光纤传导紫外消毒工艺及其效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外消毒不产生消毒副产物,易于自动化控制,具备很大的应用空间。但是,现在的紫外消毒系统均为浸没式,普遍存在下列问题:更换灯管困难;石英管壁需要经常维护清洗;紫外线利用效率低、能耗高;紫外灯直接浸没水中,紫外灯中的汞对环境和人体健康存在潜在威胁;对液态食品的消毒存在困难,而且紫外灯管的直接加热作用会引起食品变质。本文针对以上不足,提出了一种高效、可靠的光纤传导紫外光消毒技术。该技术利用光学聚焦系统将光源产生的紫外光汇聚于一点,然后再通过石英光纤导入水中,并在光纤散光点处均匀透射,从而灭活水中微生物。
     水消毒研究:(1)本论文分别对新方法中的光源、聚焦系统、光纤和消毒室内光纤分布密度、流态和多级串联应用做了详细研究和优化,通过对实验室配水、实际自来水和污水的消毒试验证实了新方法具有突出的杀菌能力;(2)在间歇式消毒配水试验中,经过光纤分布优化的光纤头发光光纤装置对大肠杆菌的消毒效率高于侧发光光纤装置,明显高于传统低压紫外灯,而且其应用的紫外剂量明显低于传统低压紫外灯。以上结果表明,石英光纤的灵活布置消除了紫外光的消毒盲区,有效地提高了消毒效率;(3)在对未加氯消毒的实际自来水样消毒试验中,本装置可以将水中的细菌总数和总大肠菌群数杀灭到未检出水平,满足饮用水卫生标准;(4)杀菌动力学研究结果表明,本装置对大肠杆菌的杀灭很好的符合Chick-Watson杀菌动力学模型,因此,在本装置中,紫外光剂量是导致大肠杆菌致死的直接原因;(5)在连续流消毒配水试验中,考察了浊度、铁盐和腐殖质酸等水质影响因素对本装置杀菌率的影响,其中腐殖质酸影响最明显;(6)芽孢作为很多类致病微生物在特殊情况下的一种生命存在形式,具有一定的抗高温和抗氯消毒特性。而本装置对其杀灭效果明显。浊度、铁盐和腐殖质酸等水质参数对芽孢的紫外杀灭率有一定影响,但明显低于对大肠杆菌杀灭率的影响;(7)针对实际污水消毒,选择了更高光纤密度的消毒室。现场消毒试验中,经本装置处理后的一级B市政污水或更差水质的污水均可以达标排放;(8)为了指导本装置在实际水消毒中的应用,本文给出了理想纯水中的紫外穿透率(UVT)对光纤装置应用紫外剂量影响的关系式,而且还给出了不同水质情况下本装置的应用紫外剂量。
     啤酒消毒研究:石英光纤技术可以很好实现对啤酒的薄膜流消毒。本文优化了光纤密度、啤酒薄膜厚度和啤酒处理量。本装置对瓶装啤酒中接种的大肠杆菌和扎啤中污染的大肠杆菌的杀灭效果可以达到美国食品药监局标准和啤酒微生物国家标准。而且本装置可以实现对导致啤酒变质的微生物(乳酸菌)有较高的杀灭率。因此,啤酒的保质期可以得到延长。在相同紫外剂量下,瓶装啤酒和扎啤中酿酒酵母的杀灭率远远小于大肠杆菌和乳酸菌的杀灭率。在扎啤中存在一定的活啤酒酵母被认为可以改善啤酒口味,使啤酒口感更好、营养更丰富。
     苹果汁消毒研究:新技术对市面上销售的澄清苹果汁和鲜榨苹果汁中导致苹果汁变质的微生物和致病微生物具有突出的杀灭能力。瓶装苹果汁中的大肠杆菌和乳酸菌的杀灭率可以达到6个对数级水平,然而酵母菌的杀灭率只有4个对数级水平。在被污染的鲜榨果汁中,天然生长的大肠菌群、乳酸杆菌和霉菌酵母菌可以被杀灭到低于10CFU/mL水平。
     以上结论是对本项新技术可以应用于给水、污水、液态食品紫外消毒领域的一种肯定。同时,也指出了新技术对啤酒、苹果汁等液态食品安全的保障和保质期的提升方向上具有广阔的应用前景。
Ultraviolet (UV) disinfection does not produce DBPs. It is easy for auto-control and widespread use. As there are several problems in traditional ultraviolet (UV) disinfection techniques, a highly efficient, reliable and economical technology, named silica optical fiber transferring UV disinfection technique, was firstly given. The working principle is that UV light is gathered by the lamp reflector to converge to a light point. UV light can be transferred into the water through the side-glowing optical fibers, to ensure the uniformity of the UV intensity in the water, so the bacteria will be well inactivated. The new technique has a number of advantages: (i) it is easy to replace the UV lamp due to the separation of UV lamp and mercury leakage is avoided; (ii) the flexible placement of optical fibers make UV intensity well-distributed everywhere in the UV reactor; (iii) it is easy to regulate the thin-film thickness for ensuring enough UV radiation on bactaria; (iiii) the UV lamp can prevent beer from heating, which is thermally unstable.
     Water disinfection: To complete the UV apparatus, we have investigated and selected the best modules. The suitability of the UV apparatus for application could be shown in experiments with Escherichia coli (E. coli), spores, total bacterial count, total coliform and fecal coliform as risk groups. We had got the optimized distribution for both the side-glowing optical fibers and head-glowing optical fibers in the water in batch reactor study. The latter had a better germicidal efficiency than the former. After treated with head-glowing fiber apparatus, the E. coli (103~105 CFU/mL) could be reduced by 3 log orders at the irradiation time of 45s, fulfilling the Chinese standard of disinfection apparatus. After 1-min treatment, the total bacteria and total coliforms could be reduced to undetectable, fulfilling the standard. Flow pattern of the disinfection room and application in series were optimized. The UV inactivation results accorded with Chick-Watson model, in which, k was from 0.385 to 0.456. In the continuous disinfection experiments, aluminum coating reactor had higher disinfection efficiency than non-aluminum reactor and initial reactor. Two reactors in series were better for practical use. The factors of turbidity, ferric salt and humic acid were investigated and humic acid was the most significant factor. The killing of spores with heating to 80oC and chlorination was inefficient. When the time was 21 s, 4.4 log reduction of spores could be achieved. The turbidity, ferric salt and humic acid had effect on UV inactivation of spores, but they had more obvious effect on the E. coli inactivation. The apparatus could reduce spores by 3 log under the following conditions: (i) turbidity<8.8, (ii) ferric ion<0.9, and (iii) humic acid<2.5 mg/L. In the first-order B wastewater treatment, a higer optical-fiber density reactor (3.8cm×3.8cm×11.4cm) was chosen. When the wastewater flowrate was lower than 37.1 L/h, the fecal coliform could be reduced to lower than 10 CFU/mL, fulfilling wastewater discharging standard. When processing the lower-quality wastewater, 21.2 L/h would be used as the flowrate choice for fulfilling the standard.
     Effecting factors and applied UV doses: In order to provide a guideline for the practical use, we concluded: (i) when UVT±98% and SS 1mg/L, 4.3 mJ/mL was recommended to be used, (ii) when UVT was beteen 41% and 60% and SS 25mg/L, 11~21 mJ/mL was recommended to be used, (iii) If the wastewater contained a lot of coherent substances, like humic aicd, or cogulation effect metal ion, like ferric ion, only control of UVT and SS was not enough to achive the wastewater discharging standard. Therefore, the related disinfection experiment was needed to determine the UV dose. Beer disinfection: silica-fiber technique can realize beer thin-film disinfection well. We have optimized the fiber distribution, beer film thickness and treatment capacity. The apparatus could reduce the E. coli in the bottled beer and the draft beer to lower than 10 cFU/mL or undetectable, completely fulfilling USFDA standard and Chinese standard for beer. It could also have a better inactivation of spoilage microorganisms, such as lactic bacteria. Therefore, the shelf-life of beer would be extended. With the same UV dose, inactivation of S. cerevisae was lower than that of E. coli or lactic bacteria. However, a number of S. cerevisae still active in draft beer is one of the reasons why draft beers taste better and contain more nutrients than bottled beer.
     Apple-juice disinfection: the new technique could reduce the spoilage microorganisms and pathogenic microorganisms in bottled apple-juice and freshly extracted apple-juice by 6 log orders. However, only 4 log reduction of S. cerevisae could be achieved. In the UV processing of freshly extracted apple-juice, indigenous E. coli, lactic bacteria and yeasts and moulds were reduced to lower than 10 CFU/mL.
     The conclusions above are the approval of the new technique applying in the drinking water, wastewater and liquid foods. Meanwhile, it provides a promising approach to improving microbial safety and extending shelf-life of liquid foods, such as beer, apple-juice, etc.
引文
1 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes. Science and technology for water purification in the coming decades. Nature. 2008, 452: 301~310
    2 M. A. Montgomery, M. Elimelech. Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol. 2007, 41:17~24
    3 G. K. Pitman. Bridging Troubled Waters?Assessing the World Bank Water Resources Strategy. World Bank Publications. Washington DC. 2002, 29~32.
    4 World Health Organization. Emerging Issues in Water and Infectious Disease. Geneva. 2003, 1~22
    5 K. Kashimada, N. Kamiko, K. Yamamoto and S. Ohgaki. Assessment of photoreactivation following ultraviolet light disinfection. Wat. Sci. Tech. 1996, 33: 261~269
    6 J. Baron, M. M. Bourbigot. Repair of Escherichia coli and entericocci in sea water after ultraviolet disinfection quantification using diffusion chambers. Wat. Res. 2002, 30(11): 2817~2821
    7 J. P. Dietrich, H. Ba?a?ao?lu, F. J. Loge and T. R. Ginn. Preliminary assessment of transport processes influencing the penetration of chlorine into wastewater particles and the subsequent inactivation of particle-associated organisms. Wat. Res. 2003, 37: 139~149
    8黄晓霞.生活污水紫外光消毒的研究.广东微量元素科学. 2004, 11(9): 57~60
    9 T. K. Nissinen, I. T. Miettinen. Disinfection byproducts in finish drinking water. Chemosphere. 2002, 48: 9~20
    10 A. Fujishima, T. N. Rao and D. A. Tryk. Titanium dioxidephotocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1(2): 1~21
    11 M. C. Huau. New design for ultraviolet reactors offering better sanitary protection of the receiving medium. Water Supply. 2000, 18: 464~466
    12杨辉,金成清,史文华,刘赫东.饮用水紫外线消毒研究与应用进展.沈阳建筑工程学院学报(自然科学版). 2002, 18(1): 51~53
    13张欣.污水处理中的紫外线消毒技术.给水排水. 2002, 28(11): 31~34
    14 J. J. Rook. Formation of haloforms during chlorination of natural waters. Water Treat. Exam. 1974, 23: 234~246
    15 R. F. Christman, D. L. Norwood, G. S. Millington. Identity and yields of major halogenated products of aquatic fulvic acid chlorination. Environ. Sci. Technol. 1983, 17(10): 625~628
    16 C. Chen, X. J. Zhang, W. J. He, W. Lu, H. D. Han. Comparison of seven kinds of drinking water treatment processes to enchance organic material removal: A pilot test. Science of the Total Environment, 2007, 382: 93~102
    17 J. Y. Hu, Z. S. Wang, W. J. Ng and S. L. Ong. Disinfection by-products in water produced by ozonation and chlorination. Environmental Monitoring and Assessment. 1999, 59: 81~83
    18 S. D. Richardson, J. R. Thruston, T. V.Caughran, P. H. Chen, T. W. Collette, K. M. Schenck and V. Glezer. Identification of new drinking water disinfection by-products from ozon, chlorine dioxide, chloramines, and chlorine. Water, Air, and Soil Pollution, 2000, 123: 95~102.
    19 W. Y. Wang, Ye B. X., Yang L.S., Li Y.H., Wang Y.H.. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes. Environment International. 2007, 33: 219~225
    20于玉娟,尹军,张小雨,周旋,吴磊.饮用水中?两虫D的危害及其去除灭活.吉林建筑工程学院学报. 2008, 25(2): 15~17
    21崔福义,左金龙,赵志伟,费霞丽.饮用水中贾第鞭毛虫和隐孢子虫研究进展[J].哈尔滨工业大学学报. 2006, 38(9): 1487~1491
    22 United States Environmental Protection Agency. National Primary Drinking Water Regulations: Long term 2 enhanced surface water treatment rule, final rule. Federal Register. 2006, 71: 653~702
    23 United States Environmental Protection Agency. National Primary Drinking Water Regulations: Stage 2 disinfectants and disinfection byproducts rule, final rule. Federal Register. 2006, 71: 388~493
    24沈幸,柳清,马莹莹,鲜啟鸣,邹惠仙,高士祥,章敏.饮用水消毒副产物TCMCD急性毒性和致突变性的研究[J].南京大学学报(自然科学版). 2008, (1): 71~76
    25 G. Sakamoto, B. Topp. Ultraviolet Disinfection Technology in Ontario: The Past, The Present and The Future. WEAO Conference, Hamilton, Ontario. 2000, (1): 1~4
    26徐志通,王颖.饮用水的紫外线消毒.给水排水. 1999, 25(4): 58~61
    27顾平,颜育平.回用水紫外线消毒.城市环境与城市生态. 1993, (3): 15~20
    28何志刚,周军党,郝志明.紫外线消毒技术的发展及应用分析.工业安全与环保. 2005, 31(1): 42~43
    29张轶,朱颖红.饮用水杀菌消毒技术浅谈[J].中国科技信息. 2008, (19): 212~214
    30郑毅强.浅谈饮用水消毒中常用的几种方法.山西建筑. 2007, 33(27): 190~191
    31 U. Gunten. Ozonation of drinking water: Part I oxidation kinetics and product formation. Water Research, 2003, (37): 1443~1467
    32 D. L. Bicknell, R. K. Jain. Ozone disinfection of drinking water technology transfer and policy issues. Environ. Eng. Policy. 2002, (3): 55~66
    33李红兰,张克峰,王永磊.臭氧在饮用水处理中的应用.水资源保护. 2006, 22(3): 60~65
    34郭玉芹,谢国辉,李晓玲,邓汉辉.饮用水深度净化方法的应用.中国微生工程学. 2002, 1(3): 187~188
    35 S. D. Boyce, J. F. Hornig. Reaction pathways of trihalomethanes for mation from halogenation of dihydroxyaromatic model compounds for humic acid. Environ. Sci. Technol. 1983, 2(4): 202~211
    36 M. F. El-Shahat, S. H. Abdel-Halim and G. A. Hassan. Factors Influencing The Formation of Trihalomethanes in Drinking Water Treatment Plants Bull Enviro. Contanm. Toxicol. 2001, 3(67): 549~553
    37张晓健,李爽.消毒副产物总致癌风险的首要指标参数卤乙酸.给水排水. 2000, 26(8): 1~6
    38张立成,赵军,傅金祥.紫外线灭活饮用水中隐孢子虫.沈阳建筑工程学院学报(自然科学版). 2002, (1): 48~50
    39张金松,董文艺,张红亮等.臭氧化生物活性炭深度处理工艺安全性研究.给水排水. 2003, 29(9): 1~4
    40 J. M. Richard. Disinfection by product formation and control by ozonation and biotreatment. JAWWA. 1992, 84(11): 53~63
    41 B. A. Madge. Evaluation of Wastewater Solids and Their Relevance in Ultraviolet Disinfection. Water Environ. Res. 2002, 4(3): 25~34
    42 K. Tosa, T. Hirata. Photoreactivation of enterohemorrhangic Escherichia coli following UV disinfection. Water Res. 1999, 33 (2): 361~366
    43徐志通,王颖.紫外线消毒技术的发展及应用分析[J].工业安全与环保. 2005, 31(1): 42~43
    44 J. C. Ireland, P. Klostennm, E. W. Rice and R. M. Clark. Inactivation of E. coli by Titanium Dioxide Photocatalytic Oxidalion. Appl. Environ. Microbiol. 1993, 59(5): 1668~1670
    45 E. Matsunaga, R. Tomoda, R. E. Nakajima and H. Wake. Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders. FEMS Microbiol Letters. 1985, (29): 211~213
    46 J. A. Clement. Overview of American disinfectant residual practice. J. Wat. SRT-Aqua.1999, 48(2): 59~63
    47 J. G. Jacangelo, S. S. Adham. Mechanism of cryptosporidium giardia and MS2 virus removal by MF and UF. JAWWA, 1995, (9): 107~121
    48蒋兴锦.饮用水的净化和消毒[M].北京:中国环境出版社. 1989
    49 J. L. Chang, Z. Bukhari, T. M. Hargy, J. R. Bolton, B. W. Dussert and M. M. Marshall. Using UV to inactivate Cryptosporidium. JAWWA. 2000, 92(9): 97~104
    50 S. C. White, E. B. Jernigan and A. D. Venosa. A Study of Operational Ultraviolet Disinfection Equipment at Secondary Treatment Plants. J. Water Pollute Control Fed. 1986, (12): 160~170
    51沈健.高纯水与紫外线技术.给水排水. 1998, 24(12): 41~43
    52程德孝编译.紫外线消毒饮用水.西南给排水. 2001, 2(1): 45~48
    53 Q. S. Meng, P. Charles and T. Gerba. Comparative Inactivation of Enteric Adenoviruses, Poliovirus and Coliphages by Ultraviolet Irradiation. Wat. Res. 1996, 30(11): 2665~2668
    54 K. Hartz, J. Griffith. Comparison of Polit Trial Results with Full-scale Operation. Water Engineering & Management. 2002, 148(1): 37~40
    55 M . J. Parrotta, F. Bekdash. UV Disinfection of Small Ground Supplies. JAWWA. 1998, 90(2): 71~81
    56 P. O. Kreft. Hydraulic Studies and Cleaning Evaluation of UV Disinfection Units. J. WPCF. 1986, 51: 12~14
    57 Jennifer L Clancy, Thomas M Hargy, Marilyn M Marshall, et al. UV light inactivation of Cryptosporidium oocysts. JAWWA. 1998, 90(9): 92~102
    58 W. Glaze, G. Peyton, S. Lin, R. Huang and J. Burieson. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. Environ. Sci. Technol. 1982, 16: 454~458
    59 C. M. Hancock, J. B. Rose and M. Callahan. Cryptosporidium and Giardia in US groundwater. JAWWA, 1998, 90(3): 58~61
    60 J. L. Clancy, T. M. Hargy and M. M. Marshall. UV light inactivation of cryptosporidium oocysts. JAWWA, 1998, 90(9): 92~102
    61 K. H. Baker, A. M. Troy and D. S. Herson. Detection and occurrence of indicator organisms and pathogens. Water Environ. Res. 2000, 88: 46~133
    62 Z. Bukhari, T. M. Hargy, J. R. Bolton. Mediumpressure UV for oocyst inactivation. JAWWA. 1999, 91(03): 86~94
    63 J. Masschelein, E. Debacker, S. Chebak. Laboratory investigations on the disinfection of water by UV-light. Rev. Sci. Eau. 1989, 2: 29~41
    64 M. L. Janex, P. Savoye, Z. Do-Quang, E. Blatchley and J. M. Laine. Impact of water quality and reactor hydrodynamics on wastewater disinfection by UV, use of CFD modeling for performance optimization. Wat. Sci. Tech. 1998, 38(6): 71~78
    65 G. Tchobanoglous. Overview of UV Disinfection systems for Wastewater Disinfection. California Water Environment Association. June 18, 2004, Whittier, C.A.
    66 S. L. Hayes, K. M. White and M. R. Rodgers. Assessment of the Effectiveness of Low-Pressure UV Light for Inactivation of Helicobacter pylori. Appl. Environ. Microbio. 2006, 72: 3763~3765
    67 K. Chiu , D. A. Lun , P. Savoye and E. R. Blatchley. Integrated UV disinfection model based on particle trickling. JAWWA. 1999, 125(1): 7~16
    68 G. D. Harris, V. D. Adams and D. L. Sorenson. Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. Wat. Res. 1987, 21: 687~692
    69 A. Driedger, E. Stub, U. Pinkernell, B. Marinas, W. Koster and U. V. Gunten. Inactivation of Bacillus subtilis spores and formation of bromate during ozonation. Water Res. 2001, 35: 2950~2960
    70 A. Andreadakis, D. Mamais, D. Christoulas and S. Kabylafka. Ultraviolet disinfection of secondary and tertiary effluent in the Mediterranean region. Water Sci. Technol. 1999, 40(4): 253~260
    71 R. Sommer, T. Haider, A. Cabaj, W. Pribil and M. Lhotsky. Time dose reciprocity in UV disinfection of water. Wat. Sci. Tech. 1998, 38(12): 145~150
    72 N. Giese, J. Darby. Sensitivity of microorganisms to different wavelengths of UV light: implications on modeling of medium pressure UV systems. Water Res. 2000, 34(16): 4007~4013
    73 R. G. Qualls, J. D. Johnson. Bioassay and dose measurement in UV disinfection. Appl. Environ. Microbiol. 1983, 45: 872~877
    74 W. A. M. Hijnen, E. F. Beerendonk and G. J. Medema. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)crysts in water: A review. Water Res. 2006, 40: 3~22
    75 T. Koutchma. Advances in Ultraviolet Light Technology for Non-thermal Processing of Liquid Foods. Food and Bioprocess Technology. 2009, 2(2): 138~155
    76 J. A. Guerrero-Beltran, G. V. Barbosa-Canovas. Review: Advantages and Limitations on Processing Foods by UV Light. Food Science and Technology International. 2004, 10: 137~147
    77 M. T. T. Tran, M. Farid. Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies. 2004, 5: 495-502
    78 M. Ngadi, J. Smith, B. Cayouette. Kinetics of ultraviolet light inactivation of Escherichia coli O157:H7 in liquid foods. Journal of the Science of Food and Agriculture. 2003, 83: 1551~1555
    79 J. Oteiza, M. Peltzer, L. Gannuzzi, N. Zaritzky. Antimicrobial efficacy of UV radiation on Escherichia coli O157:H7 in fruit juices of different absorptivities. Journal of Food Protection. 2005, 68(1): 49~58
    80 J. R. Wright, S. S. Sumner, C. R. Hackney, M. D. Pierson, B. W. Zoecklein. Efficacy of ultraviolet light for reducing Escherichia coli O157:H7 in unpasteurized apple cider. Journal of Food Protection. 2000, 63: 563~567
    81 N. Ozer, A. Demirci. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-treatment. International Journal of Food Science & Technology. 2006, 41: 354~360
    82 J. A. Guerrero-Beltran, G. V. Barbosa-Canovas. Reduction of Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in apple juice by ultraviolet light. Journal of Food Process Engineering. 2006, 28: 437~452
    83 T. Bintsit, E. Litopoulou-Tzanetaki and R. Robinson. Existing and potential applications of ultraviolet light in the food industryíA critical review. Journal of the Science of Food and Agriculture. 2000, 80: 637~645
    84 H. Bergmann, T. Iourtchouk. New UV irradiation and direct eletrolysis-promising methods for water disinfection. Chemical Engineering J. 2002, 85(2): 111~112
    85 Food and Drug Admistration. Rules and regulations. Federal Register. 2000, 65(111): 36319~36324
    86 M. Keyser, I. A. Müller, F. P. Cilliers, W. Nel and P. A. Gouws. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies. 2008, 9: 348~354
    87 T. Koutchma, S. Keller, B. Parisi and S. Chirtel. Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies. 2004, 5: 179~189
    88 D. E. Hanes, D. H. Orlandi, M. D.Burr, M. G. Miliotis, J. W. Robi and G. J. Bier. Inactivation of Crytosporidium parvum oocysts in fresh apple cider using ultraviolet irradiation. Applied and Environmental Microbiology. 2002, 68: 4168~4172
    89 J. A. Guerrero-Beltran, G. V. Barbosa-Canovas. Ultraviolet-C Light Processing of Grape, Cranberry and Grapefruit Juices to Inactivate Saccharomyces Cerevisiae. Journal of Food Process Engineering. 2008, 8: 1~17
    90 D. J. Geveke. UV inactivation of E. coli in liquid egg white. Food Bioprocess Technology. 2008, 1: 201~206
    91 L. Altic, M. Rowe, I. Grant. UV light inactivation of Mycobacterium avium subsp.paratuberculosisin in milk as assessed by FASTP laque TB phage assayand culture. Applied and Environmental Microbiology. 2007, 73(11): 3728~3733
    92 K. E. Matak, S. S. Sumner, S. E. Duncan, E. Hovingh, R. W. Worobo, C. R. Hackney. Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science. 2007, 90: 3178~3186
    93 C. M. A. P. Franz, I. Specht, G. S. Cho, Graef, V., and M. R. Stahl. UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control. 2009, 20: 1103~1107
    94 Food and Drug Administration. Hazard analysis and critical control point (HAACP): procedure for the safe and sanitary processing and importing of juice: Final rule. Fed. Refist. 2001, (66): 6137~6202
    95 J. D. Vojdani, L. R. Beuchat and R. V. Tauxe. Juice-associated outbreaks of human illness in the United States, 1995 through 2005, J. Food Prot. 2008, (71): 356~364
    96 K. Tosa, T. Hirata. Photoreactivation of enterohemorrhangic Escherichia coli following UV disinfection. Water Res. 1999, 33(2): 361~366
    97 O. Kumiko, K. Hiroyuki and O. Shinichiro. Photoreactivation of leionella pneumophila after inactivation by low or medium pressure ultraviolet lamp. Water Res. 2004, 38(3): 2757~2763
    98 K. Kashimada, N. Kamiko, K. Yamamoto. Assessment of photoreactivation following ultraviolet light disinfection. Water Sci Technol. 1996, 33(10): 261~269.
    99 Ernest R., Blatchley III. Numerical Modeling of UV Intensity: Application to Collimated-beam Reactor and Continuous-flow System. Water Res. 1997, (31): 2205~2218
    100陈尧,王向东,谢嘉,王勇,兰岚.紫外线消毒动力学研究.中国给排水. 2003, (19): 45~47
    101 E. Whitby, G. Palmateer. The Effect of UV Transmission Suspended Solids and Photoreactivation on Microorganisms in Wastewater Treated with UV Light. Wat. Sci. Tech. 1993, 27(3~4): 379~386
    102 T. Asano, F. L. Burton, H. L. Leverenz, R. Tsuchihashi and G. Tchobanoglous. Water reuse-issues, technologies, and applications. McGraw-Hill, New York. 2007: 100~300
    103 G. S. Wang, S. T. Hsieh and C. S. Hong. Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide. Water Res. 2000, 34(15): 3882~3887
    104顾雪锋,杨海真.污水处理中紫外线消毒技术的研究进展[J].江苏环境科技. 2003, 16(3): 33~34
    105 F. J. Loge, R. W. Emerick and M. Heath. Ultraviolet disinfection of secondary wastewater effluents: prediction of performance and design. Water Environ. Res. 1996, 68(2): 900~916
    106 Y. Ohno. Detector-based luminous-flux calibration the Absolute Integrating-Sphere Method. Metrologia. 1998, 35: 473~478
    107陈育明. LVD无极灯.复旦大学出版社.2009, 220~223
    108江源,凌根华,殷东.侧面发光光纤的制备原理及其应用.光纤与电缆及其应用技术. 2000, (4): 12~15
    109 M. J. Myers. Fiber optic backlighting panel and dot process for making same. 1993. United States Patent 5226105
    110 C. C. Chang, Z. Y. He, G. Senft, N. Ahmad, E. Sahinci and W. Mahmood. Evaluation on fiber boot of optical component by bend radius measurement in side pull test. IEICE Electronics Express. 2005, 2: 205~210
    111 Ultraviolet disinfection. Edstrom Industries. Technology report. 2003: 1~10
    112邵久亮.浅谈有机玻璃的特性与用途[J].农业科技与信息, 2008, (10): 64
    113 World Health Organization. Originally published in Guidelines for drinking-water quality. Health criteria and other supporting information (2nd ed.). Geneva.1996, 2: 10~100
    114 S. B. Young, P. Setlow. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. Journal of Applied Microbiology. 2003, 95: 54~67
    115 H. F. Ridgway, B. H. Olson. Chlorine Resistance Patterns of Bacteria from Two Drinking Water Distribution Systems. Applied and Environmental Microbiology. 1982, 44: 972~987
    116 N. Munakata, M. Saito and K. Hieda. Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50-300 nm) obtained with synchrotron radiation. Photochem. Photobiol. 1991, 54: 761~768
    117国家环保总局.水质粪大肠菌群的测定-多管发酵法和滤膜法(试行). HJ/T347-2007. 2007, 1~6
    118 H. Chick. An investigation into the laws of disinfection. Journal of Hygiene (Cambridge). 1908, 8: 92~158
    119 R.W. Emerick, F.J. Loge, D. Thompson and J. L. Darby. Factors influencing ultraviolet disinfection performance part II: Association of coliform bacteria with wastewater particles. Water environmental research. 1999, 71: 1178~1187
    120 Y. A. Lawryshyn, O. K. Scheible. UV Reactor validation: Matching the microbe with the target dose. Proceedings of the Water Environment Federation. Water Environment Federation. 2004, (15): 457~471
    121 R. E. Cantwell, R. Hofmann and M. R. Templeton. Interactions between humic matter and bacteria when disinfecting water with UV light. Journal of Applied Microbiology. 2008, 105(1): 25~35
    122 J. Q. Jiang, N. J. D. Graham. Observations of the comparative hydrolysis/precipitation behaviour of polyferric sulfate and ferric sulfate. Water Res. 1998, 32: 930~935
    123郭美婷,胡洪营,李莉.污水紫外线消毒工艺的影响因素研究.中国环境科学. 2007, 27(4): 534~538
    124 A. Quintero-Ramos, J. J. Churey, P. Hartman, J. Barnard and R. W. Worobo. Modeling of Escherichia coli inactivation by UV irradiation at different pH values in apple cider. Journal of Food Protection. 2004, 67: 1153~1156
    125 Chinese Ministry of Health. Hygienic standard for fermented alcoholic beverage. National Standard. 2005, 1~3
    126 Food and Drug Administration. Procedures for the safe and sanitary processing and importing of beverages. Final rule. 2001, 66: 6137~6202
    127 J. Qiu, M. X. Guan, A. M. Bailis and B. Shen. Saccharomyces cerevisiae exonuclease-1 plays a role in UV resistance that is distinct from nucleotide excision repair. Nucleic Acids Research. 1998, 26: 3077~3083
    128 N. Basaran, A. Quintero-Ramos, M. M. Moake, J. J. Churey and R. W. Worobo. Influence of apple cultivars on inactivation of different strains of Escherichiacoli O157:H7 in apple cider by UV irradiation. Appl. Environ. Microbiol. 2004, 70: 6061~6065
    129 J. M. Jay. Radiation protection of foods and nature of microbial radiation resistance, Modern food microbiology. Springer Science Business Media Inc., New York. 1997: 373~394
    130 T. N. Koutchma, L. J. Forney and C. I. Moraru. Principles and application of UV technology, Ultraviolet Light in Food Technology: Principles and Applications, CRC press, New York. 2009: 9~24
    131 G. Shama, C. Peppiatt, M. Biguzzi, A novel thin film photoreactor. J. Chem. Tech. Biotechnol. 1996, 65: 56~64
    132 Chinese Administration of Quality Control. General standard for beverage National Standard. 2007: 1~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700