湖北地区鸡毒霉形体的分离鉴定及分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡毒霉形体(Mycoplasma gallisepticum)在鸡群中可引起严重的慢性呼吸道病(Chronic respiratory disease, CRD)。该病在国内鸡群中非常普遍,可导致蛋鸡产蛋率下降,肉鸡出栏期延长。一旦和新城疫病毒、传染性支气管炎病毒、大肠杆菌等病原发生协同感染,则可引起较高的发病率和死亡率。目前,我国针对鸡毒霉形体的鉴定主要是采用病原分离培养及血清学鉴定等方法,但由于这些传统方法既费时又费力,因此无法满足临床快速诊断的要求。而且,针对湖北地区家禽养殖场(户)的鸡毒霉形体流行现状、耐药性和病原性的相关研究尚无系统报道。鉴于此,本课题拟选用16S-23S rRNA基因间隔序列Intergenic spacer regions, ISR)对湖北地区鸡毒霉形体流行毒株进行研究,该段序列兼有保守性和突变性的特点,既可满足对鸡毒霉形体临床感染的快速诊断,也可用于对其分子流行病学和病原学进行系统分析。
     本研究应用传统实验室分离培养和鉴定技术,结合限制性酶切长度多态性分析技术,对湖北地区流行的M. gallisepticum野毒株进行了分离鉴定和耐药性分析,建立了针对M. gallisepticum 16S-23S rRNA ISR PCR快速检测技术,并进行了分子流行病学调查和病原性研究。具体研究成果如下。
     1、鸡毒霉形体的分离鉴定及分离菌株的耐药性分析
     在湖北地区47个养殖场(户)共采集病样172份,经分离培养获得77株疑似霉形体分离物,进一步采用生化试验和代谢抑制试验进行鉴定,其中57株代谢抑制价在1:80以上,并采用16S rRNA PCR技术进一步检测,均扩增出186bp大小的特异性条带,鉴定为鸡毒霉形体,阳性检出率为33.1%,;另20株为非鸡毒霉形体,有待进一步鉴定。从各养殖场分离的鸡毒霉形体分离株中选取部分菌株进行药物敏感性试验,结果表明大部分临床分离株对泰妙菌素、吉它霉素和泰乐菌素高度敏感,而且分离自不同地区的分离株对抗菌药物的敏感性存在一定差异。
     2、鸡毒霉形体16S-23S rRNA ISR PCR诊断方法的建立及分子流行病学研究
     以鸡毒霉形体16S-23S rRNA基因间隔区为目的基因,建立PCR检测方法,对所有172份样品进行扩增分析,结果从70份病料中扩增出了850bp大小的特异性条带,其中包括57株经传统技术鉴定为阳性的病样,其阳性检出率为40.7%。同时采用该PCR方法及对上述分离获得的20株非鸡毒霉形体分离物进行分析,初步鉴定为家禽霉形体。因此,针对16S-23S rRNA基因间隔区建立的鸡毒霉形体PCR检测方法比传统技术具更高的敏感性。随后,将RFLP技术和PCR技术结合起来,采用限制性内切酶RsaⅠ对PCR扩增片段进行限制性片段长度多态性分析,根据酶切图谱可将所有分离菌株分为两个谱系(R1和R2)。同时,结合流行病学调查, R2基因型比R1基因型的菌株更为流行,且未见同一个场内同时发生两种基因型菌株感染的情况。进一步对分离株16S-23S rRNA基因间隔区进行序列比对和进化分析,来自各不同养殖场的分离菌株可归为三个亚群,有的菌株与参考株S6株为同一亚群,有的与F株为同一亚群,而参考株R株则独自成一个亚群。
     3、湖北地区鸡毒霉形体分离株致病性研究
     根据上述进化分析结果,选择在进化树上分别与S6和F株亲缘关系较近的XA41株和ML21株作为研究对象,以S6和F株作为参考菌株,分别对4周龄雏鸡进行攻毒实验,8天后以新城疫弱毒苗(Ⅳ系)进行激发感染。结果接种S6和XA41株的实验动物全部发病,有明显的呼吸道症状;通过剖检肉眼观察、组织学病理切片和电镜观察,发病动物主要以上呼吸道病理变化为主;经血清学检测,抗体阳性反应;S6和XA41株引起的气囊损伤程度分别为3和2.8;S6和XA41株对鸡胚致死率均为80%。而攻F株和ML21株的实验动物未出现明显临床症状;通过剖检肉眼观察、病理切片和电镜观察,各部位均无明显病变;气囊损伤程度均为0;抗体检测为阴性;F株和ML21株对鸡胚的致死率均为40%。表明XA41株和S6致病性相似,为强毒株;ML21株和F株相似,为弱毒株。因此,通过致病性研究结果初步确定16S-23S rRNA ISR可作为区分不同基因型鸡毒霉形体菌株致病性的分子工具。
Mycoplasma gallisepticum (M gallisepticum) can cause severe chronic respiratory disease in farm flocks. M. gallisepticum infection is common in our country. It could lead to egg production decreased of layer and slaughter delayed of broiler. Once chickens suffered co-infection with Newcastle virus, Infectious brochitis or Escherichia, which could lead higher motality and incidence. Isolates, culture and serological identification for the detection of M. gallisepticum are mainly used currently in China. But these asssys are laborious and time consuming, it can not satisfy rapid application. However, little is known about epidemiology, drug resistance and pathogenic of Mycoplasma in chicken farms of Hubei Province. To aim directly at aboved-metioned, 16S-23S rRNA intergenic spacer region (ISR) was elected as a tool to investigate M gallisepticum in Hubei Province.The 16S-23S rRNA ISR is a nucleotide sequence with high conservatism and discontinuity. It could satisfy rapid detection. Moreover, it may be a useful molecular epidemiology tool and provide thereunder etiology assay of M. gallisepticum.
     In this study, facing the shortage of the present methods used in detecting, vacuity of epidemiology and etiology assay of CRD in poultry. The routine lab technology and Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used. And a PCR detection techonlogy based on the 16S-23S rRNA ISR was established. Moreover, the research of molecular epidemiology and etiology was advanced.
     1、Isolates, identification and resistance of M. gallisepticum with routine technology,
     A total of 172 field samples were collected from 47 farms in this region and 77 isolates were obtained by cultivation. These isolates were examined by routine microbiological, biochemical test and metabolism inhibition assays. We found that 57 isolates which metabolism inhibition titer was higher than 1:80. Then 16S rRNA PCR was used. The length of 16S rRNA PCR fragments was 186bp. So they were identified as M. gallisepticum. The positive rate of routine technology is 33.1%. In addition, we found that 20 isolates were not M. gallisepticum.The resistance test of some strains of M. gallisepticum showed that, sensitivity of clinical strains to antibiotics have area characteristic and majority strains were sensitive to drugs, such as Tiamulin, Tylosinum, Kitasamycin. (The minimum inhibition concentraion)
     2、16S-23S rRNA ISR PCR and molecular epidemiology of M. gallisepticum
     A PCR detection technology based on the 16S-23S rRNA intergenic spacer regions (ISR) gene fragments was established. A total of 172 samples were detected. We found that 70 isolates including 57 isolates were detected through routine technology which special fragment length was 850bp The positive rate is 40.7%. In addition, we found 20 isolates were M. gallinarum. Therefore, the PCR detection technology based on ISR have higher specificity than routine technology. Then PCR-RFLP technology was used at the same time. All isolates were divided into two groups through RsaⅠ(R1 and R2). Epidemiological investigation suggested that the R1 and R2 groups of M. gallisepticum appeared not to affect chickens at the same farm simultaneously. The R2 genotype of M. gallisepticum was more prevalent, evidentially by more farms and more samples were infected with this genotype of M. gallisepticum. The R2 group of M. gallisepticum appeared to be prevalent at one location and then changed to the R1 type of M. gallisepticum in the same city. This was the first report on genetic variants of M. gallisepticum in China Further analysis including sequenced, alignment and evolution analyzing of 16S-23S rRNA ISR revealed that there were three subgroups of M. gallisepticum with different genotypes. Some isolates were closely related to the reference strain of S6, some others to the F, and no single isolates to the reference strain of R.
     3、The assay of etiology about M. gallisepticum
     4-week-old chick were infected artificially with four strains of M. gallisepticum in which XA41 and ML21 strains were isolated in Hubei Province, which closely related to the reference strain of S6 and F in phylogenetic analysis respective, and S6 and F strains were reference strains. Provocative infection was made by New castle disease attenuated vaccine(Ⅳ) eighe days later. Chicks infected with XA41 and S6 were sick, typical respiratory tract symptoms occurred. Pathoanatomical results, Scanning electron microscopy (SEM) and pathological section showed that respiratory were damage in serious degree. Serological reaction was positive. Mean Lesion Score of air sac were 3.0(S6),2.8(XA41)XA41. The virulense of XA41 and S6 for SPF embryoes were 80%. The chicken infected F and ML21 strain did not show any clinical symptom. Pathoanatomical results, SEM and pathological section showed that respitatory tract have not any damage. Mean Lesion Score of air sac were zero(F and ML21). Serological reaction was positive. The pathogenicity of F and ML21 strains for SPF embryoes were 40%. The study on etiology of XA41 and ML21 showed that the fomer was virulent strain that same with S6, and the latter was low virulent strain that same with F. Therefore, base on the study on etiology,16S-23S rRNA ISR could be infered as a useful molecular tool which can discrimination pathogenicity of different genotype of M. gallisepticum.
引文
[1]毕丁仁.研究报告汇辑.北京:中国兽药监察所,1984,55-76
    [2]毕丁仁.鸡毒支原体的分离鉴定.中国兽医科技,1985,12:49-52
    [3]毕丁仁,冀锡霖.鸡源霉形体的分离和鉴定.畜牧兽医学报(增刊),1988,1:146-148
    [4]毕丁仁,屈小玲,李自力,赵雅心,戴大章.鸡毒霉形体人工感染肉用仔鸡后呼吸系统的病理形态学观察.中国兽医科技,1999,29:7-10
    [5]毕丁仁,王桂枝.动物霉形体及研究方法.北京:中国农业出版社,1998
    [6]毕丁仁,吴世钦,吴锦.用血细胞吸附抑制试验快速鉴定鸡毒霉形体.中国兽医科技,1990,1:29-30
    [7]毕丁仁.霉形体病鸡群带菌持续时间.中国兽医杂志,1986,3:30
    [8]包慧芳.支原体及支原体病研究进展.中国兽医科技,2002,32:16-19
    [9]蔡宝详.家畜传染病.第三版.北京:中国农业出版社,2000,242-245
    [10]陈天寿.微生物培养基的制造与应用. 北京:中国农业出版社,1994,470-490
    [11]邓显文,谢之勋,谢志勤,庞耀珊,唐小飞,刘加波,廖敏,何竞铭.广西鸡毒霉形体的分离与鉴定.中国兽医科技,2002,32:23-24
    [12]邓显文,谢芝勋,刘加波.广西鸡毒霉形体血清学调查.广西畜牧兽医,1990,13:22-24
    [13]邓显文,谢芝勋,唐小飞,谢志勤,庞耀珊,廖敏,刘加波,何竞铭.聚合酶链反应检测鉴别鸡毒霉形体强毒株和弱毒疫苗株的研究.中国兽医科技,2003,33:7-11
    [14]邓显文,谢芝勋,谢志勤,唐小飞,刘加波,廖敏,庞耀珊.应用PCR-RFLP分析鉴别广西鸡毒霉形体.中国兽医科技,2004,34:41-44
    [15]丁铲,丁圣青,刘晓文.败血支原体16S rRNA基因的克隆与核酸序列分析.中国预防兽医学报,1999,21:134-136
    [16]丁建民.鸡毒支原体免疫研究进展.辽宁畜牧兽医,2004,6:44-45
    [17]丁银巧,乌尼,郝永清,周雨霞.内蒙古地区鸡源霉形体的分离和鉴定.内蒙古农牧学院学报,1998,19:36-41
    [18]段晓冬,毕丁仁.四种禽源支原体核酸限制性酶切图谱分析.中国畜禽传染病,1998,20:146-148
    [19]傅先强.控制鸡霉形体病的新思路.中国家禽,2000,22:5-6
    [20]郝永青,齐冬梅,张爱荣,乌尼.鸡毒霉形体H3株TM-1基因的克隆与序列分析.中国兽医科技,2003,33:24-27
    [21]郝永清,王秀青,周艳君,童光志,高金亮,赵振华,乌尼.鸡毒霉形体TM-1基因原核表达载体的构建及表达.中国兽医科技,2004,34:18-20
    [22]贺荣莲,黄峻,邓贺荣,兰美益,邓显文,杜坚,杨水莲.鸡霉形体的分离与鉴定.中国兽医杂志,1996,22:9-11
    [23]贺荣莲,黄峻,邓贺荣.33种药物对鸡源霉形体的抑制试验.中国兽医杂志,1996,26: 28-30,
    [24]贺荣莲,邓显文,兰美益.广西鸡10种传染病的血清学调查.中国兽医杂志,1990,16:12-13
    [25]胡思顺,李自力,肖运才,刘梅,毕丁仁,石得时,许青荣,程峰.鸡毒霉形体粘附素蛋白基因的可隆和表达研究.中国微生物学术年会兽医微生物专业委员会学术年会论文集,2003,331-333
    [26]郭锐.鸡毒霉形体的分离鉴定及其16S/23S rRNA基因间隔区、TM-1基因序列差异分析.[硕士学位论文].武汉:华中农业大学图书馆.2006
    [27]郭玉璞.家禽传染病诊断与防治.北京农业大学出版社,1993,423-445
    [28]冀锡霖,宁宜宝.鸡感染鸡毒霉形体和滑液霉形体情况的调查.中国兽医科技,1986,4:16-18
    [29]康白.微生态学.大连:大连出版社,1988,60-85
    [30]李自力,毕丁仁.禽源霉形体细胞蛋白SDS-PAGE电泳分析.中国兽医科技,1998,28:27-29
    [31]林曦.家畜病理学.第三版.北京:中国农业出版社,2000,262-263
    [32]刘军,李明.进口种雏鸡败血霉形体的分离和鉴定.新疆农业科学,1993,4:175--177
    [33]刘晓文,丁铲,于圣青,徐步,苏秀文,莫惠.SPF鸡人工感染鸡败血霉形体后呼吸系统的病理变化.中国家禽,2001,23:13-14
    [34]苗得园,陈德威.鸡毒支原体株间结构蛋白及其抗原性变异的比较研究.畜牧兽医学报,2000,31:255-261
    [35]宁宜宝,冀锡霖.应用酶联免疫吸附试验(ELISA)检测鸡毒霉形体和滑液霉形体抗体的研究.中国兽医杂志.1989,15:2-5
    [36]牛建强,王正党,叶志远,王永辉,刘晓明.鸡源霉形体的分离和鉴定.中国兽医科技,2002,32:23-24
    [37]潘树德,李学俭,沈国顺,刘明春,尹荣焕,陈晓月,赵玉军.鸡霉形体的分离鉴定.畜牧与兽医,2005,37:12-15
    [38]屈小玲,毕丁仁.鸡毒霉形体感染的PCR检测方法的建立及应用.华中农业大学学报,1998,17:478-482
    [39]任家琰,霍乃蕊,郭建华.应用PCR-RFLP分析鉴定鸡毒霉形体.畜牧兽医学报,1999,30:370-374
    [40]沈青春,毕丁仁,翁长江,李自力,石德时,许青荣,程峰.鸡毒霉形体HS株pMGA多基因族序列分析.中国兽医学报,2003,23:243-246
    [41]孙雷,曾振灵.抗动物霉形体类药物及耐药性研究进展.兽药与饲料添加剂.2003,8:31-34
    [42]王玫,王柳,于力.用核酸探针诊断鸡毒霉形体和滑液霉形体感染.中国兽医科技,1996,26:19-20
    [43]王可洲,朱瑞良.鸡败血支原体的分离鉴定.山东家禽,2000:9-10
    [44]闻人楚,陈培龙,刘晨.两株鸡毒霉形体菌株的分离与鉴定.上海农业学报,1994,10:6-9
    [45]翁长江,毕丁仁,沈青春,李自力,石德时,许青荣,程峰.鸡毒霉形体HS株pMGA多基因族的研究.中国兽医学报,2003,23:149-152
    [46]吴惠明.耐大环内酯类药物鸡毒支原体的诱导和耐药基因的突变分析.北京:中国农业大学图书馆,2004
    [47]杨百亮,赵翠萍,刘田生,李天俊.应用单克隆抗体AC-ELISA检测鸡蛋卵黄中鸡毒支原体.中国预防兽医学报.2001,23:50-52
    [48]谢芝勋,邓显文,唐小飞,谢志勤,庞耀珊,刘加波,廖敏.9株鸡毒支原体29 Ku多肽基因的克隆与序列分析.中国预防兽医学报,2004,26:405-408
    [49]谢芝勋,庞耀珊,邓显文.应用多重聚合酶链反应检测鸡毒霉形体和滑液霉形体的研究.中国兽医科技,1999,29:9-11
    [50]谢芝勋,谢志勤,邓显文,庞耀珊,廖敏,刘加波,唐小飞,何竞铭.用SDS-PAGE分析鸡毒霉形体广西分离株的结构蛋白.中国兽医科技,2003,33:41-43
    [51]谢志勤,谢芝勋,邓显文,庞耀珊,廖敏,刘加波,唐小飞,何竞铭.用RAPD技术分析鸡毒霉形体广西分离株的DNA多态性.中国兽医科技,2003,33:26-29
    [52]许青荣,李自力,毕丁仁.表现呼吸道症状的常见鸡病鉴别诊断.中国养禽业导刊,2000,23
    [53]徐宜为主编.最新禽病与防制.北京:中国农业科技出版社,1993,322-350.
    [54]杨百亮,赵翠萍,刘天生,李天俊.应用单克隆抗体AC-ELISA检测鸡蛋卵黄中鸡毒支原体.中国预防兽医学报,2001,23:50-52
    [55]张道永,王文贵,林毅,王泽洲,李力,杨晓梅,张九明.四川地区鸡毒支原体的分离鉴定及血清学定型.中国预防兽医学报,1999,21(2):93-95
    [56]佐佐木正五.支原体病.项大实,李建时译.北京:农业出版社,1981,50-9
    [57]Andrei S, Marie G, Jana K, Robert B. Mycoplasma gallisepticum 16S rRNA genes. FEMS microbiology Letters,1995,128:321-325
    [58]Avakian A P, Leg D H. Inhibition of mycoplasma gallisepticum growth and attachment to chicken tranched rings by antibodies to 64 kilodaton membrane protein of Mycoplasma gallisepticum. Science,1990,11:256-258
    [59]Avakian A P, Kleven S H, Ley D H. Comparison of Mycoplasma gallisepticum strains and identification of integral membrane proteins with Triton X-114 by immunblotling. Vet Microbiol, 1991,29:319-328
    [60]Avakian A P, Leg D H, M A Mebride. Humoral immune response of turkey to strain S6 and variant studied by immunobloting. Avian Disease,1992,236:69-77
    [61]Baseggio N, Glew M D, Markham P F, Whithear K G, Browning G F. Size and genomic location of the pMGA multigene family of Mycoplasma galliseptium. Microbiology,1996,142: 1429-1435
    [62]Bertil Pettersson, Karl-brik Johansson and Mathias Uhlen. Sequence Analysis of 16sRNA from Mycoplasma.by. Direct.Solid-Phase.DNA.Sequencing. Environmental Microbiology,1994, 7:2456-2461
    [63]Branton S L, Gerlach H, Kleven S H. Mycoplasma gallisepticum isolation in layers, poult science, 1984,63:1917-1919
    [64]Carcia M, Jackwood M, Levisohn S, Kleven S H. Detection of Mycoplasma gallisepticum, M. synoviae, and M. iowae by multi-species polymerase chain reaction and restriction fragment length polymorpHism. Avian Disease,1995.39:606-616
    [65]Carli K, Eyigor A. Real-time polymerase chain reaction for Mycoplasma gallisepticum in chicken trachea. Avian Disease,2003,47:712-717
    [66]Calnek W, John Barnes H. Disease of poultry. Tenth edition. Ames:Iowa state university press, 1997,235-296
    [67]Coatas M, Leach RH, Mitchelmore DL, Numerical analtsis of PAGEpattern and the taxonomic relationships within the Myciplasmaycoides cluster. Journal of Gene Microbiology,1987,133:3319-3329
    [68]Cummins D R, Reynolds D L, Rhoade K R. An avidinbiotin enhanced do timmunobinding assay for the detection of Mycoplasma gallisepticum and M.synoviae serum antibodies in chickens. Avian Disease,1990,34:36-43
    [69]Delaplane J R, Stuart H O. The propagation of a virus in embryonated chicken eggs causing a chronic respiratory disease of chickens. Veterinary Research,1943,4:325-332
    [70]Dodd S. Epizooticpneumo-enteritis of the turkey. Comp pathol Ther,1905,18:239-245
    [71]Dickinson E M, W R Hinshaw. Treatment of infections sinusitis of tarkeys with argyrols and silvernitrate. American Veterinary medicine Association,1983,93:151-156
    [72]Elmiro R, Richard Y, Kevin R,, Robert C. Polymerase Chain Reaction for Detection of Mycoplasma gallisepticum. Avian Disease,1991,35:62-69
    [73]Gibbs P S, Kleven S H, Jackwood M W. Analysis and characterczation of Mycoplasma gallisepticum isolates from Pennsylvania. Avian Disease,1993,38:475-482
    [74]Gross W B. The development of "air sac disease". Avian Disease,1961,5:431-439
    [75]T. Gorton, M.Goh, Geary S. Physical mapping of the mycoplasma gallisepticum S6 genome with localization of selected genes. Journal of bacteriology,1995,177:259-263
    [76]Hazama M, Magumi-Aono A, Asakawa N, Kuroda S, Fujisawa Y. Adjuvant-independent enhanced immune responses to recombinant herpes simplex virus type 1 glycoprotein D by fusion with biologically active interleukin-2. Vaccine,1993,11:629-636
    [77]Fan H H, Kleven S H, Jackwood M W, Johansson K E, Pettersson B, Levisohn S. Species identification of avian mycoplasma by polymerase chain reaction and restriction fragment length polymorphism analysis. Avian Disease,1995,39:398-407
    [78]Fabricant J, P P Levine. Experimental production of complication chronic repiratory disease infection ("airsac" disease). Avian Dis,1962,6:13-27
    [79]Kempf I, Gesbent F, Guittet M, Bennejean G. Efficency of danofloxacin in the therapy of experimental mycoplasmosis in chicks. Research veterinary science,1992,53:257-259
    [80]Khan M I, Yamamoto R. Differentiation of the vaccine F-strain from other strains of Mycoplasma gallisepticum by restriction endonuclease analysis. Veterinary Microbiology,1989,19:167-174
    [81]Kheyar A, Redely S K, Silim A. The 64Kda lipoprotein of Mycoplasma gallisepticum has two distinct epitopes responsible for haemagglution and graoth inhibition. Avian Pathology,1995,24: 55-68
    [82]Kreig N R, Hoht J G. Bergey's manual of systematic. Bacteriology 9th Ed. NewYork: 1984.740-793
    [83]Kleven S H, Browning G H, Bulach D M, Ghiocas E, Morrow C J, Whithear K G. Examination of Mycoplasma gallisepticum steains using restriction endonuclease DNA analysis and DNA-DNA hybridization. Avian Pathology.1988,17:559-570
    [84]Kleven S H, Khan M I, Yamamoto. Fingerprinting of mycoplasma gallisepticum isolated from multiple-age layers vaccined with live F strain. Avian Disease,1990,34:984-990
    [85]Lauerman L H, Chilina A R, Closser J.A, Johansen D. Avian Mycoplasma Identification Using Polymerase Chain ReactionAmplicon and Restriction Fragment Length Polymorphism Analysis. Avian Disease,1995,39:804-811
    [86]Laginhuhl R E, Tourtellotte M E, Frazier M N. Mycoplasma gallisepticum control by immunization. Ann NYA cad sci,1967,143:134-238
    [87]Lam K M. Mycoplasma gallisepticum-induced alteration in chicken red blood cells. Aviian Disease,2003,47:485-488
    [88]Levisohn S,Dykstra M J. A quantitative study of single and mixed infection of the chicken trachea by Mycoplasma gallisepticum. Avian disease,1987,31:1-12
    [89]Ley D H, Mclaren S J, Miles A M, Barnes H J, Miller S H, Franz G. Transmissibility of live Mycoplasma gallisepticum vaccine strains ts-1 land 6/85 from vaccinated layer pullets to sentinel poultry. Avian Disease,1997,41:187-194
    [90]Li L, Payne D M, Vick L, Van S, Kevin D, Victor S P. A Protein (M9) Associated with Monoclonal antibody-mediated agglutination of Mycoplasma gallisepticum is a member of the pMGA family. Infection and Immunity,1998,5570-5575
    [91]Markham P F, Brandon M R. Characterization of a major haemagglutinin protein from Mycoplasma gallisepticum. Infection and Immunity,1992,60:3885-3891
    [92]Markham F S, Wong S C. Pleuropneumonnia-like organism in the etiology of turkey sinusitis and chyonic respiratory disease of chickens. Poult Science,1952,31:902-904
    [93]Markham P F, Glew M D, Whithear K G and Walker I D. Molecular Cloning of a Member of the Gene Family that Encodes pMGA, a Hemagglutinin of Mycoplasma galliseptium. Infection and Immunity,1993,61:903-909
    [94]Marois C, Dufour-Gesbert F, Kempf I. Polymerase chain reaction for detection of Mycoplasma gallisepticum in environmental samples. Avian Pathology,2002,3:163-168
    [95]Mohammed H O, Yamamoto R, Carpenter T E, Ortmayer H B. Comparison of egg yolk and serum for the detdction of Mycoplasma gallisepticum and M. synoviae antibodies by enzyme-linked immunosorbent assay. Avian Disease,1986,30:398-408
    [96]Nocard E, Roux E R. Le mirrobe de la peripeumonia. Ann Inst Pasteur paris,1998,12:240-262
    [97]Papazsi L, Troy K E, Gorton T S, Liao X, Geary S J. Analysis of cytadherence-deficient, GapA-negative Mycoplasma gallisepticum strain R. Infection and Immunity,2000,68: 6643-6649
    [98]Rautiainen E, Wallgren P. Aspects of the Transmission of Protection againstMycop lasma hyopneumoniae from Sow to Offsp ring. Journal of Veterinary Medicine,2001,48:55
    [99]Razin S. Mycolasma taxonomy studied by electrophoresis of cell proteins. Journal of Bacteriol, 1996,96:687-694
    [100]Shuji Saito, Ayumi Fujisawa, Setsuko Ohkawa, Nobukazu Nishimura, Takaharu Abe, Kazumi Kodama, Kouicghi Kamogawa, Sigemi Aoyama, Yosikazu Iriani, Yoshiyuki Hayashi. Cloning and DNA sequence of a 29 kilodalton polypeptide gene of Mycoplasma gallisep ticum as a possible protective antigen. Vaccine,1993,11:1061-1066
    [101]Santha M, L ukac K, Burg K. Intraspecies geno typ ic heterogeneity amongmycop lasma gallisepticum strians. Appl and Envir Mic,1988,2:607-609
    [102]Sasipreeyajan J, Halvorson D A, Newman J A. Bacterin to control the vertical transmission of Mycoplasma gallisepticum in chickens. Avian Dis,1985,29:1256-1259
    [103]Senterfit L B. Antibiotics sensitivity testing of Mycoplasma. In Methods in Mycoplasmlolgy II.Telly S.G.Razin S.eds New York:Academic Press.1983,398-401
    [104]Talkington F D, S H Kleven, J Brow. An enzyme-linked immunosorbent assay for the detection of antibodies to Mycoplasma gallisepticum in experimentally infected chickens. Avian Disease, 1985,29:3-70
    [105]Tigges E, Minion F C. physical map of mycoplasma gallisepticum. Journal of Bacteriol.1994, 176:4157-4159
    [106]Van Roekel, lesiuk H M. The etiology of chronic respiratory disease proc 90th. New York:Annu Meet Am Vet Med Assoc,1953,289-303
    [107]Whithear K G. Control of avian mycoplasmoses by vaccination, In J.Nicolet(ed), Animal mycoplasmosis and control. Rev Sci Tech Off Int Epiz,1996,15:1527-1553
    [108]Williamg.W, Susan B, Dale A P, David J L.16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bactebiology.1991,173:697-703
    [109]Winner F, Rosengarten R, Citti C. In vitro cell invasion of mycoplasma gallisepticum. Infect ion and Immunnity,2000,68:4238-4244
    [110]Xing C, Finch L R. Novel arrangement of rRNA genes in Mycoplasma gallisepticum: separation of the 16S gene of onset from the 23S and 5S genes. Journal of Bacteriol,1989,5: 2876-2878
    [111]Youder H W. Historical account of the diagnosis and characterization of strains of mycoplasma gallisepticum of low virulence. Avian Disease,1986,30:510-518
    [112]Yogev D, Menaker D, Stutzberg K. Asurface epitope undergoing high-frequency phase variation is shared by mycoplasma gallisepticum and mycoplasma. Bovis infectimmune.1994,62: 4962-4968
    [113]Sigalit M, Sharon L, Steven J. Cytadherence-Deficient Mutants of mycoplasma gallisepticum Generated by transposon Mutagenesis. Infection and immunity.2003,71:3812-3820
    [114]Linda L H, Calvin L K, Lanral T. Characterization of MG C2, a mycoplasma gallisepticum cytadhesin with Homology of the mycoplasma pheumoniae 30-kilodalton protein P30 and mycoplasma genitalium P32. Infection and immunity.1998,66:3436-3442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700