纯电动客车动力总成控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车是解决能源危机和环境污染问题较为有效的途径,但续驶里程一直制约着电动汽车的普及和发展,提高续驶里程最直接的方法是研制高性能的储能装置,提高能量利用率。但是能量存储技术在短期内很难有突破性的提高,因此解决续驶里程问题最有效的方法是在现有车载储能技术的基础上提高能量利用率。电动汽车能量传递的载体是动力总成,因此研究开发高性能、高效率、高可靠性的动力总成是提高能量利用率、解决纯电动汽车续驶里程短较为有效的途径。本文以电动汽车工程项目“纯电动汽车试验车研究”和“增程式重型商用车关键技术研究及产业化”为依托,开发高性能、高效率的纯电动客车动力总成及控制系统,本文的主要研究工作包括:
     (1)驾驶员驾驶意图识别。本文考虑到电动汽车与传统汽车的驾驶差异性,在制定电动汽车动力总成控制策略时,应考虑驾驶员操作电动汽车过程中的舒适性和习惯性,使得驾驶员驾驶意图在传统汽车和电动汽车上得到一致的反应,因此首先对驾驶员驾驶意图进行研究。根据驾驶员驾驶行为与驾驶意图的关系建立了第一层为驾驶员操作行为模型、第二层为驾驶员驾驶意图模型的双层隐形马尔科夫模型。然后根据道路试验获得不同驾驶行为和驾驶意图下的试验数据,运用Matlab工具分别对驾驶行为模型和驾驶意图模型进行离线训练和辨识验证。辨识结果表明:本文提出的基于双层隐形马尔科夫模型对驾驶员驾驶行为和驾驶意图识别的方法,具有准确率高、处理时间短、时效性强的优点。
     (2)纯电动客车动力总成系统数学模型的建立。本文采用理论建模与试验建模相结合的方法建立了纯电动客车动力总成数学模型,对整车模型、踏板模型、电机模型、传动系统模型、车轮模型、蓄电池模型、超级电容模型、功率模块模型、液压制动系统模型、电机再生制动系统模型等进行了详细的分析研究,为动力总成控制系统的开发提供了可靠的仿真平台。
     (3)蓄电池-超级电容双能量源主回路设计及控制策略研究。本文针对纯电动客车对能量源系统的要求,即起步、加速、爬坡时所需的大功率,长距离行驶所需的高能量,制动时所需的快速能量回收,设计了纯电动客车蓄电池-超级电容双能量源主回路。基于模糊自适应整定PID控制策略对主回路DC/DC变换器进行控制。最后对纯电动客车能量源及控制系统数学模型进行仿真,仿真结果表明:采用蓄电池-超级电容双能量源主回路能够满足纯电动客车对能量源系统的要求。
     (4)纯电动客车动力总成驱动控制策略研究。本文考虑到纯电动客车运行环境复杂多变、难以预测、驾驶员驾驶意图随意性强等特点,针对纯电动客车驱动系统应满足精确控制车速、阻抗行驶阻力突变和适应不同驾驶习惯的要求,采用车速电流双闭环调速系统对纯电动客车驱动系统进行控制,其中采用模糊自适应整定PID控制策略对车速进行控制,采用Bang-Bang控制策略对电流进行控制,来满足纯电动客车驱动系统的要求。最后对纯电动客车动力总成驱动控制系统数学模型进行了仿真,仿真结果表明:采用车速电流双闭环调速系统能够在驱动过程中实现车速无静差和阻抗行驶阻力突变,使得控制系统具有良好的动、静态特性。
     (5)纯电动客车动力总成制动控制策略研究。本文考虑到纯电动客车制动安全性和制动经济性的多目标共存,因此根据驾驶员驾驶意图和车速,应用多目标规划理论对复合制动系统中制动力分配策略进行了研究,同时考虑到前后轮制动器制动力分配比例、ECER13制动法规、滑移率、电机特性、储能装置特性、传动系统等因素的制约,使得纯电动客车复合制动系统能够实现在保证制动安全性的前提下最大限度的回收制动能量。最后在九种工况下对纯电动客车复合制动系统控制策略进行仿真,仿真结果表明:在各种工况下,液压制动系统和电机再生制动系统能够在控制策略作用下协调稳定的工作,达到制动安全性和经济性的双重要求。
     (6)纯电动中型客车动力总成控制系统的设计与开发。本文基于FreescaleMC9S12DG128B单片机设计了主控制器;针对EUPEC FF800R12KF4型IGBT,基于CONCEPT2SD315AI芯片设计了IGBT驱动器,实现了主控制器对IGBT的驱动控制功能;针对纯电动客车仪表与传统汽车仪表在显示内容和使用功能等方面的差异性,基于MCGS嵌入式组态软件设计了一款纯电动客车智能仪表;最后遵循“软件工程”的设计思想,采用模块化设计方法,将动力总成控制系统软件分为管理层、任务层和功能层,并对各层程序进行设计实现。本文设计的动力总成控制系统能够满足纯电动中型客车复杂的运行环境,具有输出功率大、输出电流大、输出电压高、抗干扰能力强、响应速度快、跟随性好等优点,满足纯电动中型客车动力性、经济性、安全性、可靠性、舒适性等要求。
     (7)纯电动客车整车性能试验研究。为了验证本文设计的纯电动客车动力总成控制系统的有效性和稳定性,本文根据国家标准要求和试验方法对自主研发的纯电动中型客车试验样车进行动力性、经济性以及制动性试验研究,试验结果表明:该车最高车速达到94.09km/h,续驶里程达到163km,制动性能良好,动力性、经济性和制动性均能够满足国家标准要求,并且能够满足普通中型客车的运行要求和使用条件,具有良好的普及意义和发展前景。
Electric vehicle (EV) is an effective way to solve the problems of energy crisis andenvironment pollution. However, driving mileage is a restriction to the popularity anddevelopment of EV. The best way to increase driving mileage is to study the energy storagedevice and improve energy utilization rate. In a short time, energy storage device can hardlymake a breakthrough. As a result, the best solution to increase driving mileage is to improvethe energy utilization rate on the basis of current vehicle energy storage technology. Thecarrier of energy transmission for EV is powertrain, so studying and developing thepowertrain of high performance is the best way to improve the energy utilization rate andsolve the problem of driving mileage for EV. The paper is based on the project of study onpure electric experiment vehicle and the study on key technology and industrialization forextended-range heavy commercial vehicle, which develops powertrain and control system ofhigh efficiency for pure electric bus. The main researches are as follows:
     (1) Recognition of the driving intention. Driving comfort and habit should be consideredin the development of powertrain control strategy for EV due to driving differences betweenEV and traditional vehicle. So it is necessary to study on the driving intention to make surethat the responses to the same driving intention between EV and traditional vehicle areidentical. According to the relationship between driving behavior and driving intention, thepaper built as a double layer hidden markov model which first layer is the driving behaviormodel and the second layer is the driving intention model. And then the experiment data ofdifferent driving behavior and driving intention is achieved according to the road experiment.The driving behavior model and driving intention model is trained off line and identified withMatlab software, the result of which indicates that the recognition method of driving behaviorand driving intention based on double layer hidden markov model put forward in the paperhas the advantages of high accuracy, short process time and strong timeliness.
     (2) The building of mathematical model of powertrain for pure electric bus. The buildingof mathematical model of powertrain for pure electric bus is based on detailed analysis andthe combination of theory modeling and reality modeling. Detailed studies were done on whole vehicle model, pedal model, motor model, transmission system model, wheel model,battery model, super capacitor model, power module model, hydraulic brake system modeland motor regenerative braking system model, all of which provide a reliable simulationplatform for the development of powertrain control system.
     (3) The design and study on control strategy for main circuit of battery–super capacitordouble power source. Main circuit of battery–super capacitor double power source wasdesigned per the requirement of pure electric bus power source system, including high powerfor starting, acceleration and climbing, enough energy for long-distance driving and fastenergy regeneration during braking. To control the main circuit DC/DC converter based onthe fuzzy self-adaptive PID control strategies. Finally, the simulations of mathematical modelof the pure electric bus power source system and control system were done, the result ofwhich indicates that main circuit of battery–super capacitor double power source can meet thepower source system requirement of pure electric bus.
     (4) The study of powertrain driving control strategy for pure electric bus. Consideringthe Complexity of environment, difficulty to foresee and driving randomness, regarding thepure electric bus driving system should meet the accurate control speed, impedance drivingresistance mutation and adapt to the requirements of different driving habits, thespeed-electric current double closed loop speed-adjusting system is used to control the drivingsystem of pure electric bus. In which fuzzy self-adaptive PID control strategy is used forspeed control, Bang-Bang control strategy is used for current control to meet the requirementof driving system for pure electric bus. Finally, the simulations of mathematical model of pureelectric bus powertrain driving control system was done, the result of which indicates thatspeed-electric current double closed loop speed-adjusting system can realize the floating ofvehicle speed as well as the sudden changing of impedance driving resistance during driving,which makes the control system in a good dynamic and static characteristics.
     (5) The study of powertrain braking control strategy for pure electric bus. Consideringthe multi-objective coexistence of safety and economy during braking for pure electric bus, aresearch was done by applying multi-objective programming theory to study the braking force distribution strategy in composite braking system according to the driving intention and speed,while considering the restriction of distribution ratio of braking force upon front and rear,ECER13braking regulation, slip ratio, motor characteristic, energy storage characteristic andtransmission system, to ensure braking system of pure electric bus achieve the maximumrecycling brake energy under premise of safety. Finally, the simulation of control strategy ofcomposite braking system was done under nine operating mode, the result of which indicatesthat hydraulic braking system and motor regenerative braking system can work coordinatelyand steadily under the control strategy in various operating mode, and well meet the dualrequirement of safety and economy during braking.
     (6) The design and development of powertrain control system for pure electric bus. Thedesign of primary controller is based on Freescale MC9S12DG128B singlechip, EUPECFF800R12KF4IGBT driver is based on CONCEPT2SD315AI chip, to achieving IGBTdriven and controlled by primary controller. For the differences exist in display and functionbetween the instrument of pure electric bus and traditional vehicle, an intelligent instrumentfor pure electric bus is designed based on MCGS embedded software. Following the softwareengineering design concept, the powertrain control system software is divided intomanagement layer, task layer and function layer with the design method of modularization.And then the program of each layer is designed. The powertrain control system designed inthe paper will meet complex driving condition for pure electric bus, with high output power,high output current, high output voltage, strong ant-interference ability, fast response andgood tacking characteristic, all of which will meet the requirement of pure electric bus withpower performance, economy, safety, reliability and comfortableness.
     (7) The experiment study on pure electric bus performance. To verify the effectivenessand stability of powertrain control system for pure electric bus, the experimental research ofpower, economy and braking for independent research and development pure electric bus areconducted according to the national standard and experiment method, the results of whichindicate the maximum speed can reach to94.09km/h and the driving mileage to163km withan excellent braking performance. The power, economy and braking characteristics not only meet the national standard, but also meet the operational requirements of ordinarymedium-sized bus, which has a good universal significances and development prospects.
引文
[1]谷正气.汽车空气动力学[M].北京:人民交通出版社,2005.
    [2]麻友良,严运兵.电动汽车概论[M].北京:机械工业出版社,2012.
    [3]李兴虎.汽车环境污染与控制[M].北京:国防工业出版社,2011.
    [4]宋慧,胡骅.电动汽车的现状及发展[J].汽车电器.2001,23(4):102-105.
    [5]万钢.中国电动汽车的现状和发展[J].中国环保产业.2003,(2):30-33.
    [6] Rahman S, Castro A. D. Environmental impacts of electricity generation-A globalperspective[J]. IEEE Transactions on Energy Conversation.1995,10(2):307-313.
    [7]陈清泉.环境保护和电动车的开发[J].江苏机械制造与自动化.2000,(1):3-7.
    [8]陈清泉.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [9]陈全世,朱家琏,田光宇.先进电动汽车技术[M].北京:化学工业出版社,2007.
    [10]边耀璋.汽车新能源技术[M].北京:人民交通出版社,2003.
    [11]徐国凯,赵秀春,苏航.电动汽车的驱动与控制[M].北京:电子工业出版社,2010.
    [12]章桐,贾永轩.电动汽车技术革命[M].北京:机械工业出版社,2011.
    [13] Chau K. T., Wong Y. S., Chan C. C.. An overview of energy sources for electricvehicles[J]. Energy Conversion and Management.1999,40(10):1021-1039.
    [14]吴平.中国汽车驶向何方-对话中国工程院院士、总装备部防化研究院研究员杨裕生[J].中国高新技术企业,2010,(5):60-65.
    [15]王秋凤.科技部将出7大政策扶植电动汽车发展[J].电动自行车,2011,(4):15-16.
    [16]中国电工技术学会电动车辆研究会,中国汽车工程学会电动汽车分会.信息交流
    [C].电动车辆研究与开发,2008,清华大学汽车安全与节能国家重点实验室.
    [17]王秉刚,衣宝廉,李钢.2011节能与新能源汽车年鉴[M].北京:中国经济出版社,2011.
    [18]曹秉刚,张传伟,白志峰,等.电动汽车技术进展和发展趋势[J].西安交通大学学报.2004,38(1):1-5.
    [19] Chan C. C., Wong Y. S.. The state of the art of electric vehicles technology[C]. The4thInternational Conference on Power Electronics and Motion Control,2004, pp.46-57.
    [20]胡林,谷正气,黄晶,等.电动汽车的关键技术分析[J].机械制造,2005,43(494):45-47.
    [21]刘小飞.纯电动轿车动力系统参数匹配及电机控制策略研究[D].长春:吉林大学,2011.
    [22]郑维.混合动力汽车总成参数匹配方法与控制策略的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [23]张毅.纯电动轿车动力总成控制系统的研究[D].上海:上海交通大学,2007.
    [24]于永涛.混合式混合动力车辆优化设计与控制[D].长春:吉林大学,2010.
    [25] Cheng Fangxiao, Xu Hongguo, Sunying. Study on optimization for vehicle power trainparameters[C]. The Ninth Internation Conference on Electronic Measurement&Instruments.2009(3):989-992
    [26] Gaosong, Gaoyan. Study on power train parameters matching of series hybrid city bus[C].Vehicular Electronics and Safety,2006:449-453
    [27] Xiong Weiwei, Shujie, Zhangyong. Parameters matching for a series-parallel hybridelectric bus powertrain system[J]. Journal of Shanghai Jiaotong University,2007,42(8):1324-1328.
    [28]陈智家.燃料电池电动汽车动力系统参数匹配与优化研究[D].武汉:武汉理工大学,2010.
    [29] HOSHI Nobukazu, ASAHI Norihiro. Control Strategies for a Novel Inverter Which canIndependently Control Two Permanent Magnet Synchronous Motors [J].13th EuropeanConference on Power Electronics and Applications,2009,52(1):79-88.
    [30]李国岫,李秀杰.并联式混合动力电动汽车动力总成控制策略的研究[J].公路交通科技,2005,22(4):129-131.
    [31]李弼程,邵美珍,黄洁.模式识别原理与应用[M].西安:西安电子科技大学出版社,2008.
    [32]吴逸飞.模式识别—原理、方法及应用[M].北京:清华大学出版社,2002.
    [33]李寿涛,郭立书,徐辉等.基于模糊逻辑的驾驶员紧急制动意图识别[J].仪器仪表学报.2009,30(6):218-221.
    [34] Ohashi.K, Yamaguchi.T, Tamai.I. Humane Automotive System Using Driver IntentionRecognition[C]. SICE Annual Conference.2004:2363-2366.
    [35]王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究[J].公路交通科技.2005,22(12):113-119.
    [36]赵永,朱家诚,肖献强.基于D-S理论和BP网络的驾驶行为识别技术研究[J].机械设计与制造.2012,(05):228-230.
    [37]田毅,张欣,张良等.神经网络工况识别的混合动力电动汽车模糊控制策略[J].控制理论与应用.2011,28(03):363-369.
    [38]王韦钰,曲仕茹.基于模糊神经网络的自动驾驶决策系统研究[J].计算机测量与控制.2009,17(09):1711-1713.
    [39]谭建荣,岳小莉.图形相似的基本原理、方法及其在结构模式识别中的应用[J].计算机学报.2002,25(09):959-967.
    [40]王晓雪.基于字型特征的脱机手写体汉字多分类识别的研究[D].合肥:合肥工业大学,2007.
    [41] Takano.W, Matsushita.A. Recognition of Human Driving Behaviors based on StochasticSymbolization of Time Series Signal[C]. IEEE/RSJ International Conference onIntelligent Robots and Systems.2008:167-172.
    [42] Yoshifumi.K, Koji.O. A Modeling Method for Predicting Driving Behavior Concerningwith Driver’s Past Movements[C]. IEEE International Conference on VehicularElectronics and Safety Columbus.2008:132-136.
    [43] Aoude.G.S, Desaraju.V.R. Behavior Classification Algorithms at Intersections andValidation Using Naturalistic Data[C]. IEEE Intelligent Vehicles Symposium,2011:601-606.
    [44]谢锦辉.隐Markov模型(HMM)及其在语音处理中的应用[M].武汉:华中理工大学出版社,1995.
    [45] Rabiner, Lawrence.R. Tutorial on Hidden Markov Models and selected application inspeech recognition[C]. Proceedings of the IEEE,1989,77(2):257-286.
    [46]钱敏平,龚光鲁.从数学角度看计算智能[J].科学通报,1995,43(16):1651-1792.
    [47]田春花.隐马尔科夫模型及其在机械故障模式识别中的应用[D].北京:华北电力大学,2007.
    [48]王玉海,宋健,李兴坤.驾驶员意图与行驶环境的统一识别及实时算法[J].机械工程学报.2006,42(04):206-212.
    [49]张良力.面向安全预警的机动车驾驶意图识别方法研究[D].武汉:武汉理工大学,2011.
    [50]王臻.基于分层隐马尔科夫模型的聚众事件实时检测[D].桂林:桂林电子科技大学,2010.
    [51] Sathyanarayana.A, Boyraz.P, Hansen.J.H.L. Driver Behavior Analysis and RouteRecognition by Hidden Markov Models[C]. IEEE International Conference on VehicularElectronics and Safety Columbus,2008:276-281.
    [52] Zong Changfu, Wang Chang, Yang Dejun. Driving Intention Identification andManeuvering Behavior Prediction of Drivers on Cornering[C]. IEEE InternationalConference on Mechatronics and Automation.2009:4055-4060.
    [53]宗长富,王畅,何磊等.基于双层隐式马尔科夫模型的驾驶意图辨识[J].汽车工程.2011,33(8):701-706.
    [54] Meng.X.N, Lee.K.K, Xu.Y.S. Human Driving Behavior Recognition Based on HiddenMarkov Models[C]. IEEE International Conference on Robotics and Biomimetics.2006:274-279.
    [55]陈世国,吉世印,刘万松等.基于小波分析的高斯脉冲成形的递归实现[J].物理学报.2009,58(5):3041-3046.
    [56] Vejmelka.M, Musilek.P, Palus.M. K-Means Clustering for problem with periodicattributes [J]. International Journal of Pattern Recognition and Artificial Intelligence.2009,23(4):721-743.
    [57]吴逸飞.模式识别原理、方法及应用[M].北京:清华大学出版社,2002.
    [58]杨励雅,邵春福.基于BP神经网络与马尔可夫链的城市轨道交通周边房地产价格的组合预测方法[J].吉林大学学报(工学版).2008,38(3):514-520.
    [59] Andrew.L, Dairo.S. Modeling and Prediction of Human Driver Behavior[C]. NeuralComputation.1999(11):229-242.
    [60] Abe.K, Miyatake.H, Ogur. K. A Study on switching AR-HMM driving behavior modeldepending on driver’s states[C]. IEEE Conference on Intelligent Transportation Systems.2007:806-811.
    [61] Berndt.H, Emmert.J, Dietmayer.K. Continuous Driver Intention Recognition withHidden Markov Models[C]. IEEE Conference on Intelligent Transportation Systems.2008:1189-1194.
    [62] Zhou Kai, Varadarajan.K.M, Vincze.M. Driving Behavior Inference from TrafficSurveillance Data[C]. IEEE Conference on Intelligent Transportation Systems.2011:600-605.
    [63] Meng Xiaoning, Lee.K.K, Xu Yangsheng. Human Driving Behavior Recognition Basedon Hidden Markov Models[C]. IEEE International Conference on Robotics andBiomimetics.2006:274-279.
    [64] Okamoto.M, Otani.S, Kaitani.Y. Identification of Driver Operations with Extraction ofDriving Primitives[D]. IEEE International Conference on Control Applications (CCA)Part of2011IEEE Multi-Conference on Systems and Control Denver.2011:338-344.
    [65] Wataru.T, Matsushita.A, Iwao.K. Recognition of Human Driving Behaviors based onStochastic Symbolization of Time Series Signal [C]. IEEE/RSJ International Conferenceon Intelligent Robots and Systems Acropolis Convention Center Nice.2008:167-172.
    [66]倪光正,倪培宏,熊素铭.现代电动汽车、混合动力电动汽车和燃料电池车基本原理、理论和设计[M].北京:机械工业出版社,2008.
    [67]付于武,高波,金东瀛等.汽车工程手册4-动力传动系统设计篇[M].北京:北京理工大学出版社,2012.
    [68]魏春源.汽车工程手册(德国版)[M].北京:机械工业出版社,2012.
    [69]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2006.
    [70]陈家瑞.汽车构造(第四版)[M].北京:人民交通出版社,2004.
    [71]王悝.基于模糊控制的纯电动汽车无刷直流电机驱动系统的研究[D].武汉:武汉理工大学,2011.
    [72]乔宏明.双轮驱动电动汽车电机控制系统的研究[D].淄博:山东理工大学,2008.
    [73]孙晓霞,王义春,相龙云等.包含能耗制动的功率分流HEV制动控制策略的研究[J].汽车工程.2012,34(1):46-50.
    [74]周雅夫,连静,李启迪. ISG混合动力电动汽车控制策略研究[J].仪器仪表学报.2009,30(6):1164-1168.
    [75]郑维.混合动力汽车动力总成参数匹配方法与控制策略的研究[D].哈尔滨:哈尔滨工业大学,2010.
    [76]薛晓明,杨长江.无刷直流电机建模研究[J].电机与控制学报.2009,13(6):874-878.
    [77] Camacho.S.M, Collins Jr.E.R. Harmonic Model of a2-pulse DC Motor Drive Operatingin the Continuous Current Mode[C]. IEEE Southeastcon.1994:40-44.
    [78] Butch.M, Masi.A, Olivieri.J. An Extended Hybrid Stepper Motor Electrical Model forSensorless Drives[C]. International Instrumentation and Measurement TechnologyConference.2012:781-786.
    [79]詹跃东,李山,巨永峰.电机及拖动基础[M].重庆大学出版社,2002.
    [80]袁园. HEV再生制动与摩擦制动综合控制研究[D].重庆:重庆大学,2008.
    [81]郭孔辉,金凌鸽,卢荡.统一轮胎模型在车辆动力学仿真中的应用[J].吉林大学学报.2009,39(2):241-245.
    [82]陈荫三,余强.汽车动力学[M].北京:清华大学出版社,2009.
    [83] Cabrea.J.A, Ortiz.A, Carabias.E. An Alternative Method to Determine the Magic TyreModel Parameters using Genetic Algorithms[J]. Vehicle System Dynamics,2004,41(2):109-127.
    [84]赵兴福.电动汽车蓄电池的建模与仿真研究[D].武汉:武汉理工大学,2004.
    [85]龚庆杰,黄海燕,李建秋.一种车用动力型蓄电池的建模仿真研究[J].蓄电池,2005(2):76-79.
    [86]王治国,高玉峰,杨万利.铅酸蓄电池等效电路模型研究[J].装甲兵工程学院学报.2003,17(01):78-81.
    [87] Johnson.V.H. Battery Performance Models in ADVISOR[J]. Journal of Power Sources.2002,110(2):321-329.
    [88]彭金春,陈全世,韩曾晋.电动汽车铅酸电池充放电过程建模[J].设计计算研究.1997(6):5-8.
    [89]李槟,陈全世.混合动力电动汽车中电池特性的研究[J].汽车技术.1999(10):11-14.
    [90] Massimo.C. New Dynamical Models of Leads-Acid Batteries[J]. IEEE Transactions onPower System.2000,15(4):1184-1190.
    [91] Ryan.C.K, Philip.T.K. Electrical Battery Model for Use in Dynamic Electric VehicleSimulations[J]. IEEE Annual Power Electronics Specialists Conference.2008:1336-1342.
    [92]王宏亮,崔胜民.基于试验的铅酸电池充放电特性模型的建立[J].蓄电池,2005(1):38-41.
    [93]张邦洋.蓄电池维护中的电池内阻测试[J].通信电源技术,2002(2):26-29.
    [94]刘伟.基于超级电容的地铁再生制动能量存储利用研究[D].成都:西南交通大学,2008.
    [95] Yang.X.X, Patterson.D. Improvement of Drive Range, Acceleration and DecelerationPerformance in an Electric Vehicle Propulsion System[C]. IEEE Annual PowerElectronics Specialists Conference.1999(2):638-643.
    [96] Endo.M, Takeda.T, Kim.Y.J. High Power Electric Double Layer Capacitor (EDLC’s)from Operation Principle to Pore Size Control in Advanced Activated Carbons[J].Carbon Science,2001,(3&4):117-128.
    [97]倪颖倩.电动汽车关键技术——复合电源的研究[D].南京:南京理工大学,2008.
    [98] Wendy.G. Pell.B.E. Conway.W.A. Electrochemical efficiency in multiple discharge/recharge cycling of super capacitors in hybrid EV applications[J]. Journal of PowerSources,1999(80):134-141.
    [99] Andrew Chu. Comparison of commercial super capacitors and high power lithiumionbatteries for power assist applications in hybrid electric vehicles[J]. Journal of PowerSources,2002(112):236-246.
    [100]金朝勇,张炳力,徐小东等.车用超级电容的建模与仿真[J].农业装备与车辆工程,2009(8):45-47.
    [101]储军,陈杰,李忠学.电动车用超级电容器充放电性能的实验研究[J].机械,2004,31(3):20-33.
    [102]熊瑞,何洪文,张晓伟.基于试验数据的超级电容建模方法[J].车辆与动力技术,2010(4):25-28.
    [103]张靖.超级电容蓄电池复合电源的研究与仿真[D].武汉:武汉理工大学,2005.
    [104] Dougal.R.A, Liu.S. Power and Life Extension of Battery–Ultracapacitor Hybrids. IEEETransactions on components and packaging technologies,2002,25(1):120-131.
    [105] Chan C. C., Wong Y. S. The State of the Art of Electric Vehicles Technology[C]. The4th International Conference on Power Electronics and Motion Control,2004:46-57.
    [106] Ortuzar M.E, Moreno J, Dixon J.W. Ultracapacitor-Based Auxiliary Energy System foran Electric Vehicle: Implementation and evaluation. IEEE Transactions on IndustrialElectronics,2007,54(4):2147-2156.
    [107]熊奇,唐冬汉.超级电容器在混合电动车上的研究进展[J].中山大学学报(自然科学版),2003,42(6):130-133.
    [108] Caricchi.F, Crescimbini.F, Noia.G. Experimental Study of a Bidirectional DC-DCConverter for the DC Link Voltage Control and the Regenerative Braking in PM MotorDrives Devoted to Electrical Vehicles[C]. The Applied Power Electronics Conferenceand Exposition,1994:381-386.
    [109] Marian.K.K, Rober.C.C. Application of Super Capacitor for Voltage Regulation inAircraft Distributed Power Systems [C]. IEEE Power Electronics Specialists Conference,1996:835-841.
    [110] Marie-Francoise J.N, Gualous.H, Outbib.R.42V Power Net with Supercapacitor andBattery for Automotive Applications [J]. Journal of Power Sources,2005,143(2):275-283.
    [111]叶敏,安强,程博,等.电动汽车主辅电源能量回馈研究[J].系统仿真学报,2007,19(23):5434-5437.
    [112] Cetin.E, Omer.D, Hasan.H.S. Adaptive Fuzzy Logic Controller for DC–DCConverters[J]. Expert Systems with Applications.2009,36(2):1540-1548
    [113] Cao.J, Cao.B, Bai.Z. Energy-regenerative Fuzzy Sliding Mode Controller Design forUltracapacitor-Battery Hybrid Power of Electric Vehicle. IEEE International Conferenceon Mechatronics and Automation,2007:1570-1575.
    [114]刘金琨.智能控制(第2版)[M].北京:电子工业出版社,2009.
    [115]石辛民,郝整清.智能控制(第2版)[M].北京:清华大学出版社,2008.
    [116] Wang.W.J, Luo.H.L. Stability and Stabilization of Fuzzy Large-Scale Systems[J]. IEEETransactionson on Fuzzy Systems,2004,12(3):309-315.
    [117]杨超.电动汽车用永磁同步电机驱动系统的模糊控制仿真[D].重庆:重庆大学,2004.
    [118]杨玉巍,基于DSP的无刷直流电机模糊控制系统研究[D].西安:西北工业大学,2006.
    [119]张方华,朱成花,严仰光.双向DC-DC变换器的控制模型[J].中国机电工程学报,2005,25(11):46-49.
    [120]陈翔,张林燕,白月飞等.模糊PID控制的电动汽车再生制动系统变换器的研究[J].公路交通科技,2008,25(7):141-158.
    [121]王宝瑛,朱方明,曹秉刚等.电动汽车用DC/DC变换器模糊自整定PI控制[J].电力电子技术,2007,41(1):48-50.
    [122]李舒欣,曹秉刚,白志峰等.电动汽车再生制动的模糊PI控制实验研究[J].电气技术,2006(1):52-54.
    [123]戚鹏,基于模糊控制的无刷直流电动机调速系统研究[D].西安:西北工业大学,2007.
    [124]陈伯时.电力拖动自动控制系统-运动控制系统(第3版)[M].北京:机械工业出版社,2006.
    [125] Valase.J, Downing.D.R. Unified Controller Design Methodology for Systems withContinuous and Bang-bang Control Effectors[J]. Proceedings of the American ControlConference.1995(312):175-176.
    [126] Nagi.F, Bin.Z.A.A.A, Zulkarnain.A.T. Tuning of a New Fuzzy Bang-bang RelayController for Attitude Control System[J]. International Journal of Automation andControl.2011,5(2):97-118.
    [127]周磊,罗禹贡,李克强等.电动汽车回馈制动与防抱死制动集成控制[J].清华大学学报.2009,49(5):728-732.
    [128]李国斐,林逸,何洪文等.电动汽车再生制动控制策略研究[J].北京理工大学学报.2009,29(6):520-524.
    [129] Fried.V, Sohn.V.G. The Regenerative System[J]. Auto Technology.2007:48-49.
    [130]彭栋,殷承良,张建武.混合动力汽车制动力矩动态分配控制策略研究[J].系统仿真学报.2007,19(22):5254-5259.
    [131] He.J.J, Crolla.D.A, Levesley.M.C. Integrated Active Steering and Variable TourqueDistribution Control for Improving Vehicle Handling and Stability[C]. SAE Paper,2005(01):0685-0690.
    [132] Yeo.H, Kim.H. Hardware-in-the-loop Simulation of Regenerative Braking for a HybridElectric Vehicle[J]. Journal of Automobile Engineering.2002,11(216):885-864.
    [133]李玉芳,林逸,何洪文.电动汽车再生制动控制算法研究[J].汽车工程,2007,29(11):1059-1073.
    [134]吕奉阳.纯电动客车再生制动与气压制动协调控制策略研究[D].吉林:吉林大学.
    [135] Gao.H.W, Gao.Y.M, Ehsani.M. A Neural Network Based SRM Drive Control Strategyfor Regenerative Braking in EV and HEV[J]. Electric Machines and Drives Conference.2001:571-575.
    [136]袁园. HEV再生制动与摩擦制动综合控制研究[D].重庆:重庆大学,2008.
    [137]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海:上海交通大学,2007.
    [138]王望予.汽车设计(第4版)[M].北京:机械工业出版社,2011.
    [139] Martin.M, Klaus.M. The New and Compact ABS5Unit for Passenger Cars[J]. SAETechnical Paper, NO.950757.
    [140] BOSCH. Vehicle Safety Systems for Passenger Cars[J]. Electronics Stability ProgramTechnical Instruction. Germany.1999.
    [141]杨维和.制动真空助力器特性曲线的综合评价[J].汽车技术.1999(9):11-14.
    [142]杨维和.汽车制动真空助力器的工作原理与性能计算[J].汽车技术.1991(10):8-13.
    [143]宋锦春.液压技术使用手册[M].北京:中国电力出版社,2011.
    [144]王积伟,章宏甲.液压与气压传动[M].北京:机械工业出版社,2005.
    [145]马鸣远.流体力学[M].北京:高等教育出版社,2010.
    [146]李君.车辆ABS控制系统快速开发研究[D].上海:上海交通大学,2002.
    [147] Li.Q.Y, Beyer.K.W, Zheng.Q. A Model-based Brake Pressure Estimation Strategy forTraction Control System[J]. SAE Technical Paper, NO.2001-01-0595.
    [148]马镯.车辆液压制动系统建模及路面参数估计方法研究[D].哈尔滨:哈尔滨工业大学,2007.
    [149]唐鹏,孙骏.电动汽车驱动系统再生制动特性分析与仿真[J].移动电源与车辆.2006(4):37-40.
    [150]罗玉涛,俞明,陈炳坤.电动车制动能量再生反馈控制研究[J].机床与液压.2002(5):162-164.
    [151]韩晓东.电动机电磁制动对电动汽车制动及其它性能的影响[J].汽车技术.1999(3):42-43.
    [152]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [153]廖冬初,聂汉平.电力电子技术[M].武汉:华中科技大学出版社,2007.
    [154]赵轩,韩毅,秦绪鑫.基于PWM控制的模型车用小型直流电机调速装置[J].计算机工程与设计.2009,30(21):4884-4887.
    [155]钱劲,钟再敏.电动汽车电制动特点分析及其控制策略研究[J].上海汽车.2003(2):32-34.
    [156]程伟,徐国卿,王晓东.电动汽车用永磁无刷电机回馈制动技术研究[J].电气传动.2005,35(11):15-18.
    [157]张培斌,黄妙华,王勇.电动汽车再生制动初探[J].时代汽车.2006(04):80-82.
    [158] Yeo.h, Kim.h. Hardware in the loop simulation of regenerative braking for a hybridelectric vehicle[J]. Journal of Automobile Engineer.2002,216(11):855-864.
    [159]尹安东,赵韩,张炳力.微型电动轿车制动能量回收及控制策略的研究[J].合肥工业大学学报.2008,31(11):1760-1764.
    [160] Zhang Junzhi, Lu Xin, Xue Junliang. Regenerative Braking System for Series HybridElectric City Bus[J]. The World Electric Vehicle Journal,2008,2(4):128-134
    [161] Zhang Jianlong, Yin Chengliang, Zhang Jianwu. Design and Analysis ofElectro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric VehicleUtilizing Motor Regenerative Braking[J]. Mechnical Enhineering.2009,22(1):42-49.
    [162] Kostreva.M.M, Wiecek.M.M. Linear Complementarity Problem and Multiple ObjectiveProgramming[J]. Mathematical Programming Series B.1993,60(3):349-359.
    [163]谢波,姜洪彬.城市公交系统的多目标规划模型[J].山东轻工业学院学报,2008,22(3):57-60.
    [164]宋卫斌.城市轨道交通价格决策理论与方法研究[D].西安:长安大学,2010.
    [165]欧洲经济委员会(ECE)汽车标准法规中文译本——有关M、N和O类车辆制动认证的统一规定.2001,08.
    [166]郑太雄,马付雷.基于逻辑门限值的汽车ABS控制策略[J].交通运输工程学报.2010,10(2):69-74.
    [167]孙逢春.电动汽车发展现状及趋势[J].科学中国人,2006(8):38-40.
    [168]邵贝贝.单片机嵌入式应用的在线开发方法[M].清华大学出版社,2007.
    [169]孙同景. Freescale9S12十六位单片机原理及嵌入式开发技术[M].北京:机械工业出版社,2008.
    [170]刘晓升,王宜怀.嵌入式系统使用HCS12微控制器的设计与应用[M].北京:北京航空航天大学,2008.
    [171] Feescale Company.9S12DT128BDGV1Device Use Guide[OL]. http://pdf.ic-trade.com/MC9S12DG128B.html.
    [172]林涛.模拟电子技术基础[M].重庆大学出版社.2003.
    [173]耿天文.基于CAN总线的汽车仪表系统[D].吉林:吉林大学,2007.
    [174]顾玉凤.基于CAN总线的汽车全数字智能仪表的研究[D].苏州:苏州大学,2009.
    [175] Technology Center of Concept Company. Description and Application Manual forSCALE Drivers[OL]. http://www. symmetron.ru/suppliers/concept/scale_e.pdf.
    [176] Technology Center of Concept Company. Dual SCALE Driver2SD315A for IGBTs andPower MOSFETs[OL]. http://igbt.cn/admin/productfile/C/2SD315A.pdf.
    [177] Technology Center of Concept Company. IGBT and MOSFET Drivers CorrectlyCalculated[OL]. http://www.europowercomponents.com/media//i/g/igbt_and_mosfet_drivers_correctly_calculated_an-1001.pdf.
    [178]郑月非,张爱玲.以2SD315AI为核心的IGBT驱动电路的设计与调试[J].电气技术.2010(3):65-67.
    [179] GB/T18385-2005,电动汽车动力性能试验方法[S].北京:中国标准出版社,2005.
    [180] GB/T18386-2005,电动汽车能量消耗率和续驶里程试验方法[S].北京:中国标准出版社,2005.
    [181] GB7258-2004,机动车运行安全技术条件[S].北京:中国标准出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700