构造性自适应观测器设计方法研究及其在故障诊断中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
状态估计和参数估计在故障诊断、自适应控制、容错控制等领域有着广泛的应用,自适应观测器就是通过状态和参数的联合估计达到该目标的一类递归算法本论文主要围绕自适应观测器的设计问题展开,探讨了一类构造性自适应观测器设计方法,并将其应用于动态系统的故障诊断。主要研究工作如下:
     1.针对现有的自适应观测器没有考虑状态方程和输出方程同时含有未知参数的情况,用构造性方法对状态方程和输出方程同时含有未知参数的连续线性时变系统设计了一种带指数遗忘因子的自适应观测器,并给出了使该自适应观测器满足全局指数收敛性的持续激励条件。与应用于增广系统进行自适应估计的Kalman滤波器相比,自适应观测器方法有着简单的收敛性条件和数值仿真上易于实现的优点。数值仿真结果表明该自适应观测器具有良好的快速收敛性、跟踪性及抗干扰性等期望性能。
     2.将上文设计的连续线性时变系统自适应观测器推广到离散线性时变系统,针对状态方程和输出方程同时含有未知参数的多输入多输出离散线性时变系统,用构造性方法设计了一种自适应观测器,并给出了使该自适应观测器满足全局指数收敛性的持续激励条件。数值仿真表明该自适应观测器具有收敛性、跟踪性及抗干扰性等期望性能。
     3.基于高增益观测器和自适应估计理论,针对状态方程和输出方程同时含有未知参数的一类一致能观的单.输出非线性系统,用构造性方法设计了一种联合估计状态和未知参数的自适应观测器。该自适应观测器的参数估计采用时变增益矩阵,结构形式及参数设置简单。给出了使该自适应观测器满足全局指数收敛性的持续激励条件,并在理论上简洁地证明了该自适应观测器的全局指数收敛性。数值仿真结果表明该自适应观测器具有期望的性能,如快速收敛性、跟踪性等。
     4.进一步将上文单输出非线性系统的自适应观测器设计推广到一类更一般的多输出非线性系统,并给出了使该自适应观测器满足全局指数收敛性的持续激励条件。仿真表明该自适应观测器可以快速跟踪未知参数的变化。
     5.一般情况下,残差是变量测量值和它的数学解析值之间的解析冗余,故障的发生会引起系统的残差发生改变。基于模型的故障诊断方法是通过对测量信号处理技术生成残差的,本质上是对包含所需属性的原始数据的一种转换,因此依赖于残差的设计。本文基于前一部分已设计的自适应观测器对线性时变系统的加性故障设计残差,并在理论上分析残差的性质。该残差同时考虑了执行机构故障和传感器故障。数值仿真表明所设计的残差对被监视的故障是敏感的。
     6.汽车在行驶过程中,主动悬架系统是影响乘客舒适程度和安全的最重要部件之一,而悬架系统经过长时间使用,容易老化导致性能降低,有必要对零件的老化系数进行估计,以便控制策略中考虑参数的变化。本文基于主动悬架系统全系统非线性状态方程,构造自适应观测器以实现系统未测状态和零件老化系数的实时估计。仿真表明,该自适应观测器能够迅速的跟踪元件老化系数的变化,实现悬架系统关键元器件的故障诊断。
Joint estimation of states and parameters in state-space systems is of practical importance for fault diagnosis and for adaptive control. Recursive algorithms designed for this purpose are usually known as adaptive observers. In this dissertation a class of adaptive observers in a constructive manner is discussed and the main contributions are described as follows:
     1. Previous works on globally convergent adaptive observers do not consider unknown parameters in both state equations and output equations. In this dissertation for continuous-time multiple-input multiple-output linear time-varying systems with unknown parameters in both state and output equations, an adaptive observer with exponential forgetting factor is designed in a constructive manner and its global exponential convergence is formally established under appropriate assumptions. Compared to the Kalman filter, the advantages of the proposed adaptive observer reside both in its simpler convergence condition and in its more efficient numerical implementation. A numerical example is presented to illustrate the performance of the adaptive observer.
     2. For discrete-time multiple-input multiple-output linear time-varying systems with unknown parameters in both state and output equations, an adaptive observer is designed in a constructive manner. In order to establish the global exponential convergence for simultaneous estimation of states and unknown parameters, a persistent excitation condition is required. A numerical example is presented to illustrate the performance of the adaptive observer.
     3. For a class of single output uniformly observable nonlinear systems with unknown parameters in both state and output equations, an adaptive observer is designed in a constructive manner based on the techniques of high gain observer and adaptive estimation. The high gain adaptive observer for joint state and unknown parameter estimation is conceptually simple. The new algorithm makes use of a time varying gain matrix for unknown parameter estimation, which simplifies the initialization and parameter tuning. In order to establish the global exponential convergence of the adaptive observer, a persistent excitation condition is required. Consequently, the global exponential convergence for simultaneous estimation of states and unknown parameters is formally established following a simple procedure. A numerical example is presented to illustrate the performance of this adaptive observer.
     4. Furthermore a more general adaptive observer for nonlinear multi-input-multi-output (MIMO) systems is developed and a persistent excitation condition is obtained in order to establish the global exponential convergence of the adaptive observer. A numerical example is presented to illustrate the performance of this adaptive observer.
     5. A residual is a transformation of raw data with some desired properties for the purpose of fault diagnosis. Typically, model-based methods for fault diagnosis rely on the design of residuals which are signals computed from available sensor measurements with the aid of a mathematical model of the monitored system. Based on the developed adaptive observer in this dissertation, residuals are generated for fault diagnosis in linear time-varying systems. The sensitivity of the residuals to the monitored faults is rigorously analyzed, as well as their insensitivity to the faults to be ignored. The residuals presented in this dissertation extend the results of previous works by simultaneously taking into account both actuator and sensor faults. A numerical example is presented to illustrate the performance of these residuals.
     6. A full vehicle active suspension system with the nolinear dynamics is considered. The aging coefficients of the components are modeled as unknown parameters. An adaptive observer is designed to estimate the aging coefficients. The simulation result shows the aging coefficients could be estimated rapidly.
引文
Bastin, G., Gevers, M.. Stable adaptive observers for nonlinear time varying systems [J]. IEEE Transactions on Automatic Control,1988,33(7):650-658.
    Basseville, M., Nikiforov, I.. Detection of Abrupt Changes-Theory and Applications [M]. Information and System Sciences Series. Englewood Cliffs, N. J: Prentice Hall,1993.
    Basseville, M.. Information criteria for residual generation and fault detection and isolation [J]. Automatica,1997,33(6):783-803.
    Busawon, K., Farza, M., Hammouri, H., Observer design for a special class of nonlinear systems [J]. International Journal of Control,1998,71(3):405-418.
    Besancon, G.. Remarks on nonlinear adaptive observer design [J]. Systems and Control Letters,2000,41(4):271-280.
    Besancon, G.. Nonlinear observers and applications [M]. Lecture notes in control and information sciences 363, Berlin, Heidelberg, New York:Springer,2007.
    Brockett, R. W.. Finite dimensional linear systems [M]. J. Wiley and Sons, New York,1970.
    Contois, D. E.. Kinetics of bacterial growth:relationship between population density and specific growth rate of continuous cultures [J]. Journal of Genetic Microbiology,1959,21(1):40-50.
    Chanki Kim, Hyoungkyun Kim, Wan Kyun Chung. Exactly Rao-Blackwellized Unscented Particle Filters for SLAM [C]//IEEE International Conference on Robotics and Automation. Shanghai, China:[s. n.]:2011:3589-3594.
    CHENG Qi, Bondon, P.. A new unscented particle filter [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, Nevada, USA: [s.n.],2008:3417-3420.
    Cho, Y. M., Rajamani, R.. A systematic approach to adaptive observer synthesis for nonlinear systems [J]. IEEE Transactions on Automatic Control,1997,42(4): 534-537.
    Chen, J., Patton. R. J.. Robust model-based fault diagnosis for dynamic systems [M]. Boston, Dordrecht, London:Kluwer Academic Publishers,1999.
    Chamseddine. A., Noura. H., Ouladsine, M.. Sensor fault-tolerant control for active suspension using sliding mode techniques [R]. Workshop on networked control systems and fault-tolerant control,2005.
    Chamseddine, A., Noura, H., Ouladsine, M.. Sensor fault detection, identification and fault tolerant control:application to active suspension [C]//Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA,2006a: 2351-2356.
    Chamseddine. A., Noura, H., Raharijaona, T.. Control of linear full vehicle active suspension system using sliding mode techniques [C]//Proceedings of the 2006 IEEE International Conference on Control Applications, CCA'06. Munich. Germany,2006b: 1306-1311.
    Chamseddine. A., Raharijaona, T., Noura, H.. Sliding mode control applied to active suspension using nonlinear full vehicle and actuator dynamics [C]// Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA, USA:Manchester Grand Hyatt Hotel,2006c,3597-3602.
    Chamseddine. A., Noura, H.. Control and sensor fault tolerance of vehicle active suspension [J]. IEEE Transactions on Control Systems Technology,2008,16(3): 416-433.
    Chamseddine, A., Noura, H., Ouladsine, M.. Sensor location for actuator fault diagnosis in vehicle active suspension [C]//Proceedings of the 2008 IEEE International Conference on Control Applications, CCA'08:456-461.
    Ding, X., Frank, P. M.. An adaptive observer-based fault detection scheme for nonlinear dynamics systems [C]//Proceedings of the 16th IFAC World Congress. Sydney:[s. n.],1993,307-311.
    DePersis, C. Isidori, A.. A geometric approach to nonlinear fault detection and isolation [J]. IEEE Transactions on Automatic Control,2001,46(6):853-865.
    DENG Xiucheng. An approach to design global finite-time observers for a class of nonlinear systems [C]//Proceedings of the 30th Chinese Control Conference. Yantai, China:[s. n.],2011,7.
    Dong, Y. L., Mei, S. W.. Adaptive observer for a class of nonlinear systems [J]. Acta Automatica Sinica.2007,33(10):1081-1084.
    Einicke. G. A.. White. L. B.. Robust extended Kalman filtering [J]. IEEE Transactions on Signal Processing,1999,47(9):2596-2599.
    ElMadany, D.M.M.. Control and evaluation of slow-active suspensions with preview for a full vehicle model [C]//Third Saudi Technical Conference and Exhibition (STCEX). Riyadh, Kingdom of Saudi Arabia:[s. n.],2004.
    Frank, P. M.. Fault diagnosis in dynamics systems using analytical and knowledge based redundancy-a survey and new results [J]. Automatica,1990,26:459-474.
    Farza, M., M'Saad. M., Sekher, M.. A set of observers for a class of nonlinear systems [C]//Proceedings of the 16th IFAC World Congress. Prague, Czech Republic: IEEE,2005.
    Farza, M., M'Saad. M., Maatoug, T., Kamoun, M.. Adaptive observers for nonlinearly parameterized class of nonlinear systems [J]. Automatica,2009,45(10): 2292-2299.
    Gauthier, J. P., Hammouri, H., Othman, S.. A simple observer for nonlinear systems, applications to bioreactors [J]. IEEE Transactions on Automatic Control,1992,37(6): 875-880.
    Guernez, C., Cassar, J. P., Staroswiecki, M.. Extension of parity space to nonlinear polynomial dynamics systems [C]. In:Proc. Safeprocess'97, Hull, UK,1997.
    Gertler, J. J.. Fault detection and diagnosis in engineering systems [M]. New York, Basel, Hong Kong:Marcel Dekker, inc.,1998.
    Gauthier, J. P., Kupka, I.. Deterministic observation theory and applications [M]. London:Combridge University Press,2001.
    Guyader, A., Zhang, Q.. Adaptive observer for discrete time linear time varying systems [C]//Proceedings of the 13th Symposium on System Identification. Rotterdam, Holland, August 2003:1743-1748.
    Guclu, R.. Active control of seat vibrations of a vehicle model using various suspension alternatives [J]. Turkis J. Eng. Env. Sci.,2003,27:361-373.
    Herbert, F. Discrete-time systems, an introduction to the theory [M]. New York: John Wiley and Sons,1965.
    Hammouri, H.. Farza, M.. Nonlinear observers for locally uniformly observable systems [J]. ESAIM:Control. Optimisation and Calculus of Variations.2003.9(3): 353-370.
    Hammouri, H., Bornard, G., Busawon, K.. High Gain Observer for Structured Multi-Output Nonlinear Systems [J]. IEEE Transactions on Automatic Control 2010, 55(4):987-992.
    loannou, P. A., Kokotovic, P. V.. Adaptive systems with reduced models [M]. Lecture notes in control and information sciences. Berlin:Springer,1983, Vol.47.
    Isermann, R.. Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper [J]. Automatica,1993,29(4):815-836.
    Isermann, R.. Supervision, fault detection and fault diagnosis methods-an introduction [J]. Control Engineering Practice,1997,5(5):639-652.
    Ibrir, S. Adaptive observers for time-delay nonlinear systems in triangular form [J]. Automatica,2009,45(10):2392-2399.
    Jazwinski, A. H.. Stochastic processes and filtering theory [M]. Mathematics in science and engineering 64, New York:Academic Press,1970.
    Julier, S., Uhlmann, J., Durrant-Whyte, H. F.. A New method for the nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Transactions on Automatic Control,2000,45(3):477-482.
    Julier. S. J., Uhlmann, J. K.. Unscented filtering and nonlinear estimation [J]. Proceedings of the IEEE,2004,92(3):401-422.
    Kalman, R. E.. A new approach to linear filtering and prediction problems [J]. Transactions of the ASME, Journal of Basic Engineering,1960,82D:35-45.
    Kalman, R. E., Bucy, R.. A new approach to linear filtering and prediction theory [J]. Transactions of the ASME, Journal of Basic Engineering,1961,83D:95-108.
    Kreisselmeier, G.. Adaptive observers with exponential rate of convergence. IEEE Transactions on Automatic Control,1977,22(1):2-8.
    Krener. A. J.. Approximate linearization by state feedback and coordinate changes [J]. System Control Letter,1984,5:181-185.
    Luders, G., Narendra, K. S.. An adaptive observer and identifier for a linear system [J]. IEEE Transactions on Automatic Control,1973,18(10):496-499.
    Ljung, L.. Glad. T.. On global identifiability for arbitrary model parametrizations [J]. Automatica,1994,30(2):265-276.
    Ljung, L.. System identification:theory for the user [M]. Prentice Hall information and system sciences series. Second edition. Upper Saddle River, NJ:Prentice Hall. 1999.
    Li, X., Zhang, Q., Su, H.. An adaptive observer for joint estimation of states and parameters in both state and output equations [J]. International Journal of Adaptive Control and Signal Processing,2011,25:831-842.
    Marino, R., Tomei, P.. Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems [J]. IEEE Transactions on Automatic Control. 1995a,40(7):1300-1304.
    Marino, R., Tomei, P.. Nonlinear control design [M]. Information and system sciences. London. New York:Prentice Hall,1995b.
    Marino, R., Santosuosso. G. L., Tomei, P.. Robust adaptive observers for nonlinear systems with bounded disturbances [J]. IEEE Transactions on Automatic Control, 2001,46(6):967-972.
    Massoumnia, M. A., Vergheese, G. C., Willsky, A. S.. Failure detection and identification [J]. IEEE Transactions on Automatic Control,1989,34:316-321.
    Moireau, P., Chapelle, D., Le Tallec, P.. Joint state and parameter estimation for distributed mechanical systems [J]. Computer Methods in Applied Mechanics and Engineering,2008,197:659-677.
    Nikoukhah, R.. A new methodology for observer design and implementation [J]. IEEE Transactions Automatic Control,1998,43(2):229-234.
    Patton, R. J., Frank, P., Clark, R.. Fault Diagnosis in Dynamics Systems-Theory and Applications [M]. International Series in Systems and Control Engineering. London, UK:Prentice Hall International,1989.
    Perabo, S., Zhang, Q.. Adaptive observers for linear stochastic time-variant systems with disturbances [J]. International Journal of Adaptive Control and Signal Processing, 2009.23(6):547-566.
    Rajamani, R., Hedrick, J. K.. Adaptive observers for active automotive suspensions: theory and experiment [J]. IEEE Transactions on Control Systems Technology,1995. 3(1):86-93.
    Reif, K.. Unbehauen, R.. The extended Kalman filter as an exponential observer for nonlinear systems [J]. IEEE Transactions on Signal Processing,1999,47(8): 2324-2328.
    Ristic, B., Arulampalam, S., Gordon, N.. Beyond the Kalman filter:particle filters for tracking applications [M]. Boston, Masachusetts:Artech House,2004.
    Santosuosso, G. L., Marino, R., Tomei, P.. Adaptive observers for nonlinear systems with bounded disturbances [J]. IEEE Transactions on Automatic Control, 2001.46:967-972.
    Simon, D.. Optimal state estimation:Kalman. H-Infinity, and nonlinear approaches [M]. Hoboken, New Jersey:John Wiley & Sons.2006.
    Slotine, J.-J. E.. Li. W.. Applied Nonlinear Control [M]. Upper Saddle River, NJ: Prentice Hall.1991, p123.
    Straka, O., Dunik. J., Simandl, M.. Truncated unscented particle filter [C]// American Control Conference. San Francisco, CA, USA:[s. n.],2011:1825-1830.
    SHEN Yanjun, HUANG Yuehua. Uniformly Observable and Globally Lipschitzian Nonlinear Systems Admit Global Finite-Time Observers [J]. IEEE Transactions on Automatic Control,2009,54(11):2621-2625.
    Triki, M., Farza, M., M'Saad, M., Maatoug, T.. Dahhou, B.. Observer synthesis for a class of MIMO non triangular nonlinear systems [C]//18th Mediterranean Conference on Control & Automation. Marrakech, Morocco:[s. n.],2010,6.
    Tooraj Abbasian Najafabadi, Farzad R. Salmasi, Parviz Jabehdar-Maralani. Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor Drives [J]. IEEE Transactions on Industrial Electronics,2011.58(5):1662-1672.
    Vemuri, A. T., Polycarpou, M. M.. Robust nonlinear fault diagnosis in input-output systems [J]. International Journal of Control,1997,68(2):343-360.
    Willsky, A. S.. A survey of design methods for failure detection in dynamics systems [J]. Automatica,1976,12:601-611.
    Wang, H.. Daley, S.. Actuator fault diagnosis:an adaptive observer-based technique [J]. IEEE Transactions on Automatic Control,1996,41(7):1073-1078.
    Wang, H., Huang, Z. J., Daley, S.. On the use of adaptive updation rules for actuator and sensor fault diagnosis [J]. Automatica,1997,33(2):217-225.
    Wu, H.. Adaptive robust state observers for a class of uncertain nonlinear dynamical systems with delayed state perturbations [J]. IEEE Transactions on Automatic Control,2009,54(6):1407-1412.
    Xu, A., Zhang, Q.. Nonlinear system fault diagnosis based on adaptive estimation [J]. Automatica,2004a,40(7):1181-1193.
    Xu, A., Zhang, Q.. Residual generation for fault diagnosis in linear time-varying systems [J]. IEEE Transactions on Automatic Control,2004b,49(5):767-772.
    Yuchun, Z., et al.. Study on control of vehicle attitude and ride comfort based on full-car model [C]//Proceedings of the Fifth World Congress on Intelligent Control and Automation,2004, WCICA 2004.
    Zhang, Q.. Basseville, M., Benveniste, A.. Fault detection and isolation in nonlinear dynamic systems:a combined input-output and local approach [J]. Automatica,1998, 34(11):1359-1373.
    Zhang, Q.. A new residual generation and evaluation method for detection and isolation of faults in nonlinear systems [J]. International Journal of Adaptive Control and Signal Processing,2000,14:759-773.
    Zhang, Q., Clavel, A.. Adaptive observer with exponential forgetting factor for linear time varying systems [C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida:IEEE,2001:3886-3891.
    Zhang, Q.. Adaptive observer for MIMO linear time varying systems [R]. France, IRISA,2001.
    Zhang, Q.. Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems [J]. IEEE Transactions on Automatic Control,2002,47(3): 525-529.
    Zhang, Q.. An adaptive observer for sensor fault estimation in linear time varying systems [C]//Proceedings of the 16th IFAC World Congress. Prague. Czech Republic: [s. n.],2005a.
    Zhang, Q.. From adaptive observers to decoupled state and parameter estimations [R]. France. IRISA,2005b.
    Zhang, Q. Revisiting different adaptive observers through a unified formulation [J]. IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Seville, Spain:[s.n.],2005c.
    Zhang, Q.. Besancon, G.. An adaptive observer for sensor fault estimation in a class of uniformly observable non-linear systems [J]. International Journal of Modelling, Identification and Control,2008,4(1):37-43.
    Zhu.Q.,Ishitobi. M., Chaotic vibration of a nonlinear full-vehicle model [J]. International Journal of Solids and Structures,2006,43(3):747-759.
    陈彭年,秦化淑,张洁.非参数不确定性非线性系统的自适应观测设计[J].控制理论与应用,2010,27(2):147-151.(CHEN Pengnian, QIN Huashu, ZHANG Jie. Adaptive observer design for nonlinear systems with nonparametric uncertainties [J]. Control Theory and Applications,2010,27(2):147-151.)
    程宇,王武,崔福军,杨富文.基于模型的故障诊断方法研究综述[C]//第27届中国控制会议.昆明:[s.n.],2008,7.(CHENG Yu, WANG Wu, CUI Fujun, YANG Fuwen. Model-Based Fault Diagnosis Methods:A Survey [C]//Proceedings of the 27th Chinese Control Conference. Kunming, Yunnan, China:[s. n.],2008,7.)
    方强,马杰,毕运波,刘伟.基于扰动观测器的电动负载模拟器控制系统设计[J].浙江大学学报:工学版,2009,43(11):1958-1964.(FANG Qiang, MA Jie, BI Yunbo, LIU Wei. Disturbance observer based controller design for electric dynamic load simulator [J]. Journal of Zhejiang University: Engineering Science,2009,43(11):1958-1964.)
    葛志强.复杂工况过程统计监测方法研究[D].杭州:浙江大学,2009.6.(GE Zhiqiang. Statistical Process Monitoring Methods for Complex Processes [D]. Hangzhou:Zhejiang University,2009,6.)
    李修亮.软测量建模方法研究与应用[D].杭州:浙江大学,2009.6.(LI Xiuliang. Study on soft sensor modeling methods and applications [D]. Hangzhou:Zhejiang University,2009,6.)
    鲁仁全,魏强,薛安克.基于线性量化的网络控制系统状态观测器设计[J].浙江大学学报:工学版,2010,44(7):1400-1405.(LU Renquan, WEI Qiang, XUE Anke. State estimation of network control system based on linear quantization [J]. Journal of Zhejiang University:Engineering Science, 2010,44(7):1400-1405.)
    邱浩,于道波,张焕春.控制系统的故障诊断方法综述[J].航天控制,2004,22(2):53-60.(QIU Hao, WANG Daobo, ZHANG Huanchun. Review of fault diagnosis method of control system [J]. Aerospace Control,2004,22(2):53-60.)
    王永富,柴天佑,迟瑛,佟绍成.基于观测器的一类非线性系统的自适应模糊控制[J].控制理论与应用,2005,22(3):395-401.(WANG Yongfu, CHAI Tianyou, CHI Ying, TONG Shaocheng. Observer-based adaptive fuzzy control for a class of nonlinear systems [J]. Control Theory and Applications,2005,22(3):395-401.)
    赵瑾,顾幸生,中忠宇.基于观测器的故障诊断技术的鲁棒性[J].控制与决策,2005,20(8):939-942.(ZHAO Jin, GU Xingsheng, SHEN Zhongyu. Robustness of observer-based fault diagnosis technology [J]. Control and Decision,2005,20(8):939-942.)
    张敏,罗安,沈洪远,王京.一类非线性系统观测器与算例[J].控制理论与应用,2002,19(4):541-544.(ZHANG Min, LUO An, SHEN Hongyuan, WANG Jing. Observer for a class of nonlinear system and an example [J]. Control Theory and Applications,2002,19(4): 541-544.)
    张柯,姜斌.基于故障诊断观测器的输出反馈容错控制设计[J].自动化学报,2010,36(2):274-281.(ZHANG Ke, JIANG Bin. Fault diagnosis observer-based output feedback fault tolerant control design [J]. Acta Automatica Sinica.2010.36(2):274-281.)
    张柯,姜斌,刘京津.基于自适应观测器控制系统的快速故障调节[J].控制与决策,2008,23(7):771-775.(ZHANG Ke, JIANG Bin, LIU Jingji. Fast fault accommodation of control systems by using adaptive observer [J]. Control and Decision,2008,23(7):771-775.)
    张琪,胡昌华,乔玉坤.基于权值选择的粒子滤波算法研究[J].控制与决策,2008,23(1):117-120.(ZHANG Qi, HU Changhua, QIAO Yukun. Particle filter algorithm based on weight selected [J]. Control and Decision,2008,23(1):117-120.)
    朱芳来.非线性控制系统观测器研究[D].上海:上海交通大学,2001,7(ZHU Fanglai. Research on observers of nonlinear control systems [D]. Shanghai: Shanghai jiaotong University,2001,7.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700