重庆市主城区街道灰尘的污染与风险特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
街道灰尘是城市生态环境的重要细胞之一,其质量好坏与城市水、大气环境质量、生态环境质量以及人群健康质量等具有较大的关联性。重庆市直辖以来,虽已陆续开展了城市街道灰尘的相关研究工作,但由于起步较晚,许多研究内容尚未深入,特别是街道灰尘中持久性有机物和营养物涉及更少。本文采集了重庆市主城区不同行政区、不同功能区40个典型街道的地表灰尘,分析了灰尘的粒径组成、主要污染物质赋存含量、功能区空间格局,评价了街道灰尘污染物的危害程度,初步分辨了街道灰尘主要污染物的来源,表征了街道灰尘污染物环境风险与健康风险,对于维护重庆市主城区生态环境质量,保障人群健康具有重要的理论指导意义,也可为重庆市“创建国家环境保护模范城市”和“五个重庆”建设中的街道灰尘污染的综合防治提供科学依据。
     首先,通过多重套筛、比重计和激光散射分析仪器相结合的方法,研究了街道灰尘的粒径分布特征,结果表明重庆市主城区街道灰尘的粒径分布呈双峰趋势,第一众数粒径为0~0.01mm(占36.13%),第二众数粒径为0.1~0.25mm(占28.24%),因此灰尘颗粒运动状态多为悬浮搬运,由此带来的大气颗粒悬浮和对人体呼吸系统的危害,应引起足够重视。在0~0.01mm粒径中,各粒级含量服从正态分布,分布频率最高的粒径范围在338.49~6169.90nm,平均为2496.91nm,且平均粒径分布趋势为工业区>交通区>居民区>商贸区>文教区>农业区>旅游区。
     其次,通过测试0~0.25mm粒径中的萘(NAP)、苊烯(ANY)、苊(ANA)、芴(FLU)、菲(PHE)、蒽(ANT)、荧蒽(FLT)、芘(PYR)、屈(CHR)、苯并[a]蒽(BaA)、苯并[b]荧蒽(BbF)、苯并[k)荧蒽(BkF)、苯并[a]芘(BaP)、茚苯[1,2,3-cd]芘(IPY)、二苯并[a,h]蒽(DBA)、苯并[g,h,i]苝(BPE)等16种PAHs赋存含量,分析街道灰尘PAHs的空间分布特征,分辨街道灰尘PAHs的来源,表征街道灰尘PAHs的环境风险与健康风险,结果表明:(1)重庆市街道灰尘多环芳烃总浓度(∑16PAHs)含量范围为0.443~19.746mg/kg,平均为4.204mg/kg,处于较低水平。变异系数分析结果显示,风险较高的中高环组PAHs来源较为一致,而风险较低的低环组PAHs来源则较为复杂。(2)重庆市街道灰尘16种PAHs中,比例最高的为4环PAHs(61.75%),其次为3环PAHs(14.80%)与6环PAHs(11.52%);不同采样点之间、不同行政区之间、不同功能区之间的PAHs组份比例并没有显著差异性。(3)采用多项特征化合物比值参数法,根据隶属度优先原则,重庆市街道灰尘的PAHs主要来自于汽车尾气排放和燃煤燃烧。根据特征化合物比值BaA/CHR,白市驿、南山公园、人和、化龙桥、杨公桥、北碚城南新区、重庆发电厂、井口工业园、枇杷山公园等街道灰尘疑为近距离输送,而澄江、花卉园、西南政法大学、观音桥、西南大学、高家花园、石板坡长江大桥、菜园坝、铜元局等街道灰尘可能更多地来自外源输送,其它测点则可能为混合来源。(4)重庆市街道灰尘PAHs的致癌风险比值∑6PAHs/∑16PAHs范围为9.20%~44.43%,处于较低水平,但具有强致癌性的BaP/∑16PAHs最高达到7.71%,显示出一定的致癌风险,其中以观音桥(∑6PAHs)、(?)岂圣花园(∑6PAHs).朝天门(∑6PAHs)、西南大学(BaP)、石板坡长江大桥(BaP)、西南政法大学(BaP)和菜园坝(BaP)等致癌风险更加明显。街道灰尘综合生态毒性较强,主要毒性物为芴(FLU)、荧蒽(FLT)、菲(PHE)等低环组PAHs。(5)重庆市居民人群各年龄段(婴儿、幼儿、少儿、青年、成年)经手-口摄入街道灰尘PAHs的贡献系数分别为98.13%、99.33%、98.24%、97.78%、97.95%,平均为98.25%,占有绝对优势。
     然后通过测试0-2.0mm以及0~0.25、0.25~05、0.5~1.0、1.0~2.0mmm粒径中砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)、锌(Zn)等8种重金属赋存含量,分析街道灰尘重金属的空间分布特征,探讨街道灰尘重金属的粒径效应,表征街道灰尘重金属的环境风险与健康风险,结果表明:(1)重庆市街道灰尘As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的平均含量分别为12.16、0.31、83.93、78.22、0.16、34.65、73.63和144.69mg/kg,均低于全国同类城市平均水平。不同功能区之间,只有Hg的变异系数达到显著差异,各功能区汞含量依次为商贸区>居民区>交通区>文教区>旅游区=工业区>农业区。(2)灰尘粒径越细,重金属分配比例越高,除Cr外,其它各重金属均以0~0.25mmm粒径的质量分配量占绝对优势;0-0.25mm粒级中,分配比例依次为Cd>As>Ni>Pb>Cu>Hg>Zn>Cr。(3)以主城区深层土壤背景值为评价标准,重庆市街道灰尘污染严重顺序依次为商贸区>工业区>居民区>交通区>旅游区>文教区>农业区,重金属顺序为Hg>Cu>Pb>Cd>Zn>As>Cr>Ni;而以展览会土壤标准为评价标准,得到的污染严重顺序依次为工业区>交通区>居民区>商贸区>文教区>农业区>旅游区,重金属顺序为Cu>Zn>Ni>Pb>As>Cr>Cd>Hg,两种标准评价结果呈现较大的差异。(4)各种重金属经呼吸暴露和皮肤暴露的非致癌风险不大,但经手口暴露途径中,Cr、Pb的非致癌风险较高;不同暴露途径的风险顺序为经手口暴露>皮肤暴露>呼吸暴露,不同人群的风险顺序为儿童>成人,重庆市街道灰尘的主要风险途径是经手口暴露,危害的人群主要是儿童。重金属致癌总风险度为6.52×104,而且Cd、Cr、Ni的致癌风险度均在10-6~10-4范围内,显示较低的致癌风险,对人体造成危害的可能性较小。
     最后,通过测试0-2.0mmm以及0-0.25mmm、0.25~0.5mm、0.5~1.0mm、1.0-2.0mm粒径中的全氮、全磷和有机质等3种营养物赋存含量,分析街道灰尘营养物的空间分布特征,探讨街道灰尘营养物的粒径效应,表征街道灰尘营养物的潜在环境风险,结果表明:(1)重庆市街道灰尘N、P、有机质含量分别为为1.28g/kg、1.69g/kg和46.98g/kg,且均呈现出强烈的空间变异。不同功能区营养物赋存量分布趋势为旅游区>商贸区>居民区>文教区>农业区>交通区>工业区。(2)与重金属赋存量的粒级效应类似,N、P、有机质等营养物质大绝大多数分配在0~0.25mm粒级中,其中又以全氮分配最多;在0~0.25mm粒级中,营养物质分配比例大小顺序为工业区>居民区>商贸区>交通区>文教区>旅游区>农业区,这与前面的重金属粒径分配排序不太一致。(3)N、P、有机质等营养物质的酸雨浸提量均高于纯水浸提量,对于酸雨严重区域之一的重庆市而言,更应关注由灰尘带来的潜在径流污染风险。以浸提率为考察指标,各功能区的径流污染风险依次为农业区>交通区>工业区>文教区>旅游区>商贸区>居民区。
     论文的特色之处在于系统分析了重庆市主城区街道灰尘中PAHs、重金属、营养物污染的空间分布特征与粒级效应,表征了街道灰尘中PAHs的健康风险特征、重金属的环境风险与健康风险特征以及营养物污染的潜在环境风险特征,并采用以激光散射分析为主的多重手段,研究了重庆市主城区街道灰尘的粒径分布特征。
     囿于经费等条件的限制,本研究只采集了2011年典型季节的灰尘样品,只分析了0~0.25mm街道灰尘中的PAHs含量,而没有测试各种粒径中的PAHs含量,进而分析街道灰尘中PAHs的粒级效应。因此,在后续的研究中,需要结合现场多季节采样、卫生学调查、模拟实验等综合方法,研究街道灰尘累积量与主要污染物的时间变化规律,推定重庆市主城区街道灰尘的来源辨析,验证街道灰尘对人群的健康风险和对大气、对地表径流的环境风险途径与测度。
As the most important cell of urban eco-system and urban environment, the quality of road dust is related with aquatic, atmospheric and ecological environment including human health. Since establishment of municipality, even though some works had been conducted for understanding the fate of road dust, still no further researches were developed, especially, few reports about the persistence organic pollutants (POPs) and nutrients were found. Thus, studying road dust pollution and risk characteristics in Chongqing main districts is helpful for understanding particle compositions, distinguishing pollution sources, characterized road dust environmental and health risks, which can significantly promote urban eco-environmental quality in Chongqing, and provide theory and guide for human health protection.
     Through sampling road dust from different functional zones and administration areas in main districts respectively, and combining multiple-sieve, gravimeter and laser-scattering technique, the particle sizes distribution characteristics of road dust was studied. The results showed that two-peak trend was observed in dust particle size distributions, first modal number particle was0~0.01mm (36.13%), and second modal number particle was0.1-0.25mm (28.24%), suggesting that the movement of dust particles can attributed to suspended movement, possibly resulted in jeopardy of human respiratory system due to atmospheric suspended particles, which should not be neglected. In range of0~0.01mm, subgroups of particles distribution complied normal distribution form, the highest distribution frequency was observed in338.49-6169.90nm with average value2496.91nm. In addition, the average particle sizes distribution trend was showed as following order:industrial area> transportation area> residential area> commercial area>cultural and education area> agricultural area> tourist area.
     Sixteen types of PAHs including naphthalene (NAP), acenaphthylene (ANY), acenaphthene (ANA), fluorine(FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene(FLT), pyrene (PYR), chrysene (CHR), benz(a)anthracene(BaA), benzo[b]fluoranthene (BbF), benzo [k] fluoranthene (BkF), benzo [a]pyrene (BaP), indeno (1,2,3-cd)pyrene (IPY), dibenzo (a,h) anthracene (DBA), benzo (g,h,i)perylene (BPE) in0-0.25mm particle size ranges were measured respectively. The results showed that:(1) total PHAs concentration (∑16PAHs) in road dusts sampled from investigated areas ranged from0.443~19.746mg/kg, average concentration was4.204mg/kg, indicating a lower levels. From variation coefficient, the sources of PAHs in middle-high ring groups, which showed higher risk, were similar, but sources of lower ring groups were complex.(2) In16types of PAHs, concentration ratio was highest in four rings PAHs (61.75%), three rings PAHs (14.80%) second and six rings PAHs (11.52%). Among different sampling locations, administration areas, and functional zones, the component ratio of PAHs didn't show any significantly different.(3) Though method of multiple special compound ratio based on priority principles, PAHs in road dusts mainly came from car tail gas emission and coal combustion.According special compounds ratio BaA/CHR, dusts in Baishiyi, Nanshan park, Renhe, Hualong bridge, Yanggong bridge, Beibei south new district, Chongqing power station, Jinkou industrial park, Piba Shan park possibly attributed to short distance transportation, but all of dusts sampled from Chenjiang, Southwest university of political science and law, Guanyin bridge, Southwest university, Gaojia Garden, Shibanpo Yangtze River Bridge, Caiyuanba, Tongyuanju may be from exogenous transportation. The rest of sampling location may be from mixing sources.(4) Carcinogenic risk ratio of PAHs (∑6PAHs/∑16PAHs) in road dust ranged from9.20%~44.43%, indicating slight lower level. But strong carcinogenic risk ratio (BaP/E16PAHs) showed highest7.71%, suggesting the carcinogenic risk in a certain degree. Of all sampling location, Guanyin bridge (∑6PAHs), Shengkai Garden (E6PAHs), Chaotianmen (∑6PAHs), Southwest university (BaP), Shibanpo Yangtze River Bridge (BaP), Southwest university of political science and law (BaP) and Caiyuanba(BaP) showed the most clearly carcinogenic risk. Mixing eco-toxicity in road dust was relative higher, and the main toxins were fluorine (FLU), fluoranthene (FLT) and phenanthrene (PHE), which all are low ring group of PAHs.(5) The contribution coefficient of road dust PAHs in different age stages of local people (baby, infant, juvenile, youth and adult) through hand-mouth uptake, were98.13%、99.33%、98.24%、97.78%、97.95%respectively, average value was98.25%, indicating a predominant pathway.
     Different heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) in0~2.0mm particle size of road dust, which was subgrouped into0~0.25mm,0.25~05mm,0.5~1.0mm and1.0~2.0mm ranges respectively, were analyzed, and heavy metal spatial distribution pattern in road dust was also investigated. Meanwhile particle size effect of heavy metals was discussed, and corresponding potential environmental risk of heavy metals also was characterized. The results showed that:(1) The average concentration of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in road dust were12.16、0.31、83.93、78.22、0.16、34.65、73.63和144.69mg/kg respectively, which were lower than the average concentrations of peer cities in China. Among different functional zones, only variance coefficient of Hg reached significant level, and the Hg contents order implied commercial area> residential area> transportation area> cultural and education area> tourist area> industrial area> agricultural area.(2) Higher heavy metal distribution ratio was observed in fine particle sizes. Except for Cr, the all heavy metals distribution ratio were predominant in0-0.25mm. In0-0.25mm range, distribution ratio implied as Cd>As>Ni>Pb>Cu>Hg>Zn>Cr.(3) Using the deep soil background values in main districts as assessment standard, the road dust pollution level order was commercial area> industrial area> residential area> transportation area> tourist area> cultural and education area> agricultural area, and corresponding heavy metal order was Hg>Cu>Pb>Cd>Zn>As>Cr>Ni. Meanwhile, using exhibition conference soil standard as assessment reference, the corresponding pollution order was industrial area> transportation area> residential area> commercial area> cultural and education area> agricultural area> tourist area, and heavy metal order was Cu>Zn>Ni>Pb>As>Cr>Cd>Hg with evidently difference.(4) non-carcinogenic risk through respiration and skin exposure was not high, but non-carcinogenic risk of Cr and Pb were higher as compared with the others through hand-mouth exposure. Among different exposure pathways, the risk order was hand-mouth>skin>respiration. In addition, in different age stages of people, risk order was child>adult. In Chongqing, the main risk pathway of road dusts was hand-mouth exposure, and the main risk target is children. The total carcinogenic risk level of heavy metal was6.52×10-5, but the carcinogenic risk of Cd, Cr and Ni ranged from10-6~10-4, suggesting a lower carcinogenic risk, and do not resulted in risk for human health.
     The total nitrogen (TN), total phosphorus (TP), and organic matter concentrations in0~2.0mm particle size of road dust, which was subgrouped into0~0.25mm,0.25~05mm,0.5~1.0mm and1.0~2.0mm ranges respectively, were analyzed, and nutrients spatial distribution pattern in road dust was also investigated. Meanwhile particle size effect of nutrients was discussed, and corresponding potential environmental risk of nutrients also was characterized. The results showed that:(1) N, P and organic matter contents of road dust in Chongqing main districts were1.28g/kg、1.69g/kg and8g/kg respectively with a evidently spatial variance. The content of nutrients in different functional zones complied the following order:tourist area> commercial area> residential area> cultural and educational area>agricultural area> transportation area> industrial area.(2) Similar to particle size effect of heavy metal contents, most of nutrients including N, P and organic matter were distributed in0-0.25mm ranges, of which total N was highest. In particle size less than0.25mm, the nutrient distribution ranked as industrial area>residential area>commercial area> transportation area> cultural and educational area>tourist area>agricultural area, which was a slight different with heavy metals distribution.(3) Acid rain-extract nutrients were all observably higher than water-extract contents, suggesting that potential runoff pollution risk resulted from road dust should need more attention in Chongqing due to its most serious acid rain pollution in Chongqing. Using extraction rate as investigation index, the rank of potential runoff pollution risks in different functional zones were agricultural area>transportation area>industrial area>cultural and education area>tourist area>commercial area>residential area.
     This paper highlighted the spatial distribution characteristics of PAHs, heavy metals; nutrients in Chongqing Main districts through systemically analysis, and particle size effect, meanwhile healthy risk characteristics of targeted pollutants were all characterized. Additionally, though multiple techniques including laser-scattering, particle sized distribution in Chongqing main districts were also investigated.
     Due to the limitation of financial support, in this study only dust samples in typical seasons in2011were collected, and PAHs was analyzed in0-0.25mm ranges of road dust, but no PAH was investigated based on various ranges of particle sizes, which would be helpful for understanding the effect of particle sizes on PAHs changes. Thus, in future studies, more experiments, which are based on sampling in different seasons, hygienics investigation, simulating experiments, are needed for understanding time-scale changing patterns of road dust accumulation, and also the source distinguishing is proposed to speculate on road dust in Chongqing main districts, which validates healthy risk of road dust, and corresponding environmental risk pathway of atmosphere and runoff resulted from road dust.
引文
[1]. Abdelaziz L, AI-Khlaifat, Omar A, AI-Khashman. The investigation of metal concentration s in street dust samples in Aqaba city, Jordan [J]. Environment Geochemistry Health,2007,29:197-207
    [2]. Ahmed F, Ishiga H. Trace metal concentration in street dusts of Dhaka city, Bangladesh [J]. Atmospheric Environment,2006,40:3835-3844
    [3]. Akther M S, Madany I M. Heavy metals in street and house dust in Bahrain [J]. Water, Air, and Soil Pollution, 1993,66:111-119
    [4]. Al-Chalabi A S, Hawker D. Response of vehicular lead to the presence of street dust in the atmospheric environment of major roads [J]. The Science of Total Environment,1997,206:195-202
    [5]. Al-Khashman O A. Heavy metal distribution in dust, street dust and soil from the work place in Karak Industrial Estate, Jordan [J]. Atmospheric Environment,2004,38:6803-6812
    [6]. Al-Khashman O A. The investigation of metal concentrations in street dust samples in Aqaba city, Jordan [J]. Environmental Geochemistry and Health,2007,29:197-207
    [7]. Al-Raihi M A, Al-shayeb S M, Seaward M R D, Edwards H G M. Particle size effect for metal pollution analysis of atmospherically deposited dust [J]. Atmospheric Environment,1996,30:145-153
    [8]. Anju D K, Banerhee. Heavy metals levels and solid phase speciation in street dust of Delhi, India [J]. Environment Pollution,2003,123:95-105
    [9]. Ball J E. Jenks R, Aubourrg D. An assessment of the availability of pollutant constituents on road surfaces [J]. The Science of Total Environment,1998,209:243-254
    [10]. Bian B, Zhu W. Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China [J]. Environmental Geochemistry and Health,2009,31(4):511-520
    [11]. Chan G Y, Chui V W, Mong M H. Lead concentration in Hong Kong roadside after reduction of lead level in petrol [J]. Biomedical and Environments Science 1989,2(2):131-140
    [12]. Chon H T, Ahn J S, Jung M C. Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul [J], Korea. Environmental Geochemistry and Health,1998,20:77-86
    [13]. Culbard E B, Thornton I, Watt J, et al. Metal contamination in British urban dusts and soils [J]. Journal Environmental Quality,1988,17:226-234
    [14]. Day J P, Hart M, Robinson M S. Lead in urban street dust [J]. Nature,1975,253:343-345
    [15]. De Miguel E, Llamas J F, Chacon E, Berg T, Larssen S, Royset O, Vadset M. Origin and patterns of distribution of trace elements in street dust:unleaded petrol and urban lead [J]. Atmosphere Environment, 1997,31:2733-2740
    [16]. Diana Meza-Figueroa, Margarita Dela O-Villanueva, Maria Luisa Delaparra. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, Mexico [J]. Atmospheric Environment,2007,41:276-288
    [17]. Dong T T., Lee B.K. Charaeteristies, toxieity, and source apportionment of polyeylie aromatie hydroearbons (PAHs) in road dust of Ulsan, Korea [J]. Chemosphere,2009,74(9):1245-1253
    [18]. Droppo I G, Irvine K N, Murphy T P, Jaskot C. Fractional metals in street dust of mixed land use sewershed, Hamiltion, Ontario, Hydrology in Changing Environment Ⅲ,1998.384-394 (British Hydrological Society)
    [19]. Ellis J B, Revitt D M. Incidence of heavy metals in street surface sediments:solubility and grain size studies [J]. Water, Air and Soil Pollution,1982,17:87-100
    [20]. Evans E, Ma M, Kingston L, Leharne S. The speciation pattern of lead in street dusts and soils in the vicinity of two London schools [J]. Environment International,1992.18(2):153-162
    [21]. Fang G C, Chang C N, Wu T S, Fu P P, Yang I L, Chen M H. Characterization, identification of ambient air and road dust polycyclic aromatic hydroearbons in central Taiwan, Taichung [J]. The Science of Total Environment,2004,327(1/3):135-146
    [22]. Fang G C, Chang C N, Wu Y S, et al. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung [J]. The Science of Total Environment,2004,327(123): 135-146
    [23]. Faruque Ahmed, M. Hawa Bibi and Hiroaki Ishiga. Environmental assessment of Dhaka City (Bangladesh) based on trace metal contents in road dusts [J]. Environmental Geology,2007,51:975-985
    [24]. Fergusson J E, Ryan D E. The elemental composition of street dust from large and small urban areas related to city type, source and particle size [J]. The Science of Total Environment,1984,34:101-116
    [25]. Fergusson J E., Forbes E A, Schroeder R J, Ryan D E. The elemental composition and sources of house dust and street dust [J]. The Science Total Environment,1986,50:217-221
    [26]. Ferreira-Baptista L, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola:A tropical urban environment [J]. Atmospheric Environment,2005,39:4501-4512
    [27]. Gautam Chattopadhyay, Kevin Chi-Pei Lin, Andrew J. Household dust metal levels in the Sydney metropolitan area [J]. Environmental Research,2003,93:301-307
    [28]. Hanym, Dup X, Cao J J, Eric S. Multivariate analysis of heavy metal contamination in urban dust of Xi'an, Central China [J]. The Science of the Total environment,2006,355:176-186
    [29]. Harrison R M, Laxen D P H, Wilson S L. Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils [J]. Environments Science and Technology,1981,15(11):1378-1383
    [30]. Hassanien M A, Abdel-Latif N M. Polycyclic aromatic hydrocarbons in road dust over Greater Gairo, Egypt [J]. J Hazard Mater.,2008,151(1):247-254
    [31]. Kouji Adachi, Yoshiaki Tainosho. Characterization of heavy metal particles embedded in tire dust [J]. Environment International,2004,30:1009-1017
    [32]. Li X D, Poon Chi-sun, Liu Pui Sum. Heavy metal contamination of urban soils and street dusts in Hong Kong [J]. Applied Geochemistry,2001,16:1361-1368
    [33]. Long E R, MacDonald D D, Smith S L. Calder F D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments [J]. Environmental Management,1995,19:81-97
    [34]. Mahmoud A H, Nasser M A. Polycyclic aromatic hydrocarbons in road dus t over Greater Cairo, Egypt [J]. J. Hazard Mater.2007,28(2):247-254
    [35]. Mann O E, Varrica D, Dongarr G Distribution road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily [J]. Atmosphere Environment,2006,40:5929-5941
    [36]. Manoli E, ouras A, amara S. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece [J]. Chemosphere,2004,56(9):867-878
    [37]. Miguel E D, Llamas J F, Chacon E, Berg T, Larssen S, Royset O, Vadset M. Origin and patterns of distribution of trace elements in street dust:unleaded petrol and urban lead [J]. Atmospheric Environment,1997,31(17): 2733-2740
    [38]. Naim Sezgin, H. Kurtulus Ozcan, Goksel Demir, Semih Nemlioglu, Cuma Bayat. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway [J]. Environment International,2004,29:979-985
    [39]. Netto A, Krauss T, Cunha I, et al. PAH s in SD:polycyclic aromatic hydrocarbons levels in street dust in the central area of Niteroi City, Brazil [J]. Water Air Soil Pollut,2006,176 (1-4):57-67
    [40]. Norman M, Johansson C. Studies of some measures to reduce road dust emissions from paved roads in Scandinavia [J]. Atmospheric Environment.2006,40:6154-6164
    [41]. Ordonez A, Loredo J, De Miguel E, Charlesworth S. Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain [J]. Archives of Environmental Contamination and Toxicology,2003, 44(2):160-170
    [42]. Sartor J D, Boyd G B and Agardy F J. Water pollution aspects of street surface contaminants [J], Journal WPCF,1974,46(3):458-467
    [43]. Sartor J D, Boyd G B. Water pollution aspects of street surface contaminants, Washington, D C [J]. The United States Environmental Protection Agency, EPA-R- 1972.72-81
    [44]. Shi Guitao, Chen Zhenlou, Xu Shiyuan, Zhang Ju, Wang Li, Bi Chunjuan, Teng Jiyan. Potentially Toxic Metal Contamination of Urban Soils and Roadside Dust in Shanghai, China [J]. Environmental Earth Sciences,2008, 156(2):251-260
    [45]. Smussen P E, Subramanian K S, Jessiman B J. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada [J]. The Science of the Total Environment,2001,267:125-140
    [46]. Stronganova M. N. et al. Soils of Moscow and urban environment [M]. Moscow.1998,1-177
    [47]. Sworth S M, Lees J A. The distribution of heavy metals in deposited dusts and sediments from Coventry, England [J]. Environmental chemistry and health,1999,21(2):97-115
    [48]. Tokalioglu S, Kartal S. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the organized industrial district in Kayseri (Turkey) [J]. Atmospheric Environment,2006,40:2797-2805
    [49]. Utherland R A, Tolosa C A. Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu [J]. Hawaii. Environm ental Pollution,2000,110:483-495
    [50]. Wang D. G, Yang M, Jia H L, Zhou L, Li Y F. Polycyclic aromatic hydroearbons in urban street dust and surface soil:comparisons of concentration, profile, and source [J]. Areh. Environ. Contam. Toxieol.,2009, 56(2):173-180
    [51]. Wu S P, Tao S, Xu F L, et al. Polycyclic aromatic hydrocarbons in dustfall in Tianjin,China [J]. The Science of Total Environment,2005,345(123):115-126
    [52]. Xie S J, Dearing J A, Boyle J F, Bloemendal J, Morse A P. Association between magnetic properties and element concentrations of Liverpool street dust and its implications [J]. Journal of Applied Geophysics,2001, 48:83-92
    [53]. Yassaa, N, Meklati, B Y, Cecinato, A, et al. Partieulate n-alkanes, n-alkanoie acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area [J]. Atmospheric Environment,2001,35(10):1843-1851
    [54]. Zhang W, Zhang S, Wan C, Yue D, Ye Y, Wang X. Source diagnosties of polycyclic aromatic hydroearbons in urban road runoff, dust, rain and canopy throughfall [J]. Environment Pollution.2008,153(3):594-601
    [55]. Zhao H T, Li X Y, Wang X M. Heavy metal contents of road-deposited sediment along the urban-rural gradient around Beijing and its potential contribution to runoff pollution [J]. Environmental Science and Technology, 2011,45 (17):7120-7127
    [56]. Zhao H T,Yin C Q,Chen M X, et al. Risk assessment of heavy metals in street dust particles to stream network [J]. Soil and Sediment Contamination,2009,18(2):173-183
    [57]. Zheng N, Liu J S, Wang Q C, Liang Z Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China [J]. The Science of the Total Environment,2010,408:726-733
    [58].曹斌,夏建新.城市重金属污染特征及其迁移转化浅析[J].中央民族大学学报(自然科学版),2008,17(8):40-44
    [59].常静,刘敏,侯立军,许世远,林啸,Ballo Siak.城市地表灰尘的概念、污染特征与环境效应[J].应用生态学报,2007-18(5):1153-1158
    [60].常静,刘敏,李先华,林啸,王丽丽,高磊.城市地表灰尘-降雨径流系统重金属生物有效性研究[J].环境科学,2009a,30(8):2241-2247
    [61].常静,刘敏,李先华,林啸,王丽丽,高磊.上海城市地表灰尘重金属污染粒级效应与生物有效性[J].环境科学,2008b,29(12):3483-3488
    [62].常静,刘敏,李先华,林啸,王丽丽,高磊.上海地表灰尘重金属污染的健康风险评价[J].中国环境科学,2009b,29(5):548-554
    [63].常静,刘敏,李先华,余婕,林啸,王丽丽,高磊.上海城市地表灰尘重金属污染累积过程与影响因素[J].环境科学,2008a,29(12):3489-3495
    [64].常静.城市地表灰尘-降雨径流系统污染物迁移过程与环境效应[D].华东师范大学博士论文,2007b
    [65].陈灿灿,卢新卫,王利军,雷凯.宝鸡市街道灰尘重金属污染的健康风险评价[J].城市环境与城市生态,2011,24(2):35-38
    [66].陈莉,李凤全,王天阳,叶玮,朱丽东.城市灰尘的元素地球化学特征[J].广东微量元素科学,2011a,18(11):19-26
    [67].陈莉,李凤全,叶玮,朱丽东,王天阳.区域尺度的城市灰尘重金属分布[J].水土保持通报,2011b,31(6):194-198
    [68].陈丽旋,曾锋,罗丹玲,崔昆燕.城市道路灰尘中邻苯二甲酸酯污染特征研究[J].环境科学学报,2005,25(3):409-41
    [69].陈卫锋,倪进治,杨红玉,魏然,杨玉盛.福州市区街道灰尘中多环芳烃的质量分数及其来源[J].环境科学研究,2010,23(2):177-184
    [70].陈西平,施为光,文行秀,甘玉华.成都市街道地表物中的氮磷淋洗量及分布特征[J].甘肃环境研究与监测,1993,6(1):17-20
    [71].陈西平.成都市街道地表物中的有机碳[J].重庆环境科学,1990,12(6):38-40
    [72].程书波,刘敏,欧冬妮,高磊,王丽丽,许世远.城市灰尘PAHs累积与迁移过程的影响因素研究[J].环境科学,2008,29(1):179-182
    [73].程书波,刘敏,欧冬妮,高磊,王丽丽,许世远.上海市地表灰尘中PAHs季节变化与功能区差异[J].环境科学,2007a,28(12):2789-2793
    [74].程书波,刘敏,欧冬妮,高磊,王丽丽.上海市地表灰尘中PAHs的来源辨析[J].中国环境科学,2007b,27(5):589-593
    [75].程书波.上海市地表灰尘PAHs累积、迁移过程及生态风险评价[D].华东师范大学硕士论文,2006
    [76].程雁.基于因子分析的城市灰尘物源解析[J].浙江师范大学学报(自然科学版),2012,35(1):110-114
    [77].崔昆燕,张家荣.城区道路灰尘Hg污染特征研究[J].分析测试学报,2006,25(Suppl.):51-52
    [78].崔邢涛,栾文楼,牛彦斌,李随民,宋泽峰,谷海峰.石家庄城市近地表降尘重金属污染及潜在生态危害评价[J].城市环境与城市生态,2011,24(1):27-30
    [79].杜佩轩,马智民,田晖,韩永明,柯海玲.城市灰尘污染及治理[J].城市问题,2004a,2:46-49
    [80].杜佩轩,田晖,韩永明,杜建波,刘健.城市灰尘粒径组成及环境效应—以西安市为例[J].岩石矿物学杂志,2002,(1):94-98
    [81].杜佩轩,田晖,韩永明.城市灰尘概念、研究内容与方法[J].陕西地质,2004b,24(1):73-80
    [82].段小丽,陶澍,徐东群,蒋秋静.多环芳烃污染的人体暴露和健康风险评价方法[M].北京:中国环境科学出版社,2011
    [83].方凤满,蒋炳言,王海东,谢宏芳.芜湖市区地表灰尘中重金属粒径效应及其健康风险评价[J].地理研究.2010a,29(7):1194-1120
    [84].方凤满,谢宏芳,王海东,蒋炳言.芜湖市区土壤和地表灰尘中As含量分布及健康风险评价[J].环境化学,2010b,29(5):880-883
    [85].方凤满,张志明,陈文娟,杨丁.芜湖市区春季地表灰尘中汞和砷的空间及粒径分布规律[J].环境科学学报,2009,29(9):1871-1877
    [86].甘玉华.成都市街道地表物有机污染的调查[J].环境科学研究,1991,4(3):56-59,55
    [87].耿占琪.金华城市灰尘重金属空间分布规律[D].金华:浙江师范大学硕士论文,2010
    [88].郭广慧,雷梅,陈同斌,宋波,李晓燕.交通活动对公路两侧土壤和灰尘中重金属含量的影响[J].环境 科学学报,2008,28(10):1937-1945
    [89].郭琳,曾光明,程运林.城市街道地表物特性分析[J].中国环境监测,2003,19(6):40-42
    [90].韩东昱,岑况,龚庆杰.北京市公园道路粉尘Cu、Pb、zn含量及其污染评价[J].环境科学研究[J].2004,17(2):10-13,21
    [91].韩永明,杜佩轩,李智明.西安市灰尘循环模式及搬运沉积[J].物探与化探,2003a,27(3):227-229
    [92].韩永明.西安市城市灰尘环境污染及环境质量评价[D].西安:长安大学硕士论文,2003b
    [93].何小艳,赵洪涛,李叙勇,连宾,王小梅.不同粒径地表街尘中重金属在径流冲刷中的迁移转化[J].环境科学,2012,33(3):810-816
    [94].黄春海,方凤满,王翔,王海东.芜湖市地表灰尘的理化性质及对病毒吸附的影响[J].广东微量元素科学,2010,17(11):39-45
    [95].黄丽,卢新卫,翟萌,罗大成.西安城市公园灰尘重金属污染及其风险评价[J].城市环境与城市生态,2010,23(1):17-20
    [96].黄嫣旻.城市地面扬尘的估算与分布特征研究[D].上海:华东师范大学硕士论文,2006
    [97].霍文毅.长春市区土壤及灰尘中的铅[D].长春:中国科学院长春地理研究所硕士论文.1994
    [98].贾正长.上海市道路灰尘磁学性质研究[C].北京:中国地理学会百年庆典学术论文摘要集,2009
    [99].蒋炳言.芜湖市区地表灰尘重金属污染研究[D].芜湖:安徽师范大学硕士论文,2010
    [100].蒋海燕.上海城市土壤、地表灰尘环境特征分析及其管理体系研究[D].上海:华东师范大学硕士论文,2005
    [101].雷凯,卢新卫,王利军.宝鸡市街尘中铅的污染与评价[J].环境科学与技术.2007.30(11):43-45
    [102].雷蕾,陈玉成,李章平.我国城市街道灰尘中重金属的成分分析[J].安全与环境学报,2012,12(2):124-129
    [103].李琛,余应新,张东平,冯加良,吴明红,盛国英,傅家谟.上海室内外灰尘中多氯联苯及其人体暴露评估[J].中国环境科学,2010,30(4):433-441
    [104].李崇,李法云,张营,刘桐武,侯伟.沈阳市街道灰尘中重金属的空间分布特征研究[J].生态环境,2008,17(2):560-564
    [105].李崇.沈阳市不同粒径区间街道灰尘中Pb的空间分布特征研究[J].环境保护与循环经济,2010,(1):60-62
    [106].李法云,胡成,张营,沈曼莉,杨小南.沈阳市街道灰尘中重金属的环境影响与健康风险评价[J].气象与环境学报,2010,26(6):59-64
    [107].李凤全,潘虹梅,叶玮,朱丽东,曹志纯.城市灰尘地球化学研究进展[J].物探与化探,2009,33(3):313-318
    [108].李凤全,潘虹梅,叶玮,朱丽东,王志刚.城市灰尘重金属污染特征及生态危害评价[J].安徽农业科学,2008a,36(6):2495-2498
    [109].李凤全,叶玮,程雁,朱丽东,王天阳,潘虹梅.基于地统计学方法的城市灰尘重金属污染的空间变异特征[J].浙江师范大学学报(自然科学版),2008b,31(4):367-372
    [110].李海雯,陈振楼,王军,许世远,史贵涛,张菊,王利.基于GIS的上海城市灰尘重金属空间分布特征研究[J].环境科学学报,2007,27(5):803-809
    [111].李鹏,强小科,唐艳荣,符超峰,徐新文,李续彬.西安市街道灰尘磁化率特征及其污染指示意义[J].中国环境科学,2010a,30(3):309-31
    [112].李鹏,强小科,徐新文,李续彬,孙玉芳.西安市道路灰尘磁学特征及其对环境的响应[.J].地球物理学报,2010b,53(1):156-163
    [113].李鹏,强小科,徐新文,李续彬.西安市地面灰尘磁学特征及其反映的环境问题[C].合肥:中国地球物理学会第25届年会,2009
    [114].李如忠,童芳,周爱佳,吴亚东,张萍,喻佳.基于梯形模糊数的地表灰尘重金属污染健康风险评价模 型[J].环境科学学报,2011a,31(8):1790-1798
    [115].李如忠,周爱佳,童芳,吴亚东,张萍,喻佳.合肥市城区地表灰尘重金属分布特征及环境健康风险评价[J].环境科学,2011b,32(9):2661-2668
    [116].李晓燕,陈同斌,雷梅,谢云峰,周广东,宋波.北京城市广场及校园表土(灰尘)中重金属水平与健康风险[J].地理研究,2010,29(6):989-995
    [117].李章平,陈玉成,杨学春,魏世强.重庆市主城区街道地表物中重金属的污染特征[J].水土保持学报,2006,20(1):114-1116,138
    [118].李章平.重庆市主城区地表重金属的污染特征[D].重庆:西南农业大学硕士论文,2005
    [119].梁涛,史正涛,刘志国.昆明市街道灰尘粒度特征及其环境意义[J].长江流域资源与环境,2011,20(1):122-128
    [120].梁涛,史正涛,吴枫,谷晓梅.昆明市街道灰尘重金属污染及潜在生态风险评价[J].热带地理,2010,31(2):164-170
    [121].林俊杰,刘丹,方伟,付川,李廷真,来守军.万州道路灰尘重金属空间分布及污染评价[J].环境科学与技术,2011,34(10):89-92
    [122].林啸,刘敏,侯立军,许世远,常静.上海城市土壤和地表灰尘重金属污染现状及评价[J].中国环境科学,2007,27(5):613-618
    [123].凌晰,刘文新,陈江麟,范永胜,邢宝山,陶澍.黄海近岸表层沉积物中PAHs的分布特征与潜在风险[J].环境科学学报,2008,28(7):1394-1399
    [124].刘春华,岑况,于扬.北京市街道灰尘中重金属元素赋存状态及环境效应[J].岩矿测试,2011,30(2):205-209
    [125].刘春华,岑况.北京市街道灰尘的化学成分及其可能来源[J].环境科学学报,2007a,27(7):1181-1188
    [126].刘春华,岑况.北京市街道灰尘粒度特征及其来源探析[J].环境科学学报,2007b,27(6):1006-1012
    [127].刘德鸿,王发园,周文利,杨玉建.洛阳市不同功能区道路灰尘重金属污染及潜在生态风险[J].环境科学,2012,33(1):253-259
    [128].刘海婷,于瑞莲,胡恭任,陈洪,涂湘林.泉州市街道灰尘重金属污染评价[J].矿物岩石,2010,30(3):116-120
    [129].刘玉燕,刘浩峰,刘敏.乌鲁木齐市地表灰尘重金属含量及其健康风险[J].干旱区研究,2009a,26(5):750-754
    [130].刘玉燕,刘敏,程书波.道路灰尘铂族元素含量的短期变化过程分析[J].环境科学学报,2009b,29(9):1864-1870
    [131].刘玉燕,刘敏,王玉杰.道路灰尘PGEs时间变化特征[J].环境科学,2011a,32(9):2676-2680
    [132].刘玉燕,王玉杰.干旱区气候条件对道路灰尘及土壤Pd、Rh累积的影响[J].中国环境科学,2011b,31(9):1528-1532
    [133].刘玉燕.城市道路灰尘PGEs累积特征及影响机制[D].上海:华东师范大学博士论文,2009c
    [134].龙永珍,邹海洋,戴塔根.长株潭市区近地表灰尘中重金属分布污染研究[J].中南大学学报(自然科学版),2010,41(4):1633-1638
    [135].马建华,王晓云,侯于,段海静.某城市幼儿园地表灰尘重金属污染及潜在生态风险[J].地理研究,2011,30(3):486-495
    [136].孟飞,刘敏,侯立军,常静,蒋海燕,王和意.上海中心城区地表灰尘与土壤中重金属累积及污染评价[J].华东师范大学学报(自然科学版),2007,(4):56-65
    [137].潘虹梅.金华城市灰尘的理化特征及环境影响[D].金华:浙江师范大学硕士论文,2009
    [138].庞博,张银龙,王丹.城市不同功能区内叶面尘与地表灰尘的粒径和重金属特征[J].生态环境学报,2009,18(4):1312-1317
    [139].钱鹏,郑祥民,周立曼,蒋庆丰,张国玉,王永杰,杨健儿.312国道沿线土壤、灰尘重金属污染现状及影 响因素[J].环境化学,2010,29(6):1139-1146
    [140].钱翌,刘峥延.青岛城市公园灰尘重金属的形态分布及健康风险评价[J].城市环境与城市生态,2011,24(4):20-23
    [141].秦松.西固城区街道灰尘重金属含量的分布、来源及质量评价[D].兰州:兰州大学硕士论文,2008
    [142].邱洪斌,李兴渊,赵红宇.街道扬尘粒径特征及污染贡献研究[J].黑龙江医院科学,2002,25(4):7
    [143].任春辉,卢新卫,陈灿灿,杨林娜,杨光.宝鸡长青镇铅锌冶炼厂周围灰尘中重金属的空间分布及污染评价[J].环境科学学报,2012a,32(3):706-712
    [144]].任春辉,卢新卫,王利军,陈灿灿,杨光,李楠,杨林娜.宝鸡长青镇铅锌厂周围灰尘中铅的污染水平与健康风险[J].干旱区研究,2012b,29(1):155-160
    [145].任春辉,卢新卫,杨林娜,陈灿灿,杨光.宝鸡长青镇热电厂周围灰尘重金属污染评价[J].环境化学,2011,30(10):1820-1821
    [146].施为光.成都市街道地表物中的重金属[J].城市环境与城市生态,1995,8(3):25-29
    [147].施为光.街道地表物的累积与污染特征—以成都市为例[J].环境科学,1991,12(3):18-23
    [148].史贵涛,陈振楼,王利,张菊,李海雯,许世远.上海城市公园灰尘重金属污染及其潜在生态风险评价[J].城市环境与城市生态,2006,19(4):40-43
    [149].史贵涛,陈振楼,许世远,王利,张菊,李海雯,李丽娜,上海城市公园土壤及灰尘中重金属污染特征[J].环境科学,2007,28(2):238-242
    [150].史双昕,任立军,齐丽,周丽,张利飞,张烃,董亮,黄业茹.苏州、无锡和南通城市地表灰尘中的有机氯农药[J].中国环境科学,2011,31(9):1533-1540
    [151].史兴民,刘卫强.咸阳市区街道灰尘粒度特征分析[J].水土保持通报,2009b,29(5):76-79
    [152].史兴民,王建辉.咸阳市区街道灰尘重金属污染及评价[J].地理科学进展.2009a,28(3):435-440
    [153].苏明会.北京市区不同年代尘土中重金属元素的变化特征及污染源追踪研究[D].北京:中国地质大学硕士论文,2006
    [154].唐风舞.南昌市街道灰尘重金属污染特征及形态分析研究[D].南昌:南昌大学硕士论文,2010
    [155].田晖,杜佩轩,梅琳.西安市城市灰尘微量元素环境异常研究[J].地质力学学报,2005,(4):361-369
    [156].田晖,刘连刚,徐文世.西安市灰尘来源探析[J].北京地质,2002a,14(1):23-27
    [157].田晖,周光理,郑巧东,姚超英.杭州城市灰尘迁移与粒径之间的关系研究[J].四川农业大学学报,2006,24(4):422-425
    [158].田晖,周小锋,姚超英.杭州城市灰尘中Pb、Cd的粒径分布特征[J].广东微量元素科学.2007,]4(6):19-25
    [159].田晖.西安市街道灰尘微量元素环境地球化学及赋存状态研究[D].西安:长安大学硕士论文,2001
    [160].田晖.西安市街道灰尘中铬、镉、铅赋存状态及环境效应[J].北京地质,2002b,14(2):34-39
    [161].田鹏,杨志峰,李迎霞.公路地表灰尘及径流中颗粒物附着重金属对比研究[J].环境污染与防治,2009,31(6):14-19
    [162].王德高,杨萌,李一凡.多环芳烃在城市环境介质大气、土壤、街道灰尘中来源研究[C].大连:第五届全国环境化学大会摘要集,2009
    [163].王冠,夏敦胜,陈发虎,刘秀铭,杨丽萍,魏海涛.兰州市街道尘埃的元素空间变化特征研究[J].干旱区资源与环境,2008a,22(6):13-20
    [164].王冠,夏敦胜,陈发虎,刘秀铭,杨丽萍.兰州市街道尘埃粒度空间变化特征[J].环境科学与管理,2008b,33(3):67-72
    [165].王冠,夏敦胜,刘秀铭,陈发虎,余哗,杨丽萍,陈建徽.周爱锋.兰州市城市街道尘埃磁学特征时空变化规律[J].科学通报,2008c,(4):446-455
    [166].王金达,刘景双,于君宝,王春梅,王艳.沈阳市城区土壤和灰尘中铅的分布特征[J].中国环境科学,2003,23(3):300-304
    [167].王丽丽,刘敏,欧冬妮,常静,许世远,上海城市地表灰尘重金属粒级效应与赋存形态研究[J].华东师范大学学报(自然科学版),2009,(6):64-70
    [168].王利,陈振楼,陈晓枫,史贵涛,沈军.上海内环高架沿线灰尘重金属污染分析与评价[J].环境监测管理与技术,2009,21(5):35-38
    [169].王利,陈振楼,许世远,史贵涛,李海雯.上海市延安高架道路绿地土壤与沿线灰尘中铅的分布特征[J].环境污染与防治,2007-29(2):132-134
    [170].王利.上海高架道路沿线街道灰尘中重金属分布及污染评价[D].上海:华东师范大学硕士论文,2007b
    [171].王利军,卢新卫,雷凯.宝鸡城市街尘、土壤及河流沉积物重金属形态迁移特征[J].城市环境与城市生态,2011,24(1):22-26
    [172].王利军,卢新卫,雷凯.宝鸡市街尘中As和Hg含量及其环境风险评价[J].环境科学研究,2007,20(5):35-38
    [173].王利军,卢新卫,雷凯.宝鸡市街尘重金属元素含量及其环境风险分析[J].土壤通报,2012,43(1):200-205
    [174].王利军.宝鸡市街尘、土壤及渭河沉积物重金属污染研究[D].西安:陕西师范大学硕士论文,2008
    [175].王小梅,赵洪涛,李叙勇,段文标,何小艳.北京地区城乡街尘中铅污染分异特征研究[J].土壤,2011a,43(2):232-238
    [176].王小梅,赵洪涛,李叙勇.北京市地面街尘与径流中重金属的污染特征[J].生态毒理学报,2010,5(3):426-432
    [177].王小梅.北京地区街尘-径流污染特征及潜在污染负荷估算[D].哈尔滨:东北林业大学硕士论文,2011b
    [178].王晓云,马建华,侯千,段海静.开封市幼儿园地表灰尘重金属积累及健康风险[J].环境科学学报,2011 a,31(3):583-593
    [179].王晓云.郑州市地面灰尘重金属季节变化及健康风险分析[D].郑州:河南大学硕士论文,2011b
    [180].王学良.重庆市主城区街道灰尘的污染分析研究[D].重庆:西南大学硕士论文,2008
    [181].魏金枝,朱振岗,王贤珍,郭殿林,范春.哈尔滨市街道扬尘污染状况分析[J].环境与健康杂志,1999,16(1):26-27
    [182].魏金枝,朱振岗,王贤珍,郭殿林.道路扬尘毒性研究[J].环境与健康杂志,2002,19(4):325-327
    [183].温家欣,姚亮英,曾锋,孙国泉,曾尊祥.城市灰尘邻苯二甲酸酯污染特征研究[C].第五届全国环境化学大会摘要集,2009
    [184].向丽,李迎霞,史江红,刘静玲.北京城区道路灰尘重金属和多环芳烃污染状况探析[J].环境科学,2010,32(1):159-166
    [185].谢宏芳,方凤满,王海东.城市街道灰尘重金属污染研究进展[J].环境污染与防治,2010,32(5):78-81
    [186].徐素娟,郑娜,刘景双,孙崇玉,王洋,常守志.有色冶金区街道灰尘中As和Pb的空间分布特征及其生态风险[J].环境科学,2011,32(5):1441-1446
    [187].徐玮,吕宾,储金宇,吴春笃,周晓红,蔡裕领,韦媛媛.镇江市老城区不同功能区地表灰尘重金属污染评价[J].环境化学,2012,31(2):182-188
    [188].徐欣.不同等级城镇居民点地面灰尘重金属含量与分布[D].郑州:河南大学硕士论文,2010
    [189].许宇慧,唐亚,张朝生,王佳媛,李冰.四川省九寨沟景区道路灰尘及土壤重金属含量评价[J].山地学报,2010,28(3):288-292
    [190].杨孝智,陈扬,徐殿斗,贺婷婷,马玲玲,李杰,聂长明.北京地铁站灰尘中重金属污染特征及健康风险评价[J].中国环境科学,2011,31(6):944-950
    [191].杨忠平,卢文喜,刘新荣,辛欣.长春市城市近地表灰尘重金属污染来源解析[J].干旱区资源与环境,2010,24(12):155-160
    [192].尤明刚.广州和香港两地都市区路尘和下水道积尘中有机污染物及元素组成比较研究[D].广州:中国科学院博士论文,2004
    [193].游志校,杨成,刘鑫,薛飞,周小玉.贵阳市城市道路灰尘重金属铅污染及评价[J].城市环境与城市生态,2010,23(4):33-35
    [194].曾龙浩.西安城市道路灰尘中多环芳烃污染的评价[D].西安:陕西师范大学硕士论文,2011
    [195].张洪建,杜振川,李增学,李清雪,孙玉壮.邯郸市区落尘中部分有害成分分析[J].河北建筑科技学院学报,2002,19(1):1-4
    [196].张慧敏,章明奎.杭州不同功能区道路灰尘中污染物的分布和有效性[J].广东微量元素科学,2007.14(12):14-18
    [197].张建强,白石清,渡边泉.城市道路粉尘、土壤及行道树的重金属污染特征[J].西南交通大学学报.2006,41(1):68-73
    [198].张晶晶,毕春娟,陈振楼,李猛.上海市区地表灰尘对降雨径流中汞砷污染的影响[J].华东师范大学学报(自然科学版),2011,(1):194-202
    [199].张菊,陈振楼,许世远,姚春霞,刘伟,邓焕广.上海城市街道灰尘重金属铅污染现状及评价[J].环境科学,2006,27(3):519-523
    [200].张菊,邓焕广,陈振楼,许世远.小城镇街道灰尘中氮磷含量研究[J].云南地理环境研究,2007,19(2):17-21
    [201].张菊,邓焕广,王东启,陈振楼,许世远,姚春霞.上海郊区小城镇街道灰尘理化性质及重金属时空分布特征[J].长江流域资源与环境,2011,20(6):705-710
    [202].张菊.上海城市街道灰尘重金属污染研究[D].上海:华东师范大学硕士论文,2005
    [203].张丽.淄博城区土壤及街道灰尘重金属地球化学研究[D].淄博:山东理工大学硕士论文,2006
    [204].张璐璐,李凤全,叶玮,王天阳,朱丽东.基于条件高斯模拟的城市灰尘Pb元素的空间分布特征[J].环境科学与管理,2010,35(10):35-38
    [205].张璐璐.金华市城市灰尘重金属分布的条件模拟[D].金华:浙江师范大学硕士论文,2011
    [206].张祥志,赵永刚,胡冠九,章勇,范迪富,廖启林.江苏省典型生态示范区土壤中多环芳烃的含量与风险评价[J].土壤,2006,38(6):790-793
    [207].张一修,王济,秦樊鑫,张浩.贵阳市道路灰尘和土壤重金属来源识别比较[J].环境科学学报,2012.32(1):204-212
    [208].张一修,王济,张浩.贵阳市区地表灰尘重金属污染分析与评价[J].生态环境学报,2011,20(1):169-174
    [209].张志明,方凤满,杨丁,陈文娟.城市地表灰尘的分形特性分析[J].土壤,2010,42(1):142-147
    [210].张志明,方凤满,余键,陈文娟,杨丁.城市地表灰尘颗粒体积分形特征及其吸附性[J].生态环境,2008,17(5):1887-1890
    [211].章明奎.浙江省城市汽车站地表灰尘中重金属含量及其来源研究[J].环境科学学报,2010,30(11):2294-2304
    [212].赵洪涛,李叙勇,王为东,陈梅雪,尹澄清.城镇街尘污染与平原河网水体的源-汇效应研究[J].环境科学学报,2010,30(6):1295-1300
    [213].赵全举.广州市地表堆积物中重金属含量分析研究[J].广东水利电力职业技术学院学报,2006,4(2):35-38
    [214].赵宙.石家庄街道积尘重金属污染研究[D].石家庄:河北师范大学硕士论文.2008
    [215].郑小康,李春晖,黄国和,杨志峰,庞爱萍,吕莹.保定城区地表灰尘污染物分布特征及健康风险评价[J].环境科学学报,2009,29(10):2195-2202
    [216].郑妍.北京市区尘土与表土磁性差异及其环境学意义[D].中国地质大硕士论文,2006
    [217].周宏仓,张翠翠,蔡华侠,宋园园,薛鸿斌.调滤网灰尘中多环芳烃分布特征及来源研究[J].中国环境科学,2010,30(10):1303-1308
    [218].周开胜,潘尤虎,吕超田,赵沈慧.城市街道灰尘重金属类环境激素镉污染及防治对策[J].合肥工业大学学报(自然科学版),2009,32(3):310-313
    [219].朱礼学.城市尘土地球化学调查的意义及构想[J].四川地质学报,2003,23(3):174-175
    [220].朱旻航,王学良,陈玉成.重庆市主城区街道灰尘中氮、磷污染研究[J].环境化学,2009,28(2):306-307
    [221].朱伟,边博,阮爱东.镇江城市道路沉积物中重金属污染的来源分析[J].环境科学,2007,28(7):1584-1589

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700