云南晚第三纪化石木研究及其古气候意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了我国云南龙陵大坝和镇安、昌宁红星晚上新世以及楚雄洲吕合晚中新世191个化石木标本,鉴定出7种化石木类型,其中越桔型木属为新属,越桔型木、常绿杜鹃型木和龙陵杜鹃型木为新种。并利用化石木的现存种或现存亲缘种的生态环境对化石产地的气候和环境进行了讨论。
     木材种类的特征如下:
     华山松(Pinus armandii Franchet):生长轮明显,早材至晚材渐变。交叉场纹孔主为窗格型。木射线具单列射线和纺锤状射线。射线管胞内壁平滑或微锯齿状。具正常轴向和径向树脂道,由薄壁泌脂细胞组成。
     云南铁杉(Tsuga dumosa Eicher):生长轮明显,早材至晚材略急变至渐变。管胞径壁具缘纹孔单列;具缘纹孔膜上明显具棒状延伸;纹孔膜下具缘纹孔外表面具明显的瘤状层,瘤状突起大小相近。交叉场纹孔式柏木型。木射线主为单列;由射线薄壁细胞和射线管胞组成;射线细胞水平壁厚,纹孔明显,数多;端壁节状加厚明显。轴向木薄壁组织细胞数少,轮界状;其端壁节状加厚明显。
     柳杉型木(Taxodioxylon cryptomeripsoides Schonfeld):生长轮明显,早材至晚材略急变。管胞径壁纹孔1列,偶尔成疏松排列的2列;晚材弦壁纹孔明显可见。交叉场具1-4枚杉木型纹孔。轴向木薄壁组织细胞数多,星散状或有时成短弦线状;端壁节状不明显或略现。木射线单列,全由射线薄壁细胞组成;射线细胞水平壁薄,纹孔缺乏,端壁平滑。
     杉木型木(Taxodioxylon cunninghamioides Watari):生长轮明显,早材至晚材渐变。管胞径壁纹孔1-2列;晚材弦壁纹孔明显可见。交叉场1-4枚杉木型纹孔。轴向木薄壁组织丰富,星散状或有时成短弦线状;端壁节状不明显或略现。木射线单列全由射线薄壁细胞组成;射线细胞水平壁薄;端壁薄,平滑。
     龙陵杜鹃型木(新种)(Ericaceoxylon longlingense sp.nov.):生长轮明显,散孔材。导管横切面为多角形,单管孔,散生。螺纹加厚仅出现导管分子尾端。梯状穿孔为主。管间纹孔式为对列或梯状对列。轴向薄壁组织量少,疏环管状。纤维分子细胞壁厚度中等。射线宽1-6细胞。多列射线的中部多为横卧细胞,边缘有1-4(6)行直立和/或方形细胞。射线导管间纹孔式梯状对列,类似导管间纹孔式。
     常绿杜鹃型木(新种)(Ericaceoxylon hymenanthesoides sp. nov.):生长轮明显,半环孔
    
     材。导管横切面为多角形,单管孔,散生。螺纹加厚出现整个导管分子壁上。复穿孔,梯状
     穿孔为主。管间纹孔式为互列。轴向簿壁组织量少,疏环管状;端壁节状加厚不明显。纤维
     分子细胞壁厚度中等;径壁和弦壁均具有具缘纹孔。射线宽14细胞;多列射线的中部多为
     横卧细胞,边缘有l-9行直立和/或方形细胞。射线导管间纹孔式互列,类似导管间纹孔式。
     .
     常绿杜鹃型木(相似种)(Ericaceorylon of hyienanthesoidbs):生长轮明显,半环孔材。
     单管孔:导管散生。梯状穿孔板;管间纹孔式为互列;射线导管间纹孔式多对列,类似导管
     面
     间纹孔式。螺纹加厚出现在导管分子壁上。木纤维细胞壁中等厚度。射线宽l-3细胞。
     越桔型木(新种)(Vacciniaceorylon vacciniumoi(le Sp.nov):生长轮略明显,散孔材。
     单管孔,散生;整个导管分子上具螺纹加厚。网状和梯状穿孔。轴向薄壁组织量少,星散状
     或疏环管状。纤维分于径壁和弦壁都具有具缘纹孔。射线多列和单列射线组成,两种大小,
     14细胞宽。射线导管间纹孔式互列,纹孔有明显的纹孔缘。
     化石木植物群及其所反映的古植被和古气候如下:
     楚雄吕合化石木植物群4个标本中鉴定出两种木材类型一柳杉型木和杉木型木。由于化
     石标本少,不足以反映植被面貌,两种杉科植物的出现反映其生长地为亚热带温暖湿润环境。
     龙陵大坝和镇安化石木植物群95个标本中鉴定出四种木材类型:华山松、常绿杜鹃型木、
     越桔型木和龙陵杜鹃型木。他们反映的古植被为针阔混交林,生长于亚热带温凉湿润的山地
     气候环境中,当时当地的诲拔高度在1800-3000米之间。
     昌宁红星化石木植物群92个标本中鉴定出三种木材类型:华山松、云南铁杉、常绿杜鹃
     型木(相似种)。他们反映的古植被为针阔混交林,生长于亚热带温凉湿润的山地气候环境
     中,当时当地的海拔在2200.3000米之间。
191 specimens of fossil woods collected from Neogene sediments of Yunnan Province are studied. Seven taxa are identified and described in details. Among of them, three new species are established as Ericaceoxylon longlingense, Ericaceoxylon hymenanthesoides and Vacciniaceoxylon vacciniumoides. P alaeoenvironment and palaeoclimate of three localities are discussed with the reference to the ecological comparisons of extant taxa using the nearest living relative approach. Identified taxa and their characters as follows:
    Pinus armandii Franchet: Normal vertical and horizontal resin canals with thin-walled epithelial cells present. Cross-fields pitting window-like. Ray tracheid walls smooth or with minute dentations.
    Tsuga dumosa Richer: The regular presence of ray tracheids. Axial parenchyma cells rare and distribute in the boundaries of growth rings. Cross-field pitting cupressoid with 1-5 pits. Tori extensions present on pit membrane.
    Taxodioxylon cryptomeripsoides Schonfeld: Growth rings distinct, transition from early wood to late wood more or less abrupt. Bordered pits on tracheids radial walls mostly uni-seriate rows. Rays entirely parenchymatous, uni-serate; horizontal and tangential walls of ray cells smooth and thin. Cross-field pitting taxodoid with 1-4 pits. Axial parenchymatous cells abundant, diffusely distributed as solitary cells or occasionally as tangentially aligned pairs.
    Taxodioxylon cunninghamioides Watari: Growth rings distinct, transition from early wood to late wood more or less abrupt. Bordered pits on tracheids radial walls uni-seriate and bi-seriate rows. R ays e ntirely p arenchymatous, u ni-serate; h orizontal a nd t angential w alls o f r ay c ells a re smooth and thin. Cross-field pitting taxodoid with 1-4 pits. Axial parenchymatous cells abundant, diffusely distributed as solitary cells or occasionally as tangentially aligned pairs.
    
    
    
    Ericaceoxylon longlingense sp. nov.: Growth rings boundaries distinct. Wood diffuse-porous. Vessels solitary with angular outline; perforation plates scalariform; intervessel pits and vessel-ray pitting alternate to scalariform; helical thickenings only in vessel elements tails. Fibres with thin-to thick-walled. Axial parenchyma rare, scanty paratracheal. Ray width 1-6 cells; Body ray cells procumbent with mostly 2-4 rows of upright and /or sqaure marginal cells.
    Ericaceoxylon hymenanthesoides sp. nov.: Growth rings boundaries distinct. Wood semi-ring-porous. Vessels solitary with angular outline; perforation plates scalariform; intervessel pits and vessel-ray pitting opposite; helical thickenings throughout body of vessel elements. Fibres with thin- to thick-walled. Axial parenchyma rare, scanty paratracheal. Ray width 1-4 cells; Body ray cells procumbent with 1-9 rows of upright and /or square marginal cells.
    Ericaceoxylon cf. hymenanthesoides: Growth rings boundaries distinct. Wood semi-ring-porous; Vessels solitary with angular outline; perforation plates scalariform; intervessel pits and vessel-ray pitting opposite or opposite to scalarifonn; helical thickenings in vessel elements present. Fibres with thin- to thick-walled. Ray width 1-3 cells; Body ray cells procumbent with 1-9 rows of upright and /or square.
    Vacciniaceoxylon vacciniumoides sp. nov.: Growth rings boundaries indistinct. Wood semi-ring-porous; Vessels solitary with angular outline; perforation plates reticulate and scalariform; intervessel pits and vessel-ray pitting alternate; helical thickenings throughout body of vessel elements. Fibres with thin- to thick-walled, bordered pits distinct. Axial parenchyma rare, diffuse and scanty paratracheal. Ray width 1-4 cells; Body ray cells procumbent with 1-4 rows of upright and /or square marginal cells.
    There are 2 taxa, Taxodioxylon cryptomeripsoides Schonfeld and Taxodioxylon cunninghamioides in Ltihe locality. The existence of two taxa of Taxodiceae reflects a warm-humid local environment under subtropical climate during Late Miocene.
    There are 4 taxa, Pinus armandii, Ericaceoxylon longlingense, Ericaceoxylon hymenan
引文
1. 陈秀娟,徐永吉,李跃芬,齐国凡,徐瑞瑚.湖北新洲阳逻镇硅化木研究.辽宁地质,1992,第4期:368-372.
    2. 成俊卿,孙成志,李秾.中国松属木材解剖特性与木材归类研究.中国林业科学院木材工业研究所研究报告森工(63)9号,1963.
    3. 成俊卿,杨家驹,刘鹏.中国木材志.北京:中国林业出版社,1992.
    4. 成俊卿,杨家驹,刘鹏等,木材穿孔卡检索表(阔叶树材微观构造).北京:农业出版社,1979.
    5. 成俊卿主编.木材学.北京:中国林业出版社,1985.
    6. 成俊卿著.中国热带及亚热带木材.北京.:科学出版社,1980.
    7. 崔金钟,刘俊杰.辽西阜新组一种新的木化石——新丘叶枝杉型木.植物学报,1992,34:883-885.
    8. 崔金钟.内蒙古霍林河煤田罗汉松科几种丝炭化木化石的研究.植物学报,1995,37:636-640.
    9. 丁秋红.黑龙江省九峰山组漠河原始云杉型木.植物学通报,2000a,17(专辑):206-209.
    10.丁秋红.辽宁西部义县组木材化石的研究.古生物学报,2000b,39(增刊):209-219.
    11.丁秋红,郑少林,张武.东北地区中生代化石木异木属及其古生态.古生物学报,2000,32(2):237-249.
    12.杜乃正.两种黑龙江木化石.植物学报,1982,24:383-388.
    13.杜乃正.辽宁抚顺古新世木化石的初步研究.植物学集刊,1987,3:63-82.
    14.段淑英.北京硅化木林.植物学报,1986,28:331-335.
    15.段淑英,彭光照.中国东北辽宁省西部几种中生代化石木.植物学报,2000,42:207-213.
    16.段淑英.中国四川自贡化石木研究.植物学报,1998,40:675-679.
    17.樊拥军.国产杜鹃属植物木材解剖.北京大学博士研究生学位论文,1993.
    18.冯广平,耿宝印,李承森.被子植物化石花研究的回顾与进展.李承森主编,植物科学进展,第一卷,北京:高等教育出版社,1998,pp78-94.
    19.冯国楣主编.中国杜鹃花,第一册.北京:科学出版社,1988.
    
    
    20.傅立国,陈潭清,郎楷永,洪涛主编.中国高等植物,第三卷.青岛:青岛出版社,2000.
    21.傅立国.关于长苞铁杉分类位置问题.中国植物学会三十周年论文集.北京:科学出版社,1963.
    22.戈鸿儒,李代芸.云南西部新生代含煤盆地及聚煤规律.昆明:云南科技出版社,1999.
    23.郭双兴.四川西部晚新生代植物群.见:第八届国际第四纪研究大会摘要,北京,1991.
    24.何德长.大兴安岭成煤植物.北京:中国煤炭工业出版社,1995.
    25.何德长,张秀仪.河南义鄂尔多斯盆地中侏罗世几种成煤植物.现代地质,1993,261-265.
    26.何科昭,赵崇贺,何浩生,帅开业等著.滇西陆内裂谷与造山作用.武汉:中国地质大学出版社,1996.
    27.侯蜀光,李季.云南宝秀盆地泥炭-褐煤孢粉组合,煤田地质与勘探,1993,21:14-18.
    28,胡友恒等.云南禄丰的上新统(摘要).云南省地质学会地层古生物专业委员会第一次学术年会资料,1980.
    29.孔昭宸,杜乃秋,陈照洪.滇东黔西第四纪古植物的发现及其对植物群和古气候的初步探讨.中国地质科学院地质力学研究所编中国第四纪冰川地质文集,北京:地质出版社 1977.
    30.李浩敏,郭双兴.西藏南木林中新世植物群.古生物学报,1976,15:7—20.
    31.李楠.论松科植物的地理分布、起源和扩散.见:路安民主编,种子植物科属地理.北京:科学出版社,1999,pp17-39.
    32.李文华,冷允法.云南横断山区森林植被分布与水热因子相关的定量化研究,中国科学院青藏高原综合考察队,青藏高原研究横断山考察专集(一).昆明:云南人民出版社,1983,pp185-205.
    33.李星学主编.中国地质时期植物群.广州:广东科技出版社,1995.
    34.李正理编.植物组织制片学.北京:北京大学出版社,1996,pp183.
    35.李中明.太原台木(新种)的解剖.植物学报,1986,28:555-558.
    36.罗良才著.云南经济木材志.昆明:云南人民出版社,1989.
    37.马清温,徐景先,王宇飞,李承森.红杉属植物在中国云南中新世首次发现.植物学报,2000,42:438-440.
    
    
    38.孟祥营,陈芬,邓胜徽.杉木属的一个化石种——亚洲杉木.植物学报,1988,30:649-654.
    39.内蒙古自治区地质局主编.内蒙固阳含煤盆地中生代地层古生物.北京:地质出版社,1982.
    40.齐国凡,杨家驹,苏景中.武汉出土的两种古木的研究.植物学报,1993,35:722-726.
    41.齐国凡,杨家驹,徐瑞瑚,武汉地区晚第三纪三种被子植物硅化木研究.辽宁地质,1997a,(2):149-155.
    42.齐国凡,杨家驹,徐瑞瑚,杨礼茂.武汉地区晚第三纪两种榆科植物化石木的研究.古生物学报,1997b,36.373-377.
    43.尚华.辽宁早白垩世松科球果的研究.中国科学院植物研究所博士论文,2000.
    44.施雅风,李吉均,李炳元,姚檀栋,王苏民,李世杰,崔之久,王富保,潘保田,方小敏和张青松.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54:10-20.
    45.斯行健,北满木化石.科学记录,1951,4(4):433-457.
    46.斯行健,李星学等编著.中国植物化石,第二册,中国中生代植物,北京:科学出版社,1963.
    47.斯行健.内蒙古的一种矽化木.古生物学报,1962,10:416-423.
    48.斯行健.一种木化石Phoroxylon scalariforme Sze的构造及其亲缘关系.古生物学报,1954,2:347-354.
    49.斯行健编著.中国古生代植物图鉴.北京:科学出版社,1953.
    50.宋之琛,李曼英.云南一些地区中生代及第三纪早期的孢粉组合,云南禄丰、牟定晚白垩世早期及勐腊晚白垩世晚期至早第三纪早期孢粉组合.见:云南中生代化石编写组编写,云南中生代化石(上册).北京:科学出版社,1976,pp9-56.
    51.宋之琛.云南昭通晚新生代孢粉植物群.见:中国科学院南京地质古生物所集刊,第24号.北京:地质出版社,1988,1-41.
    52.宋之琛,钟碧珍.云南景谷第三纪孢粉组合.中国科学院南京地质古生物所丛刊第8号.北京:地质出版社,1984,pp1-41.
    53.孙革,郑少林,D.迪尔切,王永栋,梅盛吴著.辽西早期被子植物及伴生植物群.上海:上海科技教育出版社,2001.
    
    
    54.唐华芬,胡友恒.滇西地区山新世晚期含煤沉积的孢粉组合特征.中国煤田地质,1993,5(4):25-29.
    55.陶君容,陈明洪.横断山南部——云南临沧地区新生代植物群.见:中国科学院青藏高原综合考察队,横断山考察专集(一).昆明:云南人民出版社,1983,pp74-89.
    56.陶君容.横断山区中段——兰坪新第三纪植物化石群及其意义.见:中国科学院青藏高原综合考察队,横断山考察专集(二).北京:北京科学技术出版社,1986,pp.58-65.
    57.陶君容,孔昭宸.云南洱源三营煤系的植物化石群和孢粉组合.植物学报,1973,15:120-126.
    58.陶君容,杨家驹,王宇飞.内蒙古地区中新世木化石及古气候的意义.云南植物研究,1994,16:111-116.
    59.田宝霖,李洪起.一种特殊的晚二叠世茎化石——Guizhouoxylon dahebianense gen.et sp.nov.古生物学报,1992,31:336-345.
    60.田宝霖,王士俊.山西太原西山煤田太原组煤核中的科达茎化石.古生物学报,1987,26:196-201.
    61.王如峰,王宇飞,陈永喆,黑龙江晚白垩世化石木及其古环境研究,植物学报,1997,39:972-978.
    62.王士俊,胡雨帆,崔金钟.内蒙古早二叠世早期南洋杉型木一新种.植物学报,2000,42(4):427-432.
    63.王士俊,姜尧发,秦勇.江苏徐州煤田太原组一种新的化石木.植物学报,1994,36(增刊):194-198.
    64.王士俊.椭圆异木在粤北晚三叠世地层中的发现.植物学报,1991,33:810-812.
    65.王士俊.粤北晚三叠世植物一种新的化石.中山大学学报(自然科学版)1991,(3):66-69.
    66.王伟铭.云南开远小龙潭盆地晚第三纪孢粉植物群.植物学报,1996,38:743-748.
    67.王永栋,张武,斋木健一.新疆奇台晚侏罗世几种木材化石.古生物学报,39(增刊):176-185
    68.王祖关主编,江能人副主编,云南省地质矿产局编著.云南岩相古地理图集.昆明:云南科技出版社,1995.
    
    
    69.徐景先,王宁飞,杜乃秋,张翠芬.云南吕合地区晚第二纪孢粉植物群.植物学报,2000,42:526-532.
    70.徐景先,王宁飞,杨健.云南第三纪植物群及其古气候的研究进展.植物学通报,2000,17(专辑):84-94.
    71.徐景先.云南中西部晚第三纪孢粉植物群及其古植被和古气候研究.中国科学院植物研究所博士论文,2002.
    72.徐仁.山东即墨一种化石木与化石菌丝的发现.古生物学报,1953,2:80-86.
    73.徐仁,陶君容,孙湘君.西夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义.植物学报,1973,15:104-119.
    74.杨家驹,程放.微机辅助木材识别系统WIP-89.北京林业大学学报,1990,12:88-94.
    75.杨家驹,齐国凡,徐瑞湖,大别山硅化木的研究.林业科学,1990,26:379-383.
    76.杨家驹,齐国凡,徐瑞瑚,杨礼茂,林金星.鄂中一些被子植物硅化木研究.植物学报,1993,35:206-214.
    77.杨家驹,齐国凡,徐瑞瑚,杨礼茂.三种裸子植物化石木的研究.辽宁地质,1996,(4):263-279.
    78.杨家驹,齐国凡,徐瑞瑚,杨礼茂.武汉地区三种大戟科化石木的研究.植物学报,1998,40:68-76.
    79.杨家驹.中国针叶树材穿孔卡检索表.中国林业科学研究所木材工业研究所研究报告,北京,1986.
    80.杨建民,郭双兴,卫广扬.湖北第三纪双子叶植物木化石.古生物学报,1995,34:53-65.
    81.于永福.杉科植物的分类学研究.植物研究,1994,14(4):369-382.
    82.于永福.杉科植物的起源、演化及其分布.见:路安民主编,种子植物科属地理.北京:科学出版社,1999,pp40-62.
    83.远藤隆次.植物化石图谱.朝仓书店,东京,1966.
    84.云南省地质矿产局编著,王祖关主编,江能人副主编.云南岩相古地理图集.昆明:云南科技出版社,1995.
    85.云南省地质矿产局主编.云南省区域地质志,中华人民共和国地质矿产部地质专报,(一)区域地质,第21号.北京:地质出版社,1990.
    
    
    86.云南植被编写组.吴征镒,朱彦丞主编,姜汉侨副主编.云南植被.北京:科学出版社,1987.
    87.张荣祖,郑度,杨勤业,刘燕华主编.中国科学院青藏高原综合考察队,横断山区自然地理,北京:科学出版社,1997,pp90-96.
    88.张善桢,曹正尧.安徽含山木化石Cupressinoxylon的发现.见:中国科学院南京地质古生物研究所编辑,古植物学与孢粉学文集,第一号.江苏:江苏科学技术出版社,1986,23-30.
    89.张善桢,王庆之.山东青岛早白垩世木化石一新种.古生物学报,1987,26:65-70.
    90.张武,郑少林,丁秋红.辽宁早白垩世化石木一新属——原始金松型木(Protosciadopityoxylon).植物学报,1999,41:1312-1316.
    91.张武,郑少林,丁秋红.苏格兰木(Scotoxylon)在中国首次发现.植物学通报,2000a,17(专辑):206-209.
    92.张武,郑少林.内蒙西乌珠穆沁旗哲组木化石.长春地质学院学报,1984,(4):68-71.
    93.张武,郑少林,商平.辽宁早白垩世银杏木一新种——中国银杏木.古生物学报,2000,39(增刊):220-225.
    94.张武等编著.东北地区古生物图册(二),中新生代分册,植物化石部分.北京:地质出版社,1980.
    95.张永骆编著.古生物命名拉丁语.北京:科学出版社,1983.
    96.张远志主编,张定辉、刘世荣副主编,云南省地质矿产局编著.云南省岩石地层,53.武汉:中国地质大学出版社,1996,pp281-283.
    97.郑少林,张武.黑龙江省东部地区龙爪沟群及鸡西群植物化石.见:沈阳地质矿产研究所编,中国地质科学院沈阳地质矿产研究所所刊第5号,辽宁:辽宁科学技术出版社,1982.
    98.郑少林,张武.中国辽宁、内蒙古晚古生代银杏类木材.古生物学报,2000,39(增刊):119-126.
    99.郑万钧,傅立国等.中国植物志,第七卷.北京:科学出版社,1978.
    
    
    100.中国科学院北京植物研究所和南京地质古生物研究所《中国新生代植物》编写组.中国植物化石,第三册,中国新生代植物.北京:科学出版社,1978.
    101.中国科学院北京植物研究所南京地质古生物研究所《中国古生代植物》编写组.中国植物化石,第一册,中国古生代植物.北京:科学出版社,1974.
    102.中国科学院昆明生态研究所和云南省农业区划委员会办公室编.云南植被生态景观.北京:中国林业出版社,1994.
    103.中国科学院昆明植物研究所编著.云南植物志,第四卷.北京:科学出版社,1986.
    104.中国科学院中国植物志编辑委员会.中国植物志,第七卷.北京:科学出版社,1978.
    105.中国科学院中国植物志编辑委员会.中国植物志,第五十七卷,第三分册.北京:科学出版社,1991.
    106.中国植被编写组.中国植被.北京:科学出版社,1995,pp 877-948.
    107.周崯,姜笑梅.中国裸子植物材的木材解剖学及超微构造.北京:中国林业出版社,1994.
    108.朱为庆.古植物撕片法的研究.植物学通报,1983,1(2):51-53.
    109. Alves E S and A Veronica. Ecological trends in the wood anatomy of some Brazilian species. growth rings and vessels. IAWA Journal, 2000, 21(1): 3-30.
    110. Alvin K L. 1960. Further conifers of Pinaceae from the Wealden Formation of Belgium. Mem Inst Roy Sci Nat Belgium, 146: 1-39.
    111. Alvin K L. On Psedoaraucaria Fliche emend, a genus of fossil pinaceous cones. Annals of Botany, New Series, 1957, 21: 33-51.
    112. Alvin K L. Three abietaceous cones from the Wealden Formation of Belgium. Institut Royal des Sciences Naturelles de Belguque, Memoires, 1953, 125: 3-42.
    113. Ammons R, W J Fritz, R B Ammons and A Ammons. Cross-idenitification of rings signature in Eocene trees (Sequoia magnifica) from the specimen ridge locality of the Yellowstone fossil forests. Palaeogeography Palaeoclimatology Palaeoecology, 1987, 60: 97-108.
    114. Aronld C A. The genus Callixylon from the Upper Devonian of central and western New York. Pap. Michigan Acad. Sci.,1931, 11: 1-50.
    115. Ash S R and G. T Creber. Palaeoclimatic interpretation of the wood structures of the trees in the Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona, USA. Palaeogeography Palaeoclimatology Palaeoecology, 1992, 96:299-317.
    
    
    116. Axelord D I. Cenozoic history of some western American pines. Annual Missouri Botany Garden, 1986, 73: 565-641.
    117. Axelord D I. History of the coniferous forests, California and Nevada. University California Publication, Botany, 70, 1976.
    118. Baas P. Some ecological trends in vessel characters. IAWA Bulletin, 1983, 4(2-3): 141-160.
    119. Bande M B and U Prakash. Evolutionary trends in the secondary xylem of woody dicotyledons from the Tertiary of India. The Palaeobotanist, 1984, 32: 44-75.
    120. Beck C B. The appearance of gymnospermous structure. Biology Review, 1970, 45: 379-398.
    121. Brison A, Philippe M and F Thevenard. Are Mesozoic wood growth rings climate-induced? Paleobiology, 2001, 27: 531-538.
    122. Burges N A. Additions to our knowledge of the flora of the Narrabeen Stage of the Hawkesbury Series in New Siuth Wales. Pro. Linn. Soc. New South Wales, 1935, 60: 257-264.
    123. Cahoon E J. Paraphyllanthoxylon alabanmense----a new species of fossil dicotyledons wood. American Journal of Botany, 1971, 59: 5-11.
    124. Carlquist S. Comparative wood anatomy. Systematic, Ecological and Evolutionary Aspect of Dicotyledon Wood. Springer-Verlag, Berlin, 1988, pp436.
    125. Chaloner W G and G T Creber. Growth rings in fossil woods as evidences of past climates. In: Taxiing D H and S K Runcorn (eds.). Implications of Continental Drift to the Earth Science. Academic Press, London, 1973, pp423-436.
    126. Chaloner W G and G. T Creber. Do fossil plants give a climatic signal? Journal of Geological Society of London, 1988, 147: 343-350.
    127. Chancy R W and Daugherty L H. The occurrence of Cercis associated with the remains of Sinanthropus. The Bulletin of the Geological Society of China, 1933, 12: 323-328.
    128. Chang C Y. A new Xenoxylon from North China. The Bulletin Geology Society of China, 1929, 8: 243--255.
    
    
    129. Chang Chengfa and Pan Yusheng. A brief discussion on the tectonic evolution of Qinghai-Xizang Plateaau. In: Geo. and Ecol. Stud. Qinghai-Xizang Plateau, Proc. Symp. Qinghai-Xizang Paleatu, Vol. Ⅰ. Geol. Geogr. Hist. and Origin of Qinghai-Xizang Plateau. Science press, Beijng and Gordon and Breach Sci. Publ. Inc.,New York, 1981, pp. 1-18.
    130. Chapman J L. Distinguishing internal developmental characteristics from external palaeoenvironmental effects in fossil wood. Review of Palaeobotany and Palynology, 1994, 81: 19-32.
    131. Charles N and J Miller. Mesozoic conifers. The Botanical Review, 1977, 43: 218-280.
    132. Collinson M E and P R Crane. Rhododendron seeds from the Palaeocene of southern England. Botanical Journal of Linnean Society, 1978, 76: 195-205.
    133. Collinson M E. Use of Modern generic names for plants fossils. In: Spicer R A. and Thmos B A. (eds). Systematic and taxonomic approaches in plaeobotany. Aystematics association special volume. No. 31. Clarendon Press, Oxford, 1986, pp91-103.
    134. Creber G T and W G Chaloner. Influence of environmental factors on the wood structure of living and fossil trees. The Botanical Review, 1984, 50: 358-436.
    135. Creber G T. Tree rings: a natural data-storage system. Biol. Rev, 1977, 52: 349-383.
    136. Creber G T and J E Francis. Fossil tree-ring analysis: palaeodendrology. 1999. In: Jones T P and N P Rowe (eds). Fossil plants and spores: modern techniques. Geological Society, London, pp245-250.
    137. Creber G T and W G. Chaloner. Tree growth in the Mesozoic and Early Tertiary and the reconstruction of palaeoclimates. Palaeogeography Palaeoelimatology Palaeoecology, 1985, 52: 35-60.
    138. Delevoryas T and R C Hope. Fertile coniferophyte remains from the late Triassic Deep River Basin of North Carolina. American Journal of Botany, 1973, 60:810-818.
    139. Douglass A E. Climatic cycles and tree growth. Carnegie Institution of Washington Publication, No.289, Vol. Ⅱ. Carnegie Institution, Washington, 1928.
    140. Du N Z and U Prakash. A fossil gymnospermous wood from the Miocene of Yunnan, China. The Palaeobotanist, 1988, 37: 85--89.
    
    
    141. Duan S Y, Cui J Z, Wang X, Xiong B K and Y Q Wang. Fossil woods from the Early Cretaceous of Western Liaoning, China. Wu S-M. ed. Wood Anatomy Research. International Symposium on Tree Anatomy and Wood Formation, Tianjin, China. Tianjin, International Academic Publishers, 1995, pp166-171.
    142. Esau K. Anatomy of seed plant, John Wiley, Chichester, 1977.
    143. Fahn A. El xilema secundario. In: Anatomia Vegetal. Eddiciones Piramide S.A, Madri: 1982, pp350-391.
    144. Falcon-Lang H J and D J Cantrill. Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 1: wood taxonomy: a quantitative approach. Review of Palaeobotaay and Palynology, 2000, 111: 1-17.
    145. Falcon-Lang H J. The relationship between leaf longevity and growth ring markedness in mordem conifer woods and its implicatins for palaeoclimatic studies. Palaeogeography Palaeoclimatology palaeoecology, 2000, 160:317-328.
    146. Falcon-lang. The Early Carboniferous (Asbian-Brigantian) seasonal tropical climate of Northern Britain. Palaios, 1999, 14: 116-126.
    147. Ferguson D K and E Knobloch. A fresh look at the rich assemblage from the Pliocene sink-hole of Willershausen, Germany. Review of Palaeobotany and Palynology, 1998, 101: 271-286.
    148. Ferguson S K. On the phytogeography of coniferales in the European Cenozoic. Palaeogeography Palaeoclimatology Palaeoecology, 1967, 3: 73-110.
    149. Figueiral I, V Mosbmgger, N P Rowe, A R Ashraf, T Utescher and T P Jones. The Miocene peat-forming vegetation of northwestern Germany: An analysis of wood remains and comparison with previous palynological interpretations. Review of Palynology and Palaeobotany, 1999, 104: 239-266.
    150. Figueiral I.,Lignified and charcoalfied fossil wood. 1999. In: Fossil plants and spores----modern technique (Jones and Rowe eds.). Published by The Geological Society. London.
    
    
    151. Florin R. Evolution in corfaites and conifers. Acta Horti Berg, 1951, 15: 285-388.
    152. Florin R. The distribution of conifer and taxad genera in the time and space. Acta Hort Berrg, 1963, 20: 194-256.
    153. Francis A. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic implications. Palaeontology, 1986, 29: 665-684.
    154. Francis J E and R S Hill. Fossil plants from the Pliocene Sirius Group Transantarcfic Mountains: evidence for climate from growth rings and fossil leaves. Palaios, 1996, 11: 389-396.
    155. Francis J E. The seasonal environment of the Purbeck (Upper Jurassic) fossil forests. Palaeogeography Palaeoclimatology Palaeoecology, 1984, 48: 285-307.
    156. Friss E M. and A Skarby. Scandianthus gen. Nov.,angiosperm flowers of saxifragalean affinity from the Lata Cretaceous of southern Sweden. Annals of Botany, 1982, 50: 569-583.
    157. Fritts H C. Tree-tings and Climate. Academic Press, London. 1976, pp567.
    158. Galtier J and T L Phillips. The acetate peel technique. In: Fossil plants and spores----modern technique(Jones and Rowe eds.). Published by The Geological Society, London, 1999, pp67-70..
    159. Galtier J, A C Scott, J H Powell, B W Glover and C N Waters. Anatomically preserved conifer-like stems from the Upper Carboniferous of England. Proc. Roy. Soc. London B, 1992, 247: 211-214.
    160. Giraud B and O Hankel. Nouveaux bois fossils de gymnosperms des depotus du Karroo du Bassin du Luwegu (Tanzanie meridionale). Ann. Paleontol. (Vert.-Invert.). 1986, 72: 1-27.
    161. G6ppert H R. Monographie der fossilen Coniferen. Hollandsche Maatsch. Wetensch. Natuurk. Verh. 1850, 6: 196.
    162. Gothan W Z. Anatonie lebender und fossiler Gynmospermenholzer. Abh. Kgl. Press. Geol. Landesant. N.F.H. 1905, pp44.
    163. Gottwald H. Anatomische untersuchungen an Plioznen Hlzem Aus Willershausen bei Gttingen. Palaeontographica Abt. B.,1981, 179: 138--151.
    
    
    164. Gottwald H.,Woods from marine sands of the late Eocene near Helmstedt (Lower Saxony/Germany). Palaeontographics Abt. B.,1992, 225: 27-103.
    165. Grambast L. 1952. Sur deux espèces affmes de Taxodioxylon de l'Oligo-Miocene d'Europe. Rev. Gen. Bot. 59: 113-126.
    166. Crreguss P. Fossil gymnosperm woods in Hungary from the Permian to the Pliocene. Akad. Kiadó, Budapest, 1967.
    167. Greguss P. Idenitification of living gymnosperms on the basis of xylontomy. Hungarian Academy of Science, Bugapest, 1955.
    168. Greguss P. Xylotomy of the living conifers. Publishing House of the Hungarian Academy of Sciences, Budapest, 1972.
    169. Gromyko D V. A comparative-anatomical study of wood in the family Taxodiaceae. BOTAHCPHA. 1982, 67:898-899 (in Russian).
    170. Harris T M. the fossil conifer Elatides williamsoni. Ann. Bot.,N.S. 1943, 7: 325-329.
    171. Hatcher P G and D J Clifford. The organic geochemistry of coal: from plants materials to coal. Org. Geochem. 1997, 5-6: 251-274.
    172. He H. The planation surface of the Yunnan plateau and its neotectonic significance. Z. Geomorph. N.F. supplement, Bd.,1987, 63, pp 51--56.
    173. Heer O. Flora Tertiaria Helvetiae (3 vols). Winterthur, 1855-1859.
    174. Herendeen P S. Charcoalfied angiosperm wood from the Cretaceous of eastern North America and Europe. Review of Palaeobotany and Palynology, 1991a, 69: 225-239.
    175. Herendeen P S. Lauraceous wood from the mid-Cretaceous Potimac Group of eastern North America and Europe. Review of Palaeobotany and Palynology, 1991b, 69: 277-290.
    176. Hickey L J and J A Doyle, Early Cretaceous fossil evidence for angiosperm evolution. The botanical review, 1977, 43: 3-105.
    177. Holden R. Some fossil plants from eastern Canda. Annals of Botany, 1913, 27: 243-255.
    178. Hudson R H. The anatomy of the Genus Pinus in relation to its classification. Journal of Institute Wood Science, 1960, 6: 26--46.
    
    
    179. Hughes M K, P M Kelly, J R Pilcher and V C Lamarche Jr (eds). Climate from tree rings. London: Cambridge University Press. 1982, pp223.
    180. IAWA Committee. IAWA List of Microscope features for hardwood identification. IAWA Journal, 1989, 10:219-329.
    181. Ilic J. Computer aided wood identification using CSIROID. IAWA Journal, 1993, 14: 333-340.
    182. Ilic J. CSIRO Atlas of Hardwoods. Springer, Bedim 1991, pp 526.
    183. Ilic J. The CSIRO Family key for hardwood Identification. Brill, Leiden, 1987, pp171.
    184. Jacoby G C, D Rosanne and D D'Arrigo. 1997. Tree rings, carbon dioxode, and climatic change. Proc. Natl. Acad. Sci. USA. 94: 8350-8353.
    185. Jefferson T H. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. Palaeontology, 1982, 25: 681-708.
    186. Jefferson T H. Palaeoclimatic significance of some Mesozoic Anatarctic fossil floras. In Oliver R L, P R James and J B Jago (eds), Anatar Earth Science, Cambrodge Univ. Press, Cambridge, 1983, pp593-599.
    187. Jongrnans W J and S J Dijkstra, 1972. Fossilium Catalogus Ⅱ: Plantae, Pars 79-87, Gymnospermae, Uitgeverig Dr. W. Junk B V, 's-Gravenhage. pp1094.
    188. Keller A M and M S Hendrix. Palaeoclimatological analysis of a late Jurassic petrified forest, Southeastern Mongolia. Palaios, 1997, 12: 282-291.
    189. Kilpper K. Konideren aus den Tertiaren Deckschichten des Niederrheinischen Haup flozes, 3. Taxodiaceae und Cupreessaceae. Palaeontographica Abt. B, 1968, 124:102-111.
    190. Kimura T and J Horiuchi. Cunninghamia nodensis sp. nov., from the Palaeogene Noda Group, Northeast Japan. Proceeding of Japan Academy, 1978, 54: 589-594.
    191. Krusel R. Die Fossilen Koniferenholzer, Ⅱ. Palaeotographica B. 1949, 89:1-83.
    192. Kubart B. Zwei fossile Hlzer aus China. Denkschr. Akad. Viss. Wien. 1931, 102: 361--366.
    193. Phillips E W J. Identification of softwoods by microscope structure. Linn. Soc. Jnl. Bot. 1941, 52.
    
    
    194. Kumagai H et al. Growth-ring analysis of Early Tertiary conifer woods from the Canadian high Arctic and its palaeoclimatic interpretation. Palaeogeography Palaeoclimatology. Palaeoecology, 1995, 116:247-262.
    195. Lepekhina V G. Woods of Palaeozoic pycnoxylic gymnosperms with special reference to North Eurasia representatives. Palaeontographica B, 1972, 138:44-106.
    196. Matsuo H. Plant fossils of the Izumi group (Upper Cretaceous) in the Izumi Mountain Range, Kinki District, Japan. Ann. Sci. Kanazawa Univ.,3: 67-74. 1966, 3: 67-74.
    197. Matsuo H. On the Omichidani flora (Upper Cretaceous), inner side of central Japan. Trans. Pro. Palaeony. Soc Japan, N.S. 1970, 80: 371-389.
    198. McElwain J C and W G Chaloner. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals of Botany, 1995, 76: 389-395.
    199. Metcalfe C R and L Chalk. Anatomy of the dicotyledons. Volume Ⅰ and Ⅱ. Clarendon Press, Oxford, 1950, pp1500.
    200. Metcalfe C R. Anatomy of the dicotyledons. 2nd. Volume Ⅲ, Magnoliales, Illiciales and Laurales. Clarendon Press, Oxford, 1987, pp224.
    201. Millar C I. Impact of Eocene on the evolution of Pinus L. Annual Missouri Botanical Garden, 1993, 80: 471--498.
    202. Miller C N and D R Crabtree. A new taxodiaceous seed cone from the Oligene of Washington. American Journal of Botany, 1989, 76: 133-142.
    203. Miller C N. Current status of Paleozoic and Mesozoic conifers. Review Palaeobotany and Palynology, 1982, 37:99-144.
    204. Miller C N. Early evolution in the Pinaceae. Review Palaeobotany and Palynology, 1975a, 21: 101-117.
    205. Miller C N. Mesozoic conifers. Botanical Review, 1977, 43: 217-218.
    206. Miller C N. Petrified cones and needle-bearing twigs of a new taxodiaceous conifer from the early Cretaceous of California. American Journal of Botany, 1975b, 62:706-713.
    207. Miller C N. Pityostrobus palmeri, A new species of petrified of conifer cones from the Late Cretaceous of New Jersey. American Journal of Botany, 1972, 59: 325-358.
    
    
    208. Miller C N. Pityostrobus hallii, A new species of structurally structurally preserved conifer cones from the Late Cretaceous of Maryland. American Journal of Botany, 1974, 61: 798-804.
    209. Miller C N. The origin of modern conifer families. In: Beck, C B (ed.), Origin and Evolution of Gymnosperms. Columbia University Press, New York, 1988, 448-487.
    210. Mirov N T. The genus Pinus. Ronald Press Company, New York, 1967.
    211. Morgans H S and S P Hesselbo. The seasonal climate of the Early-Middle Jurassic, Cleveland Basin, England. Palaios, 1999, 14: 261-272.
    212. Mosbrugger V and T Utescher. The coexistence approach----a method for quantitative reconstructions of tertiary terrestial palaeoclimate dara using plant fossils. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 134: 61-86.
    213. Mosbrugger V. The nearest living relative method. In: Jones T P and N P Rowe (eds), Fossil plants and spores: modern techniques. Geological Society, London, 1999, pp261-265.
    214. Nishida M and T Ohsawa. Structure and affinities of the petrified paints from the Cretaceous of Northern Japan and Saghalien Ⅷ. Parataiwania nihongii gen. Et. Sp. nov.,a taxodiaceous cone from the upper Cretaceous of Hokkaido. Journal of Japanese Botany, 1992, 67: 1-9.
    215. Pacltová B. Cretaceous angiosperms of Bohemia----central Europe. The botanieal review, 1977, 43: 128-142.
    216. Parrish J T and R A Spicer. Middle Cretaceous wood from the Nanushuk Group. Central North Slope, Alaska. PalaeontolographicaAbt. B, 1988, 31: 19-34.
    217. Phillips E W J. Identification of softwoods by their microscopic structure. Forest Products Research Bulletin. Dept. Sci. Idust. Pres.1949, No. 22, pp1--56.
    218. Poole I, R G Richter and J E Francis. Evidence for Gondwanan origins for Sassafras(Lauraceae)? Late cretaceous fossil wood of Antaratica. IAWA Journal, 2000, 21(4): 463-475.
    219. Poole I. "Twig"- wood anatomical characters as palaeoecological indicators. Review of Palaeobotany and Palynology, 1994, 81: 33-52.
    
    
    220. Poole I. The presence and absence of growth ring structure in fossil "twigs": some possible explanation. In: M H Kurmann and A R Hemsely (eds), The evolution of plant architecture, Royal Botanic Gardens, Kew, 1999, pp205-219.
    221. Prakash U, Du N Z, Tripathi P P. Fossil woods fxom the Miocene sediments of China with remarks on environmental implications of Miocene floras of the region. In: Global environment and diversification of plants through geological time, Birbal Sahni Centenary, Volume 1995, published by Society of Indian Plant Taxonomist, Allahabad, India. 1995, pp341-360.
    222. Ramanujam C G K. 1960. Silicified woods from Tertiary rocks of South India. Palaeontographic Abt B. 106: 99-140.
    223. Ramanujam C G K. Fossil coniferous woods from the Oldman Formation of Alberta. Canadian Journal of Botany, 1972, 50: 595-602.
    224. Ramanujam, C.G.K. & W.N. Stewart. 1969. Fossil woods of Taxodiaceae from the Edmonton Formation (Upper Cretaceous) Of Alberta. Can. J. Botany, 47:115-124.
    225. Sch6nfeld G Mitteilungen über Funde aus dem Bomaer Braunkohlen Revier Ⅱ. Geologie, 1953, 2: 190-203.
    226. Schweingruber F H. Tree Rings: Basics and applications of dendrochronology. Kluwer, Dordrecht, 1988, 276.
    227. Schweitzer H J. Die Flora des oberen Perms in Mitteleuropa. Naturwiss. Rundschau, 1968, 21: 93-102.
    228. Scott A C and W G. Chaloner. The earlist fossil conifer from the Westphalian B of Yorkshire. Proc. Morphology, 1983, 11:153-197.
    229. Scott A C. The earlist conifer. Nature, 1974, 251: 707-709.
    230. Seward A C. Fossil plants. Ⅳ. Cambridge University Press, London, 1919.
    231. Shimakura M. Studied on fossil woods from Japan and adjacent lands, contribution Ⅰ, Sci. Rep. Tohoku Imp. Uni. Ser-2, (Geol), 1936, 19: 1-73.
    232. Shimakura M. Studied on fossil woods from Japan and adjacent lands, contribution Ⅱ, Sci. Rep. Tohoku Imp. Uni. Ser-2, (Geol), 1937, 18: 267-310.
    
    
    233. Sleumer H. Ein system der Gattung Rhododendron. Bot Jahrb, 1949, 74:511-553(引 Slenmer, H. 1980).
    234. Sleumer, H. 1980. A system of the genus Rhododendron. In: Luteyn J.L. and M.E. O'Briden (eds), Contributions towards a classification of Rhododendron. Englished translated by H.F. Becker. The New York Botanical Gardon.
    235. Snigirevskaya N S and D V Gromyko. Scanning electron microscopy as a key to the recognition of the cross-field types in fossil coniferous wood from the Arctic. Acta Palaeobotanica, 2000, 40. 39-42.
    236. Spicer R A and J T P arrish. Late Cretaceous-early Tertiary palaeoclimate of northern high latitudes: a quantitative view. Journal Geology Society, London, 1990, 147: 329-341.
    237. Stevens P F. Malesian Vireya Rhododendron-towards an understanding of their evolution. Notes RBC Edinb, 1985, 43:63-80.
    238. Stewart, W N and G W Rothwell. Paleobotany and evolution of plants (Second edition). Cambridge University Press, Cambridge, 1993, pp413-419.
    239. Stopes M C. Catalogue of the Mesozoic plants in the British Museum—The Cretaceous flora. Pt. Ⅱ British Museum Natural History, London, 1915, pp55-247.
    240. Suzuki M and K Terada. Fossil wood flora from the Lower Miocene Yanagida Formation, Noto Peninsula, Central Japan. IAWA Journal, 1996, 17:365-392.
    241. Suzuki M and S Watari. Fossil wood flora of early Miocene Nawamata Formation of Monzen, Noto Peninsula, Central Japan. Journal of Plants research, 1994, 107:63-76.
    242. Takaso T and P B Tomlison. Aspect of cone and ovule ontogeny in Cryptomeria. American Journal of Botany, 1989, 76: 692-705.
    243. Taylor E L, T N Taylor and N R Cúneo. Permian and Triassic fossil forests from the central Transantartic Mountains. Antarctic J. of the U.S. 1991, 26(5): 23-24.
    244. Taylor E L, T N Taylor and N R Cúneo. The present is not the key to the past: a polar forest from the Permian of Antarctica. Science, 1992, 257: 1675-1677.
    
    
    245. Thayn G F, W D Tidwell and W L Stokes. Flora of the Lower Cretaceous Cedar Mountain Formation Of Utah and Colorado. Part Ⅰ. Paraphyllanthoxylon utahense. Great Basin Naturalist, 1983, 43: 394-402.
    246. Thayn G F, W D Tidwell and W L Stokes. Flora of the Lower Cretaceous Cedar Mountain Formation Of Utah and Colorado. Part Ⅲ. Icacinoxylon pittiense n. sp. American Journal of Botany, 1985, 72: 175-180.
    247. Torrey R. E. The comparative anatomy and phylogeny of the Coniferales. Pt. 3. Mesozoic and Tertiary coniferous woods. Mem. Boston Soc. Nat Hist. 1923, 6(2): 41-106.
    248. Van Der Bus,ge. Hlzer der niederheinischen Braunkohlenformation, 2. Hlzer der Braunkohlengrube "Maria Theresia" zu Herzogenrath, "Zukunfi West" zu eschweiler und "Vitor" (Ziilpich Mitte) zu zülpich. Nebst einer systematisch-anatomischen bearbeitung der gattung Pinus L. Review of Palaeobotany and palynology, 1973, 15: 73-275.
    249. Van Der Burgh. Difference in fossil seed/fruit, wood and leaf-floras, taphonomy and ecological implications. Review of Palaeobotany and Palynology, 1994, 83: 119-129.
    250. Van Der Burgh. Hlzer der niederheinischen Braunkohlenformation, 1. Hlzer der Braunkohlengrube "Anna" zu Haanrade (niederlndisch Limburg). Acta Bot. Need.,1964, 13: 250-301.
    251. Van der Burgh. Miocene floras in the Lower Rhenish Basin and their ecological interpretation. Palaeontographica Abt. B, 1987, 230: 195-201.
    252. Van der Burgh. Taxodiacepus conifers from the Maastrichtian type area (Late Cretaceous, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology, 2001, 116: 233-250.
    253. Vaudois N and C Prive. Revision des bois fossils de Cupressaceae. Palaeontographica B, 1971, 134: 61-86.
    254. Vozenin-serra C and M Salard-cheboldaeff. Implications phylogenetique et paleogegraphique. PalaeontographicaAbt. B.,1992, 225: 1--25.
    255. Wang N, Tiffney B H. Seeds of Rhododendron (Ericaceae) from the Late Eocene of California. Palaeontographica Abt. B, 2001, 259: 245-254.
    
    
    256. Wang Rufeng, Wang Yufei and Chen Yongzhe. Cupressinoxylon jiayinense, a new species of the Late Cretaceous from HeiLongJiang Province,China. IAWA Journal, 1996, 17: 319-326.
    257. Wang Xin. Xenoxylon conchylianum Fliche, 1910. In: LiChengsen and Cui Jinzhong (eds). Atlas of fossil plant anatomy in China. Beijing: Science Press, 1995.
    258. Watari S. A new Taxodioxylon, T. matsuiwa Watari, from the Palaeogene of North Kyushu, Japan. Bot. Mag. (Tokyo), 1966, 79: 165-173.
    259. Watari S. On a new species of Glybostroboxylon. Bot. Mag. Tokyo. 1948, 61: 11-14.
    260. Wheeler E A and P Baas. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Journal, 1991, 12(3): 271-332.
    261. Wheeler E A and P Baas. The potentials and liminations of dicotyledonous wood anatomy for climatic reconstructions. Palaeobiology, 1993, 19(4): 487-498.
    262. Wheeler E A and P Baas. Wood identification. IAWA Journal, 1998, 19: 241-264.
    263. Wheeler E A, R G. Pearson, C A Lapasha, T Zack and W Hatley. Computer aided wood identification. Reference Manual. N.C. Agric. Res. Serv. Bull. 1986, 474, pp 160.
    264. Wheeler E A, M lee and L C Matten. Dicotyledonous woods from the Upper Cretaceous of Southers Illonoia. Botanical Journal of Linnean Society, 1987, 95: 77-100.
    265. Wheeler E A. Angiosperm wood evolution and the potential contribution of palaeontological data. The Botanical Review, 1999, 65: 278-300.
    266. Wiemann M C, Wheeler E A, Mahchester S R and K M Portier. Dicotyledonous wood anatomical characters as predictors climate. Palaeogeoraphy Palaeoclimatology Palaeoecology, 1998, 139: 83-100.
    267. Wolfe J A. Palaeoclimatic estimates from Tertiary leaf assemblage. Ann. Rev. Earth Plant Sci.,1995, 23: 119-142.
    268. Wolfe J A. 1993. A method of obtaining climatic parameters from leaf assemblage. US Geol Surv Bull, 2040.1-71.
    269. Woodcock D W and C M Ignas. Prevalence of wood characters in eastern North American: what characters are most promising for interpreting climates from fossil wood? American Journal of Botany, 1994, 81: 1243-1251.
    
    
    270.Woodcock D W, G. Dos Santos and C Reynel. Wood characteristics of Amazon forest types. LAWA Journal, 2000, 21 (3): 277-297.
    271.Wu Z Y and P H Raven, Co-Chairs of the editorial committee. Flora of China. Volume 4. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, 1999, pp11-52.
    272.Zhao-Qi Yao, Lu-Jun Liu and Shi Zhang. Permian wood from western Henan, China: implications for palaeoclimatological interpretations. Review of Palaeobotany and Palynology, 1994, 80: 277-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700