulfonated Poly(arylene-co-arylene sulfone)s:Thermostable Polyelectrolytes for Fuel Cell Applications. Macromolecules 2002,35:7936-7941.
    95. Kang MY-JCa, Ik-Jun Choi b, Tae-Ho Yoon b, and Seung-Hyeon Moona. Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation-exchange membranes. J. Membr. Sci.2003,216:39-53.
    96. Miyatake K, Chikashige Y, and Watanabe M. Novel Sulfonated Poly(arylene ether):A Proton Conductive Polymer Electrolyte Designed for Fuel Cells. Macromolecules 2003,36:9691-9693.
    97. Ng F, Bae B, Miyatake K, and Watanabe M. Polybenzimidazole block sulfonated poly(arylene ether sulfone) ionomers. Chem. Commun.2011,47: 8895-8897.
    98. Hajatdoost S, Sammon C, and Yarwood J. FTIR-ATR studies of diffusion and perturbation of water in polyelectrolyte thin films. Part 4. Diffusion, perturbation and swelling processes for ionic solutions in SPEES/PES membranes. Polymer 2002,43:1821-1827.
    99. Ghassemi H, Ndip G, and McGrath JE. New multiblock copolymers of sulfonated poly(4'-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes. Ⅱ. Polymer 2004,45:5855-5862.
    100. Miyatake K, Zhou H, Uchida H, and Watanabe M. Highly proton conductive polyimide electrolytes containing fluorenyl groups. Chem. Commun.2003: 368-369.
    101. Miyatake K, Oyaizu K, Tsuchida E, and Hay AS. Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers. Macromolecules 2001,34:2065-2071.
    102. Miyatake K and Hay AS. Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings. J. Polym. Sci., Part A: Polym. Chem.2001,39:3211-3217.
    103. Miyatake K and Hay AS. New poly(arylene ether)s with pendant phosphonic acid groups. J. Polym. Sci., Part A:Polym. Chem.2001,39:3770-3779.
    104. Harrison WL, Wang F, Mecham JB, Bhanu VA, Hill M, Kim YS, and McGrath JE. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I. J. Polym. Sci., Part A:Polym. Chem.2003, 41:2264-2276.
    105. 衣宝廉.燃料电池--高效、环境友好的发电方式.北京:化工出版社2000,p10-20.
    106. 毛宗强.燃料电池.北京:化学工业出版社2005,p21-29.
    107. Wakizoe M, Velev OA, and Srinivasan S. Analysis of proton exchange membrane fuel cell performance with alternate membranes. Electrochim. Acta 1995,40:335-344.
    108. HeitnerWirguin C. Recent advances in perfluorinated ionomer membranes: Structure, properties and applications. J. Membr. Sci.1996,120:1-33.
    109. Hodgdon RB. Polyelectrolytes prepared from perfluoroalkylaryl macromolecules. J. Polym. Sci., Part A:Polym. Chem.1968,6:171-191.
    110. Donoso P, Gorecki W, Berthier C, Defendini F, Poinsignon C, and Armand MB. NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x). Solid State Ionics 1988,28-30, Part 2:969-974.
    111. Petty-Weeks S, Zupancic JJ, and Swedo JR. Proton conducting interpenetrating polymer networks. Solid State Ionics 1988,31:117-125.
    112. Rodriguez D, Jegat C, Trinquet O, Grondin J, and Lassegues JC. Proton conduction in poly (acrylamide)-acid blends. Solid State Ionics 1993,61: 195-202.
    113. Wieczorek W and Stevens JR. Proton transport in polyacrylamide based hydrogels doped with H3PO4 or H2SO4. Polymer 1997,38:2057-2065.
    114. Tanaka R, Yamamoto H, Shono A, Kubo K, and Sakurai M. Proton conducting behavior in non-crosslinked and crosslinked polyethylenimine with excess phosphoric acid. Electrochim. Acta 2000,45:1385-1389.
    115. Li QF, Jensen JO, Savinell RF, and Bjerrum NJ. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci.2009,34:449-477.
    116. Li Q, He R, Jensen JO, and Bjerrum NJ. PBI-Based Polymer Membranes for High Temperature Fuel Cells-Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells 2004,4:147-159.
    117. Nagarale RK, Gohil GS, and Shahi VK. Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane. J. Membr. Sci. 2006,280:389-396.
    118. Silva VS, Weisshaar S, Reissner R, Ruffmann B, Vetter S, Mendes A, Madeira LM, and Nunes S. Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures. J. Power Sources 2005,145:485-494.
    119. Gao Y, Robertson GP, Guiver MD, Jian X, Mikhailenko SD, and Kaliaguine S. Proton exchange membranes based on sulfonated poly(phthalazinone ether ketone)s/aminated polymer blends. Solid State Ionics 2005,176:409-415.
    120. Zhang H, Li X, Zhao C, Fu T, Shi Y, and Na H. Composite membranes based on highly sulfonated PEEK and PBI:Morphology characteristics and performance. J. Membr. Sci.b 2008,308:66-74.
    121. Arthanareeswaran G, Thanikaivelan P, and Raajenthiren M. Sulfonated Poly(ether ether ketone)-Induced Porous Poly(ether sulfone) Blend Membranes for the Separation of Proteins and Metal Ions. J. Appl. Polym. Sci. 2010,116:995-1004.
    122. Kozawa Y, Suzuki S, and Miyayama M. Proton Conducting Properties of Sulfonated Poly(etheretherketone) Composite Membranes with Layered Tin Phosphate Hydrates at Intermediate Temperatures. J. Electrochem. Soc.2009, 156:B1401-B1405.
    123. Genies C, Mercier R, Sillion B, Petiaud R, Cornet N, Gebel G, and Pineri M. Stability study of bsulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 2001,42:5097-5105.
    124. Gieselman MB and Reynolds JR. Water-Soluble Polybenzimidazole-Based Polyelectrolytes. Macromolecules 1992,25:4832-4834.
    125. Liu B, Hu W, Kim YS, Zou H, Robertson GP, Jiang Z, and Guiver MD. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane. Electrochim. Acta 2010,55: 3817-3823.
    1. Li WW, Tang HY, Chen XF, Fan XH, Shen ZH, and Zhou QF. Crosslinkable poly(aryl ether ketone)s containing pendant phenylethynyl moieties:Synthesis, characterization and properties. Polymer 2008,49:4080-4086.
    2. Rao VL, Sabeena PU, Saxena A, Gopalakrishnan C, Krishnan K, Ravindran PV, and Ninan KN. Synthesis and properties of poly(aryl ether ether ketone) copolymers with pendant methyl groups. Eur. Polym. J.2004,40:2645-2651.
    3. Lee KS, Kim JP, and Lee JS. Synthesis and characterization of low-birefringent crosslinkable fluorinated poly(arylene ether sulfide)s containing pendant phenyl moiety. Polymer 2010,51:632-638.
    4. Dhara MG and Banerjee S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci.2010,35:1022-1077.
    5. Park SK and Kim SY. Synthesis of Poly(arylene ether ketone)s Containing Trifluoromethyl Groups via Nitro Displacement Reaction. Macromolecules 1998,31:3385-3387.
    6. Liu F, Ding J, Li M, Day M, Robertson G, and Zhou M. Preparation of Highly Fluorinated Poly(ether sulfone)s under Mild Polycondensation Conditions Using Molecular Sieves. Macromol. Rapid Commun.2002,23:844-848.
    7. Masaki S, Sato N, Nishichi A, Yamazaki S, and Kimura K. Fluorinated poly(aryl thioether)s and poly(aryl sulfone)s derived from 2,3,4,5,6-pentafluorobenzoic acid. J. Appl. Polym. Sci.2008,108:498-503.
    8. Kimura K, Tabuchi Y, Yamashita Y, Cassidy PE, Fitch JW, and Okumura Y. Synthesis of novel fluorine-containing poly(aryl ether ketone)s. Polym. Adv. Technol.2000,11:757-765.
    9. Liu BJ, Wang GB, Hu W, Jin YH, Chen CH, Jiang ZH, Zhang WJ, Wu ZW, and Wei Y. Poly(aryl ether ketone)s with (3-methyl)phenyl and (3-trifluoromethyl)phenyl side groups. J. Polym. Sci., Part A:Polym. Chem. 2002,40:3392-3398.
    10. Yu YK, Mao F, and Cai MZ. Synthesis and properties of poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups. J. Appl. Polym. Sci.2007,104:3601-3606.
    11. Liu B, Wang G, Hu W, Jin Y, Chen C, Jiang Z, Zhang W, Wu Z, and Wei Y. Poly(aryl ether ketone)s with (3-methyl)phenyl and (3-trifluoromethyl)phenyl side groups. J. Polym. Sci., Part A:Polym. Chem.2002,40:3392-3398.
    12. Liu BJ, Hu W, Jin YH, Chen CH, Jiang ZH, Wu ZW, Matsumoto T, and Matsumura A. Aromatic polyethers with a 4-chloro-3-trifluoromethylphenyl group. Macromol. Chem. Phys.2004,205:1677-1683.
    13. Niu YM, Zhu XL, Liu LZ, Zhang Y, Wang GB, and Jiang ZH. Synthesis and characterization of poly(aryl ether ketone) with trifluoromethyl-substituted benzene in the side chain. React. Funct. Polym.2006,66:559-566.
    14. Liu BJ, Hu W, Chen CH, Jiang ZH, Zhang WJ, Wu ZW, and Matsumoto T. Soluble aromatic poly(ether ketone)s with a pendant 3,5-ditrifluoromethylphenyl group. Polymer 2004,45:3241-3247.
    15. Cai M, Zhu M, Sun Y, and Qian J. Synthesis and characterization of soluble aromatic poly(ether amide amide ether ketone ketone)s by electrophilic Friedel-Crafts solution polycondensation. React. Funct. Polym.2010,70: 182-188.
    16. Hoffmann U, Helmermetzmann F, Klapper M, and Mullen K. Poly(Ether Ketone)S by Fluoride Catalyst Systems. Macromolecules 1994,27: 3575-3579.
    1. Niu YM, Zhu XL, Liu LZ, Zhang Y, Wang GB, and Jiang ZH. Synthesis and characterization of poly(aryl ether ketone) with trifluoromethyl-substituted benzene in the side chain. React. Funct. Polym.2006,66:559-566.
    2. Kim JP, Kang JW, Kim JJ, and Lee JS. Fluorinated poly(arylene ether sulfone)s for polymeric optical waveguide devices. Polymer 2003,44: 4189-4195.
    3. Rose JB. Preparation and properties of poly(arylene ether sulphones). Polymer 1974,15:456-465.
    4. Carlier V, Devaux J, Legras R, and McGrail PT. The percentage of rigid chain length, (PRCL), a new concept for predicting glass transition temperatures and melting points of poly(aryl ether ketones) and poly(aryl ether sulfones). Macromolecules 1992,25:6646-6650.
    5. Liu BJ, Wang GB, Hu W, Jin YH, Chen CH, Jiang ZH, Zhang WJ, Wu ZW, and Wei Y. Poly(aryl ether ketone)s with (3-methyl)phenyl and (3-trifluoromethyl)phenyl side groups. J. Polym. Sci., Part A:Polym. Chem. 2002,40:3392-3398.
    6. Hougham G, Tesoro G, Viehbeck A, and Chapplesokol JD. Polarization effects of fluorine on the relatie permittiity in polyimides. Macromolecules 1994,27: 5964-5971.
    7. Liu BJ, Hu W, Chen CH, Jiang ZH, Zhang WJ, Wu ZW, and Matsumoto T. Soluble aromatic poly(ether ketone)s with a pendant 3,5-ditrifluoromethylphenyl group. Polymer 2004,45:3241-3247.
    8. 姜振玉,黄海蓉,陈建定.含六氟异丙烷结构的聚芳醚酮和聚芳醚砜的合成与性能.华东理工大学学报(自然科学版) 2007,33:345-349.
    9. Hougham G, Tesoro G, and Viehbeck A. Influence of free volume change on the relative permittivity and refractive index in fiuoropolyimides. Macromolecules 1996,29:3453-3456.
    1. Qiao J, Hamaya T, and Okada T. New highly proton-conducting membrane poly(vinylpyrrolidone) (PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-l-propanesulfonic acid (PVA-PAMPS) fol-low temperature direct methanol fuel cells (DMFCs). Polymer 2005,46: 10809-10816.
    2. Hickner MA, Ghassemi H, Kim YS, Einsla BR, and McGrath JE. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews 2004,104:4587-4612.
    3. Wang F, Hickner M, Kim YS, Zawodzinski TA, and McGrath JE. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes. J. Membr. Sci. 2002,197:231-242.
    4. Qing S, Huang W, and Yan D. Synthesis and properties of soluble sulfonated polybenzimidazoles. React. Funct. Polym.2006,66:219-227.
    5. Liu BJ, Robertson GP, Kim DS, Guiver MD, Hu W, and Jiang ZH. Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes. Macromolecules 2007,40:1934-1944.
    6. Wang F, Chen TL, and Xu JP. Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol. Chem. Phys.1998,199:1421-1426.
    7. Wang F, Li JK, Chen TL, and Xu JP. Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics. Polymer 1999,40:795-799.
    8. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, and Kaliaguine S. Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci., Part A:Polym. Chem.2004,42:2866-2876.
    9. Lin HD, Zhao CJ, Cui ZM, Ma WJ, Fu TZ, Na H, and Xing W. Novel sulfonated poly(arylene ether ketone) copolymers bearing carboxylic or benzimidazole pendant groups for proton exchange membranes. J. Power Sources 2009,193:507-514.
    1. Sambandam S and Ramani V. SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells. J. Power Sources 2007,170: 259-267.
    2. Jeong MH, Lee KS, and Lee JS. Synthesis and characterization of sulfonated poly(arylene ether ketone) copolymers containing crosslinking moiety. J. Membr. Sci.2009,337:145-152.
    3. Einsla BR. High temperature polymers for proton exchange membranes fuel cells. Doctoral dissertation of Virginia Polytechnic Institute and State University 2005, p6-7.
    4. Satterfield MB, Majsztrik PW, Ota H, Benziger JB, and Bocarsly AB. Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells. J. Polym. Sci., Part B:Polym. Phys. 2006,44:2327-2345.
    5. Zhao Q, Carro N, Ryu HY, and Benziger J. Sorption and transport of methanol and ethanol in H+-Nafion. Polymer 2012,53:1267-1276.
    6. Yang C. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 2004,237:145-161.
    7. Woo CH and Benziger JB. PEM fuel cell current regulation by fuel feed control. Chem. Eng. Sci.2007,62:957-968.
    8. Xing P, Robertson G, Guiver M, Mikhailenko S, and Kaliaguine S. Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials. Polymer 2005,46:3257-3263.
    9. Zhao C, Li X, Wang Z, Dou Z, Zhong S, and Na H. Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane. J. Membr. Sci.2006,280:643-650.
    10. Li N, Shin DW, Hwang DS, Lee YM, and Guiver MD. Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups. Macromolecules 2010,43:9810-9820.
    11. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, and Kaliaguine S. Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci., Part A:Polym. Chem.2004,42:2866-2876.
    12. Liu BJ, Robertson GP, Kim DS, Guiver MD, Hu W, and Jiang ZH. Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes. Macromolecules 2007,40:1934-1944.
    13. Liu B, Kim DS, Murphy J, Robertson GP, Guiver MD, Mikhailenko S, Kaliaguine S, Sun YM, Liu YL, and Lai JY. Fluorenyl-containing sulfonated poly(aryl ether ether ketone ketone)s (SPFEEKK) for fuel cell applications. J. Membr. Sci.2006,280:54-64.
    14. Chen Y, Meng Y, Wang S, Tian S, Chen Y, and Hay AS. Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application. J. Membr. Sci.2006,280:433-441.
    15. Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, and Kaliaguine S. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci.2000,173:17-34.
    16. Gao Y, Robertson GP, Guiver MD, Jian XG. Synthesis and Characterization of Sulfonated Poly(phthalazinone ether ketone) for Proton Exchange Membrane Materials. J. Polym. Sci., Part A:Polym. Chem.2003,41:497-507.
    17. Wang F, Chen TL, and Xu JP. Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol. Chem. Phys.1998,199:1421-1426.
    18. 李先锋.磺化聚芳醚酮类质子交换膜材料的结构与性能研究.吉林大学博士学位论文2006,p82-84.
    19. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, and Kaliaguine S. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Membr. Sci.2004,229:95-106.
    20. Vona MLD, Sgreccia E, Licoccia S, Khadhraoui M, Denoyel R, and Knauth P. Composite Proton-Conducting Hybrid Polymers:Water Sorption Isotherms and Mechanical Properties of Blends of Sulfonated PEEK and Substituted PPSU. Chem. Mater.2008,20:4327-4334.
    21. Schuster MFH, Meyer WH, Schuster M, and Kreuer KD. Toward a New Type of Anhydrous Organic Proton Conductor Based on Immobilized Imidazole. Chem. Mater.2003,16:329-337.
    22. Kim YS, Wang F, Hickner M, Zawodzinski TA, and McGrath JE. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications. J. Membr. Sci.2003,212:263-282.
    23. Kim YS, Dong LM, Hickner MA, Pivovar BS, and McGrath JE. Processing induced moiphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes. Polymer 2003,44:5729-5736.
    24. Harrison WL, Wang F, Mecham JB, Bhanu VA, Hill M, Kim YS, and McGrath JE. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I. J. Polym. Sci., Part A:Polym. Chem.2003, 41:2264-2276.
    25. Hickner MA, Ghassemi H, Kim YS, Einsla BR, and McGrath JE. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chem. Rev.2004, 104:4587-4612.
    26. Cai H, Shao K, Zhong S, Zhao C, Zhang G, Li X, and Na H. Properties of composite membranes based on sulfonated poly(ether ether ketone)s (SPEEK)/phenoxy resin (PHR) for direct methanol fuel cells usages. J. Membr. Sci.2007,297:162-173.
    27. Marx D, Tuckerman ME, Hutter J, and Parrinello M. The nature of the hydrated excess proton in water. Nature 1999,397:601-604.
    28. Kreuer K-D, Paddison SJ, Spohr E, and Schuster M. Transport in Proton Conductors for Fuel-Cell Applications:Simulations, Elementary Reactions, and Phenomenology. Chem. Rev.2004,104:4637-4678.
    29. Nagarale RK, Gohil GS, and Shahi VK. Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane. J. Membr. Sci. 2006,280:389-396.
    30. Yin Y, Fang J, Watari T, Tanaka K, Kita H, and Okamoto K-i. Synthesis and properties of highly sulfonated proton conducting polyimides from bis(3-sulfopropoxy)benzidinediamines. J. Mater. Chem.2004,14:1062-1070.
    31. Zhai F, Guo X, Fang J, and Xu H. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application. J. Membr. Sci. 2007,296:102-109.
    32. Saito J, Miyatake K, and Watanabe M. Synthesis and Properties of Polyimide Ionomers Containing 1H-1,2,4-Triazole Groups. Macromolecules 2008,41: 2415-2420.
    33. Xu H, Chen K, Guo X, Fang J, and Yin J. Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer 2007,48:5556-5564.
    34. Xu N, Guo X, Fang J, Yin J, Yuan M, and Chen B. Preparation and Properties of Cross-linked Sulphonated Poly(sulphide sulphone) Membranes for Fuel Cell Applications. Fuel Cells 2009,9:363-371.
    35. Fang J, Guo X, Harada S, Watari T, Tanaka K, Kita H, and Okamoto K-i. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application.1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4'-Diaminodiphenyl Ether-2,2'-disulfonic Acid. Macromolecules 2002,35: 9022-9028.
    36. Wang Y and Rubner MF. Electrically conductive semiinterpenetrating polymer networks of poly(3-octylthiophene). Macromolecules 1992,25:3284-3290.
    37. Wu X, Wang X, He G, and Benziger J. Differences in water sorption and proton conductivity between Nation and SPEEK. J. Polym. Sci., Part B: Polym. Phys.2011,49:1437-1445.
    38. Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, and Watanabe M. Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications. JACS 2006,128:1762-1769.
    39. Liu B, Hu W, Robertson GP, Kim YS, Jiang Z, and Guiver MD. Sulphonated Biphenylated Poly(aryl ether ketone)s for Fuel Cell Applications. Fuel Cells 2010,10:45-53.
    40. Seo DW, Lim YD, Lee SH, Jeong IS, Kim DI, Lee JH, and Kim WG. Preparation and characterization of sulfonated poly(tetra phenyl ether ketone sulfone)s for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2012,37:6140-6147.
    41. Einsla ML, Kim YS, Hawley M, Lee H-S, McGrath JE, Liu B, Guiver MD, and Pivovar BS. Toward Improved Conductivity of Sulfonated Aromatic Proton Exchange Membranes at Low Relative Humidity. Chem. Mater.2008, 20:5636-5642.
    42. Harrison WL, Hickner MA, Kim YS, and McGrath JE. Poly(Arylene Ether Sulfone) Copolymers and Related Systems from Disulfonated Monomer Building Blocks:Synthesis, Characterization, and Performance-A Topical Review. Fuel Cells 2005,5:201-212.
    43. Li L, Zhang J, and Wang YX. Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci.2003,226:159-167.
    44. Liu B, Hu W, Kim YS, Zou H, Robertson GP, Jiang Z, and Guiver MD. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane. Electrochim. Acta 2010,55: 3817-3823.
    45. 顾爽.磺化聚芳醚酮砜新型质子交换膜的制备与研究.大连理工大学博士论文2007,p69-70.
    1. Miyatake K, Chikashige Y, and Watanabe M. Novel Sulfonated Poly(arylene ether):A Proton Conductive Polymer Electrolyte Designed for Fuel Cells. Macromolecules 2003,36:9691-9693.
    2. Wang F, Hickner M, Kim YS, Zawodzinski TA, and McGrath JE. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes. J. Membr. Sci. 2002,197:231-242.
    3. Ueda M, Toyota H, Ouchi T, Sugiyama J-I, Yonetake K, Masuko T, and Teramoto T. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups. J. Polym. Sci., Part A:Polym. Chem.1993,31:853-858.
    4. Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski TA, and McGrath JE. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization. Macromol. Symp. 2001,175:387-396.
    5. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, and Kaliaguine S. Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci., Part A:Polym. Chem.2004,42:2866-2876.
    6. Kang MS, Choi YJ, Choi IJ, Yoon TH, Moon SH. Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation-exchange membranes. J. Membr. Sci.2003,216:39-53.
    7. Orchard BJ and Tripathy SK. Molecular structure and electronic property modification of poly(diacetylenes). Macromolecules 1986,19:1844-1850.
    1. Andrew M, Mukundan T, and McGrath JE. Sulfonated Poly(Arylene Ether Sulfone) Copolymers-Acid and Salt Form:Potential Biofunctional Polymers. J. Bioact. Compat. Polym.2004,19:315-329.
    2. Feng S, Shang Y, Xie X, Wang Y, and Xu J. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications. J. Membr. Sci.2009,335:13-20.
    3. Harrison WL, Hickner MA, Kim YS, and McGrath JE. Poly(Arylene Ether Sulfone) Copolymers and Related Systems from Disulfonated Monomer Building Blocks:Synthesis, Characterization, and Performance-A Topical Review. Fuel Cells 2005,5:201-212.
    4. Shin CK, Maier G, and Scherer GG. Acid functionalized poly(arylene ether)s for proton-conducting membranes. J. Membr. Sci.2004,245:163-173.
    5. Wang F, Hickner M, Kim YS, Zawodzinski TA, and McGrath JE. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes. J. Membr. Sci. 2002,197:231-242.
    6. Im SJ, Patel R, Shin SJ, Kim JH, and Min BR. Sulfonated poly(arylene ether sulfone) membranes based on biphenol for direct methanol fuel cells. Korean J. Chem. Eng.2008,25:732-737.
    7. Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, and Kaliaguine S. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci.2000,173:17-34.
    8. 陈连周,蹇锡高,朱秀玲.甲基取代杂萘联苯型聚芳醚的合成、表征及性能.高分子材料科学与工程2002,18:55-57.
    9. Gao Y, Robertson GP, Guiver MD, Jian XG. Synthesis and Characterization of Sulfonated Poly(phthalazinone ether ketone) for Proton Exchange Membrane Materials. J. Polym. Sci., Part A:Polym. Chem.2003,41:497-507.
    10. Wang F, Chen TL, and Xu JP. Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol. Chem. Phys.1998,199:1421-1426.
    11. 李先锋.磺化聚芳醚酮类质子交换膜材料的结构与性能研究.吉林大学博士学位论文2006,p82-84.
    12. Seo DW, Lim YD, Lee SH, Jeong IS, Kim DI, Lee JH, and Kim WG. Preparation and characterization of sulfonated poly(tetra phenyl ether ketone sulfone)s for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2012,37:6140-6147.
    13. Gao Y, Robertson GP, Guiver MD, Mikhailenko SD, Li X, and Kaliaguine S. Synthesis of Poly(arylene ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materials. Macromolecules 2004,37:6748-6754.
    14. Jeong MH, Lee KS, and Lee JS. Synthesis and characterization of sulfonated poly(arylene ether ketone) copolymers containing crosslinking moiety. J. Membr. Sci.2009,337:145-152.
    15. Einsla BR. High temperature polymers for proton exchange membranes fuel cells. Doctoral dissertation of Virginia Polytechnic Institute and State University 2005, p6-7.
    16. Li N, Shin DW, Hwang DS, Lee YM, and Guiver MD. Polymer Electrolyte Membranes Derived from New Sulfone Monomers with Pendent Sulfonic Acid Groups. Macromolecules 2010,43:9810-9820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700