甘蓝CMS451不育系的选育和利用及其不育机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝(Brassica oleracea var. capitata L.)是世界普遍栽培的一种重要的叶类蔬菜,其为异花授粉作物,具有明显的杂种优势。利用雄性不育系生产杂交种已经成为甘蓝育种发展的一种趋势,而细胞质雄性不育系(Cytoplasmic male sterility,CMS)是甘蓝杂种优势育种的一种理想途径,具有重要价值,并己杂种优势中得到利用。我们发现一种新型甘蓝细胞质雄性不育系P451,通过多代回交转育,育成了不育性稳定,蜜腺正常,低温叶片无黄化和配合力高的甘蓝细胞质雄性不育系CMS451,并在生产上应用。为了明确CMS451不育机理,本研究对甘蓝CMS451从植物学、细胞学、生理生化和分子生物学等方面进行研究,试图探索甘蓝CMS451不育机理,为进一步更好地利用这一优良不育源奠定基础。主要研究结果如下:
     1.不育系与保持系形态比较研究表明,甘蓝CMS451不育系雄蕊花丝较短,花药较白、不能正常开裂,不能散出花粉,蜜腺正常。不育系花蕾发育较保持系慢,当花蕾长为6.5mm时花药逐渐变黄,饱满程度不如保持系。
     2.利用甘蓝不育系CMS451及其保持系分别作为母本和同一父本杂交,结果表明,二者作为母本的F1代植物学性状表现基本相似,没有显著性差异,但不育系F1单球重较高,中心柱较短,品质更好,说明不育系CMS451配合力强,优于保持系。通过利用甘蓝不育系CMS451大田制种表明,不育系蜜腺发达,能正常吸引蜜蜂,结实正常,分枝数和株高均优于保持系,产量较高,杂交种纯度达100%,制种成本较低。因此,甘蓝细胞质雄性不育系CMS451具有良好的育种和应用前景。
     3.小孢子细胞学观察表明CMS451不育系的花药败育时期为单核小孢子时期,此时绒毡层细胞与中层细胞逐渐分离,细胞液泡化并伸长膨大,营养物质消失,挤压小孢子,使小孢子只能挤成一团。随后,绒毡层细胞完全与中层细胞分离,并继续伸长膨大,接着绒毡层细胞逐渐降解,直至完全消失。随着绒毡层细胞降解,小孢子始终粘连在一起,也逐渐降解,形成一团染色很深的物质。到花药开裂期时,药室不能开裂释放花粉粒,小孢子彻底解体,其残余物留在药室形成黑色的条带。
     4.利用酶联免疫检测技术,研究花蕾不同发育时期内源激素含量的动态变化及激素之间的平衡关系。结果表明,不育系CMS451花蕾GA3和ZR含量均低于保持系,变化趋势与保持系基本相同;不育系IAA含量均高于保持系,变化趋势不育系为先降后升,保持系是持续下降;ABA含量在小孢子母细胞期不育系高于保持系,其它时期低于保持系。表明,在甘蓝花蕾发育早期不育系花蕾中IAA和ABA过度积累,ZR和GA3的亏缺可能是细胞质雄性不育发生的原因,而在花蕾发育后期则是不育产生的结果。
     5.游离氨基酸分析结果表明,不育系CMS451叶片和小花蕾中各种游离氨基酸含量与保持系略有不同,但总量相当,差异不明显;但大花蕾中游离氨基酸总量不育系显著高于保持系。甘氨酸、缬氨酸、异亮氨酸、亮氨酸和苯丙氨酸在甘蓝叶片、小花蕾和大花蕾中的游离氨基酸含量不育系均高于保持系,不育系均低于保持系的游离氨基酸为脯氨酸。据推测,不育系营养器官和生殖器官中甘氨酸、缬氨酸、异亮氨酸、亮氨酸和苯丙氨酸过度积累和脯氨酸匮乏,可能是导致甘蓝花药败育的重要原因。
     6.通过对甘蓝细胞质雄性不育系和保持系不同发育时期花蕾的活性氧指标及其主要抗氧化酶活性研究,结果表明,甘蓝花蕾不同发育时期,不育系花蕾中O2产生速率、H202和MDA含量均高于保持系花蕾,不育系花蕾中POD、SOD和CAT等酶活性均高于保持系。据此推测,不育系产生的活性氧过多,刺激植物产生大量的抗氧化酶进行清除,在花粉粒成熟期,不育系花蕾中SOD和CAT等酶活性降低,但H202和MDA却持续升高,不能完全清除达到平衡状态,导致膜中的蛋白质聚合和交联,以及类脂的变化,最终会造成生物膜损害和代谢失调,导致雄性不育。
     7.通过PCR扩增技术,在甘蓝CMS451不育系mtDNA上扩增出大小为594bp一条特异片段,该序列与Ogura胞质不育系特异片段Z12626序列的一段完全一致,Z12626包含有orfl38和orfl58两个开放阅读框。CMS451特异片段上游序列(1-228)与orfl38下游序列(189-417)完全一致;下游序列与orfl58上游序列完全一致,说明甘蓝不育系CMS451mtDNA包含有orfl38和orfl58两个特异片段,与OguCMS一致,因此甘蓝不育系CMS451来源于为OguCMS,并说明OguCMS不育相关基因具有保守性。
Cabbage is a leafy vegetables widely cultivated all over the world, which is a cross-pollinated crops with significant hybrid heterosis. Using male sterile line obtain hybrid cultivar is a tendency of cabbage breeding. Cytoplasmic male sterility (CMS) is an ideal method for heterosis breeding, and it has an important and practical value on cabbage breeding. CMS451 cultivated by backcrossing cabbage cytoplasmic male sterile P451.CMS451 is fully express infertility, normal nectaries physiological function, no yellow leaves at low temperature and high combinationability. In order to ascertain sterile mechanism of CMS451, we have studied it from botany, cytology, physiology and biochemistry and molecular biology. It laid the foundations for furthermore utilize the beneficial of this excellent sterility source. The main results of the research are presented as follows.
     1. Morphological comparison between CMS451 and its maintainer showed that CMS451 has shorter filament and whiter anther. It could not crack and spill out pollen normally, but its nectary is normal. The bud of CMS451 develops slower than its maintainer. The anther became yellow gradually when the bud length grew to 6.5 mm. The plumpness of CMS451 was lower than its maintainer.
     2. CMS451 and its maintainer as female parent were crossed with same male parent, the results shows that F1 generation characters of botany be similar and there was no significant difference, it has the shorter head central axis, the more heavier head and the better quality. The combining ability of CMS451 was higher than its maintainer. The nectary of CMS451 was much more active, it has fertility and attract insects normally. The sent number and stub higher than maintainer, the yield is high and the purity of hybrid was 100%, so the cost of breeding was low. We believe that CMS451 has great application and development prospects in Cabbage breeding.
     3. Microspore cytological observation showed that pollen abortion of CMS451 happened at uninucleate stage. The tapetal cells and middle layer cells divided gradually, the cells were vacuolization and elongation, microspore squeezed together and nutritious substance was lost. Subsequently, the tapetal cells separate from the middle layer cells completely, and then the tapetal cells to disappear in the end. Microspore stick always together with the degradation of tapetal cells, formed into deep staining material. The mature pollen can not release from the dehisced anther lead to microspore gradual disintegrated, the remains of something that form a black band.
     4. Enzyme-linked immunosorbent assay (ELISA) method was employed to study the changes of endogenous hormones level and the balance between hormones in different developmental stages of the bud. The results showed that the content of GA3 and ZR in buds of male sterile lines CMS451 were lower than its maintainer line, they had same changing trends in male sterile line and its maintainer. IAA content of CMS451 was higher than its maintainer, trends of IAA had a change of descend firstly then ascend while it was continuous decrease in maintainer. The content of ABA in CMS451 was higher than its maintainer at microspore mother cell stage, and the other stage just the reverse. This shows that the reason of cytoplasmic male sterility was an excessive accumulation of IAA and ABA in buds of Cabbage male sterile lines and the deficiency of ZR and GA3 in the early developmental stage.
     5. Analysis of the free amino acid showed that the level of free amino acid in CMS451 leaves and small buds is slightly different from its maintainer, but the difference is not obvious in total amino acid level. In CMS451 large buds, the level of free amino acid was significantly higher than its maintainer. In the leaves, small buds and the large buds, the male sterile line is higher than maintainer for the content of glycine, valine, isoleucine, leucine and phenylalanine, just the opposite for proline. The reason of male sterility supposedly was an excessive accumulation of glycine, valine, isoleucine, leucine, phenylalanine and the lack of proline in the organs of reproduction and vegetation account for male sterility in Cabbage.
     6. The reactive oxygen and major antioxidant enzyme activity was analysed in Cabbage male sterile line and its maintainer, results shows that rate of (?) production, the content of H2O2 and enzymes activity of MDA, POD,SOD and CAT in male sterile line buds were higher than its maintainer during different developmental stages. It was presumed that the excess generation of active oxygen in male sterile line lead to the anti-oxidant enzymes level increased to remove them. In the buds of male sterile line, SOD and CAT activity decreased at stage of mature pollen grain, while H2O2 and MDA activity increases continuously, oxidant and anti-oxidant are not to maintain in a state of equilibrium so that proteins cross-linking in the plasma lemma, this state will eventually result in metabolic disorder and damage of biomembrane lead to infertility of male.
     7. PCR results demonstrated that the Cabbage CMS451 mtDNA amplified the 594bp specific band. The DNA sequence of CMS451 was coincident to specific band Z12626 of Ogura CMS, Z12626 contains two open reading frame orf138 and orf158.The sequence (1-228) of CMS451 and the sequence (189-417) of orfl38 were completely the same sequences, downstream sequence of CMS451 and upstream of orfl58 were completely the same sequences. These results indicated that the CMS451 mtDNA contain orf138 and orf158 in accordance with OguCMS, the origin of CMS451 is OguCMS; in addition, genes related to cytoplasmic male sterility are highly conserved.
引文
北京大学生物系.1976.雄性不育和雄性能育小麦花药和花粉的细胞形态学观察.作物学报,18(2):141-149.
    卞春松.1994.几份不同遗传类型甘蓝雄性不育花药发育的细胞形态学研究.[硕士学位论文].北京:中国农科院.
    陈夫贵,赵利民,巩振辉,等.2008.新型大白菜细胞质雄性不育系RC7的不育分子机理探讨.安徽农业大学学报,35(3):311-314.
    陈贤丰,粱承邺.1991.水稻不育花药中H2O2的积累与膜脂过氧化的加剧.植物生理学报,17:44-48.
    陈晓峰,侯喜林,刘金兵,王枫,高洪亮.2007.甜椒细胞质雄性不育新种质花蕾败育与活性氧代谢关系研究.南京农业大学学报,30(4):26-29.
    陈竹君,张明方,汪炳良,等.1995.榨菜胞质雄性不育及其农艺性状的研究.园艺学报,22(1):40-46.
    邓明华,邹学校,周群初,等.2002.辣椒细胞质雄性不育系与保持系生化特性研究.湖南农业大学学报:自然科学版,28(6):492-494.
    董庆华,利容千,王建波.1996.萝卜雄性不育系花药发育的细胞形态学研究.武汉大学学报(自然科学版),42(2):207-212.
    董伟.1993.甘蓝雄性不育系和保持系花药中可溶性蛋白的分离及几种同工酶鉴定.西南农业大学学报,15(3):255-258.
    段俊,粱承邺,张明永.1996.玉米细胞质雄性不育与膜脂过氧化的关系.植物生理学通讯,32:331-334.
    方智远,刘玉梅,杨丽梅,等.2007.雄性不育系配制的甘蓝新品种及其繁育技术.长江蔬菜,11:32-34.
    方智远,刘玉梅,杨丽梅,等.2002.我国甘蓝遗传育种研究概况.园艺学报,29(增刊):657-663.
    方智远,孙培田,刘玉梅.1997.甘蓝显性雄性不育系的选育及其利用.园艺学报,24(3):249-254.
    方智远,孙培田,刘玉梅.2001.几种类型甘蓝雄性不育的研究与显性不育系的利用.中国蔬菜,(1):6-10.
    傅寿仲.1999.中国油菜品质育种进展.江苏农业学报,15(4):241-246.
    傅廷栋,杨光圣.1990.甘蓝型油菜波里马细胞质雄性不育的研究与利用:作物研究,4(3):9-12.
    傅廷栋,杨圣光.1996.国内外油菜杂种优势的研究与利用概况.油料作物学术年会论文集.北京:中国农业科技出版社:8-9.
    傅廷栋,杨小牛,杨光圣.1980.甘蓝型油菜波里马雄性不育系的选育研究.华中农业大学学报,8(3):201-207.
    傅廷栋.1990.中国油菜杂种优势利用概况.作物研究,4(3):1-4.
    高夕全,张子学,夏凯,等.2001.雄性不育辣椒中几种内源植物激素的含量变化(简报).植物生理学通讯,37(1):31-32.
    龚义勤,汪隆植,徐彦.1998.萝卜雄性不育系和保持系的花蕾同工酶分析.园艺学进展(第二辑)pp:563-566.
    郭晶心,孙日飞,宋家祥,等.2001.大白菜雄性不育系小孢子发生的细胞形态学研究.园艺学报,28(5):409-414.
    何启伟,石惠莲.1993.中国萝卜雄性不育性遗传规律的研究.山东农业科学,(4):5-8.
    何振才,李昌,李永红.2000.新型杀雄剂SX21在油菜上的应用初报.陕西农业科学,20(3):1-4.
    胡美华,陈竹君,汪炳良.2000.榨菜胞质雄性不育系及其保持系过氧化物酶和酯酶同工酶的比较研究. 浙江农业学报,12(4):201-205.
    胡适宜.1977.小麦雄性不育系和保持系的小孢子发育的电子显微镜观察.植物学报,19(3):167-171.
    黄邦全,李薇,居超民,等.1999.雄性不育细胞质导入紫菜薹及杂种优势利用初报.种子,(3):57.
    黄邦全,罗鹏,吴书惠.2000.甘蓝型油菜雄性不育材料S90-8-7的获得及细胞学研究.湖北大学学报(自然科学版),22(2):182-184.
    黄少白,周燮.1994.水稻细胞质雄性不育与内源GA1+4和IAA的关系.华北农学报,9(3):16-20.
    黄铁城,张爱民,王明理,等.1985.杂种小麦的研究.中国农业大学学报,11(4):214-217.
    姜平,朱朝辉,郑益嫩,等.2001.花椰菜异源胞质雄性不育系C50-2选育研究.福建农业学报,16(3):39-41.
    蒋传英,金承德,吴仁龙,等.1982.工具酶的活力测定.上海:上海科学技术出版社:36-38.
    蒋梁材,刘启鑫.1994.甘蓝型油菜雄性不育系与可育系花蕾的RNA、氨基酸含量分析.四川农业大学学报,12(1):49-55.
    蒋梁材,蒲晓斌,张启行,等.2002.甘蓝型油菜细胞质雄性不育才材料NEA的发现与遗传研究.中国农业科学,35(1):72-78.
    蒋培东,朱云国,王晓玲,等.2007.棉花细胞质雄性不育花药的活性氧代谢.中国农业科学,40(2):244-249.
    康俊根.2006.四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析.[博士学位论文].北京:中国农业科学院.
    柯桂兰,赵稚雅,宋胭脂.1992.大白菜异源胞质雄性不育系CMS3411-7的选育及应用.园艺学报,19(4):333-340.
    李传友,孙兰珍.1995.K、V小麦同核异质雄性不育系及保持系花药内游离氨基酸的比较分析.山东农业大学学报,26(1):57-61.
    李殿荣.1986.甘蓝型油菜雄性不育系、保持系、恢复系选育成功并大面积推广.中国农业科学,(4):94.
    李殿荣.2008.科技创新结硕果,经济发展做贡献.中国科技奖励,9:75.
    李宏伟,张恩慧,许忠民,等.2009.甘蓝化学杀雄剂GS-1的杀雄效果研究.西北农林科技大学学报(自然科学版),37(7):115-121.
    李继耕,高文琴.1983.油菜细胞质雄性不育系及其保持系叶绿体超微结构的研究.遗传学报,10(4):250-252.
    李继耕.1992.细胞质雄性不育性的分子机理.遗传,4(2):374.
    李小明,李晓红,冯辉.2004.结球甘蓝的杂种优势利用进展.辽宁农业科学,(5):31-34.
    李英贤,张爱民,黄铁城.1996.小麦细胞质雄性不育与花药组织内源激素的关系.农业生物技术学报,4(4):307-312.
    梁燕,王鸣,赵稚雅.1994.结球白菜细胞质雄性不育系花药和花粉的发育.西北农业学报,22(3):19-23.
    刘秉华.1991.作物显性雄性不育基因起源的探讨及应用途径分析.大自然探索,10(3):31-36.
    刘后利.1985.油菜的遗传与育种.上海:上海科技出版社.
    刘金兵,侯喜林,王述彬,等.2006a.甜椒胞质雄性不育(CMS)系及其保持系花药中游离氨基酸含量.江苏农业学报,22(1):68-70.
    刘金兵,侯喜林,陈晓峰,等.2006b.甜椒胞质雄性不育系及其保持系生化特性研究.园艺学报,33(3):629-631.
    刘砾善.1991.萝卜雄性不育系和保持系花器官游离氨基酸成分比较分析.中国蔬菜,(5):12-15.
    刘佩瑛.1996.中国芥菜.重庆:西南农业大学出版社:1-6
    刘绚霞,董振生,刘创社,等.1999.新型油菜化学杀雄剂EN的杀雄效果与应用研究初报.西北农业学报,8(4):60-62.
    刘一农,李继耕.1983.叶绿体DNA(cpDNA)与细胞质雄性不育性,遗传学报,10(2):114-122.
    刘玉梅,方智远,孙培田.1997.我国甘蓝遗传育种的研究进展和预测.中国蔬菜,(6):1-3.
    刘玉梅,方智远,孙培田,等.2002.十字花科作物雄性不育性获得的主要途径及其利用.中国蔬菜,(2):52-55.
    刘玉梅.2006.甘蓝显性细胞核雄性不育的细胞学特征、生化基础及其分子标记的研究.[博士学位论文].北京:中国农业科学院.
    刘忠松,官春云,陈社员.2001.植物雄性不育机理的研究及应用.北京:中国农业出版社:4-78.
    苗锦山,杨文才,李美芹,等.2009.葱细胞质雄性不育与花蕾发育过程中活性氧代谢关系研究.华北农学报,24(4):92-95.
    缪颖,陈林蛟,陈德海,等.2000.应用Bulked-DNA寻找白菜型油菜核雄性不育基因的RAPD标记.厦门大学学报(自然科学版),35(5):682-685.
    聂明建,王国槐,朱卫平.2007.甘蓝型油菜3种类型雄性不育系花药败育的细胞学研究.中国农业科学,40(7):1543-1549.
    潘家驹主编.1995.作物遗传育种总论.北京:中国农业出版社.
    彭谦,李汝松,吕英华.1989.菜心雄性不育研究.中国蔬菜,(1):1-3.
    彭婷.2008.NKX2.5、GATA4、CITED2基因突变及环境因素与散发型先天性心脏病关系的初步探讨.[博士学位论文].上海:复旦大学.
    任成伟.1992.萝卜细胞质芸薹属作物雄性不育材料的研究概况,中国蔬菜.(2):42-45.
    任雪松.2004.甘蓝细胞质雄性不育系和保持系的同工酶与线粒体DNA的比较研究.[硕士学位论文].重庆:西南农业大学.
    史公军,侯喜林,胡巍.2004.细胞质雄性不育白菜败育过程中激素和多胺含量的变化.西北植物学报,24(11):2109-2112.
    宋宪亮,孙学振,王洪刚,等.2004.棉花洞A型核雄性不育系花药败育过程中的生化变化.西北植物学报,24(2):243-247.
    孙日飞,方智远,张淑江,等.2000.萝卜胞质大白菜雄性不育系的生化分析.园艺学报,27(3):187-192.
    孙日飞,吴飞燕,司家钢,等.1995.大白菜雄性不育两用系小孢子发生的细胞学研究.园艺学报,2(2):153-156.
    孙威,高洁,李继耕,等.1992.油菜叶绿体基因组雄性不育特异DNA片段的定位.遗传学报,19(1):55-60.
    唐祈林,荣廷昭,胡长远.2002.不同核背景的玉米CMS系内源激素关系的研究.四川农业大学学报,20(3):209-211.
    陶龙兴,王熹,俞美玉,等.2001.CM268诱导水稻雄性不育的效果及作用机理研究.作物学报,27(2):178-184.
    田长恩,张明永,段俊,等.1998.油菜细胞质雄性不育系极其保持系不同发育阶段内源激素动态变化初探.中国农业科学,31(4):20-25.
    田长恩,张明永,梁承邺,等.1999.植物雄性不育生理生化研究新进展.生命科学,11(Suppl.):94-97.
    童哲.1998.光敏核不育水稻的发育生物学研究评述.植物学报,40(3):189-199.
    王爱国,罗广华,邵从本,等.1983.大豆种子超氧物歧化酶的研究.植物生理学报,9(1):77-84.
    王爱国,罗广华.1990.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,(6):55-57.
    王华忠,吴则东,韩英,等.2008.甜菜细胞质雄性不育与内源激素含量的关系.中国农业科学,41(4):1134-1141.
    王淑华,魏毓棠,冯辉,等.1998.大白菜雄性不育株与可育株花蕾生理生化特性比较分析.沈阳农业大学学报,29(2):132-137.
    王台,童哲.1992.光周期敏感核不育水稻58S不育花药的显微结构变化.作物学报,18(2):132-135.
    王晓武,方智远,刘玉梅,等.2000.一个用于甘蓝显性雄性不育基因转育辅助选择的SCAR标记.园艺学报,27(2):143-144.
    王晓武,方智远,孙培田,等.1998.一个与甘蓝显性雄性不育基因连锁的RAPD标记.园艺学报,25(2):197-198.
    王晓武,方智远,孙培田,等.1999.甘蓝显性雄性不育基因的延长随机引物扩增DNA(ERPAD)标记.园艺学报,26(10):23-27.
    王亚馥,胡昌勤,林志刚.1984.大白菜雄性不育两用系可育株与不育株的比较分析.园艺学报,11(3):182-185.
    王永飞,马三梅,张鲁刚,等.2003.大白菜细胞质雄性不育系和其保持系的RAPD分析.西北植物学报,23(4):554-560.
    王永勤,曹家树,虞慧芳,等.2003.白菜核雄性不育两用系生理生化特性的分析.园艺学报,30(2):212-214.
    魏宝琴,魏毓棠1995.Ogura不育源结球白菜雄性不育系的选育.中国蔬菜,(5):18-21.
    吴颂如,陈婉芬,周燮.1988.酶联免疫法(ELISA)测定内源植物激素.植物生理学通讯.(5):53-57.
    西南农业大学主编.1989.蔬菜育种学(第二版).北京:中国农业出版社:122-130.
    夏涛,刘纪麟.1994.生长素和玉米素与玉米细胞质雄性不育性关系研究.作物学报,20(1):26-32.
    夏涛.1988.玉米细胞质雄性不育的细胞学及组织抗氰呼吸的研究.[硕士学位论文].武汉:华中农业大学.
    谢彬,刘海河,郭守鹏,等.2009.结球甘蓝胞质雄性不育系与保持系小孢子发育的比较.河北农业大学学报,32(6):29-32.
    辛金霞,戎郁萍.2010.化学杂交剂在植物育种中的应用现状.草业科学,27(3)::124-131.
    徐孟亮,刘艺芳,肖翊华,等.1990.湖北光敏核不育水稻幼穗发育中内源IAA的变化.华中农业大学学报,9(4):381-386.
    许忠民,张恩慧,程永安,等.2007.抗病优质甘蓝品种绿球66选育及其栽培特性.北方园艺,(6):1-3.
    许忠民.2004.甘蓝胞质雄性不育性及其机理研究.[硕士学位论文].杨凌:西北农林科技大学.
    杨光圣,瞿波,傅廷栋.1996.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究.华中农业大学学报,18(6):520-523.
    杨光圣.1988.甘蓝型油菜(B. napus. L)雄性不育细胞质的初步分类.华中农业大学油菜研究年报,13-14.
    杨淑慎,高俊凤.2001.活性氧、自由基与植物的衰老.西北植物学报,21(2):215-220.
    杨晓云,曹寿椿.1997.不结球白菜波里马胞质雄性不系花药发育的细胞形态学研究.南京农业大学学报,20(3):36-43.
    易平,黄靖宇,刘义,等,2004,高等植物线粒体内RNA编辑的研究进展,作物学报,30(7):735-738。
    于滟,曾凡亚,赵云,等.1999.甘蓝型油菜"79-7"细胞核雄性不育基因RAPD分子标记初步研究.西 南农业大学学报,12:111-115.
    余凤群,傅廷栋.1990.甘蓝型油菜几个雄性不育花药发育的细胞形态学研究.武汉植物学研究,8(3):209-216.
    袁虎林,刘宏伟,张改生.2002.化学杂交剂BAU9403诱导雄性不育与不同小麦品种互相效应的研究.西北农业学报,11(3):13-16.
    袁建玉,侯喜林,李萍芳.2006.不结球白菜胞质雄性不育新种质花蕾和叶片中活性氧代谢的变化.南京农业大学学报,29(1):18-20.
    张德双,张风兰,王永健,等.2006.大白菜CMS96细胞质雄性不育分子特性研究.分子植物育种,4(4):545-552.
    张凤兰,冯忠梅,张德双,等.2007.大白菜新型细胞质雄性不育生理生化机制的研究.华北农学报,22(5):101-105.
    张鲁刚,柯桂兰.1999.大白菜胞质雄性不育系和保持系同工酶及可溶性蛋白质分析.西北农业学报,8(4):67-70.
    张明方,陈竹君,汪炳良,等.1997.榨菜胞质雄性不育系和保持系花器发育过程中内源激素变化.浙江农业大学学报,23(2):154-157.
    张明义,许钢垣,曹亚萍,等.1997.SC2053诱导小麦雄性不育技术研究初报.山西农业科学,25(3):19-23.
    张明永,梁承邺,段俊,等.1997.油菜细胞质雄性不育系发育进程中活性氧的代谢.植物学报,39(5):480-482.
    张书芳,宋兆仲,赵雪云.1990.大白菜细胞核基因互作雄性不育系选育及应用模式.园艺学报,17(2):117-125.
    张体德,张海洋,郑永战,等.2004.芝麻雄性核不育系氨基酸含量变化初探.中国油料作物学报,26(4):93-95.
    张耀文,尚毅,李永红.2003.新型化学杂交剂SX21对甘蓝型油菜GMS的作用效果研究.西北农业学报,12(3):57-61.
    张战凤,张鲁刚,王绮,等.2006a.大白菜线粒体DNA有效、快速提取方法.生物技术,16(3):48-50.
    张战凤,张鲁刚,王琦,等.2006b.大白菜胞质雄性不育系育性相关线粒体DNA片断的克隆及序列分析.西北农学报,15(3):112-115.
    张子学,罗育淮.2002.辣椒核—质互作雄性不育与叶、蕾中内源激素含量的关系.安徽技术师范学院学报,16(2):5-7.
    赵会芳,巩振辉,赵利民,等.2009.大白菜萝卜细胞质雄性不育系RC7花药发育的解剖学和同工酶研究.中国农业大学学报,14(2):64-69.
    赵会杰,刘华山,林学梧,等.1996.小麦胞质不育系花药败育与活性氧代谢关系的研究.作物学报,22:365-367.
    赵前程,耿宵,陈雪平,等.2002.花椰菜雄性不育系小孢子发育过程及其POD活性.华北农学报,17(2):108-111.
    赵双宜,粟冀玫,张燕君,等.1994.萝卜雄性不育系个体发育中的同工酶研究.中国农业科学,27(1):18-24.
    赵玉锦,童哲,陈华君,等.1996.内源植物激素与光敏核不育水稻农垦58S育性的关系.植物学报,38(12):936-941.
    赵佐宇,谷明光.1988.化学药剂诱导玉米孤雌生殖植株的细胞遗传学研究.遗传学报,(2):18.
    周长久,张露,李继耕.1994.萝卜雄性不育性的几种特性研究,园艺学报,21(1):45-49.
    周光宇.1983.有关同工酶的几个问题.植物生理学通讯,(1):1-4.
    朱玉英,龚静,吴晓光,等.2002.青花菜细胞质雄性不育系叶绿素和内源激素含量变异初探.上海农业学报,18(4):42-46.
    庄木,方智远,刘玉梅,等.2008.近年来春甘蓝育种研究进展.中国十字花科蔬菜研究进展.北京:‘中国农业科学技术出版社,8-10.
    庄木,方智远,孙培田,等.2001.用显性雄性不育系配制的甘蓝新品种“中甘16”“中甘17".园艺学报,28(2):183.
    邹佳,蔺万煌,罗红兵,等.2009.玉米C 型胞质雄性不育与可溶性糖、可溶性蛋白、游离脯氨酸含量的关系.湖南农业大学学报(自然科学版),35(3):249-251.
    Ahokas H.1982.Cytoplasmic male sterility in barley:Evidence for the involvement of cytokinins in fertility restoration. Proceedings of the National Academy of Science,79:7605-7608.
    Ahokas H.1978.Cytoplamics male sterility II. Physiology and cytology of msms I. Hereditas Land,89:7-21.
    Anstey T H, Moore J F. 1954. Inheritance of glossy foliage and cream petals in green sprouting broccoli. J. Hered.,45:39-41.
    Attia M S.1950.Self-incompatibility and the production of hybridcabbagd seed. Proc Amer Soc Hort Sci, 56:369-71.
    Bannerot T, Boulidard L, Cayderon Y and Tempe J.1974. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Eucarpia Meeting on Cruciferae. Dundee. Scotland,52-54.
    Borechers EA.1966.Characteristics of a male sterile mutant in purple cauliflower (B. Oleracea L.). Proc Am Soc Hortic Sci,88:406-410.
    Budar F and Pelletier G.2001. Male sterility in Plants:occurrence, determinism, significance and use. Comptes Rendus de L'Academie des Sciences Paris,324:543-550.
    Cardi T, Earle E D.1995.Transfer of CMS 'Anand' cytoplasm from Brassica rapa to B. oleracea through protoplast fusion. Eucarpia Cruciferae Newsletter,17:44-45.
    Chatterjee SS and Swarup V.1972.Indian cauliflower has a still greater future. Indian Hortic.,17:18-20.
    Chetrit P.1985. Mitoehondrial DNA polymorphism induced by Protoplast fusion in cruciferae. Theor Appl Genet,69:361-366.
    Chiang M S and Crete R.1987.Cytoplasmic male sterility in Brassica oleracea induced by B. napus cytoplasm, female fertility and restoration of male fertileity. Can J Plant Sci,67:891-897.
    Christey M C, Makaroff C A, Earle E D.1991.Atrazine-resistant cytoplasmic male-sterile-nigra broccoli obtained by protoplast fusion between cytoplasmic male-sterile Brassica oleracea and atrazine-resistant Brassica campestris. Theor Appl Genet,83:201-208.
    Cole K.1959.1nheritance of male sterility in green sprouting broccoli. Can J Genet Cytol,1:203-207.
    Cross J W, Ladyman J A R.1991.Chemical agents that inhibit pollen development:tools for research. Sex Plant Reproduction,4(4):235-243.
    Dat J, Vandenabeele S, Vranova E, et al.2000.Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences (CMLS),57(5):779-795.
    Dickson M H.1970. A temperature sensitive male sterile gene in broccoli, Brassica oleracea L. var. italica. J Am Soc Hortic Sci,95:13-14.
    Edwarson J R.1956.Cytoplasmic male-sterility, A The Botanical Review,22:696-738.
    Erickson L, Grant I.and Beversdorf W.1986. Cytoplasmic male sterility in rapeseed (Brassica napus L.) I.Restriction patterns of chloroplast and mitochondrial DNA, TheorAppl Genet,72(2):145-150.
    Fang Z Y, Sun P T, Liu Y M, et al.1995. Priliminary study on the inheritance of male sterility in cabbage line 79-399-438. Acta Horticulturae(ISHS),402:414-417.
    Fang Z Y, Sun P T, Liu Y M, et al.1997.A male-sterile line with dominant gene (Ms) in cabbage and its utilization for hybrid seed production. Euphytica,97:265-268.
    Franke R.1979.Chloroplast DNA variation of isonuclear male sterile lines of Nicotiana. Mol Gen Genet, 169:129-135.
    Fukasawa H.1954. On the free amino acid in anthers of MS wheat and maize. Jourt Genet,29 (4):135-137.
    Goss J A.1968.Development, physiology and biochemistry of corn and wheat pollen. The Botanical Review,34(3):333-359.
    Grant I. Beversdorf W D, Peterson R L.1968.A comparative light and electron microscopic study of microspore and tapetal development in male fertile and cytoplasmic male sterile oilseed rape (Brassica napus). Can J Bot,72(11):1055,1068.
    Graybosch R A, Palmer R G.1985. Male sterility in Soybean (Glycinem max). Amer J Bot,72 (11): 1738-1750.
    Gregoty G Brown, Mona Domaj.1998. Molecular analysis of Brassica CMS and its application to hybrid seed production. Acta Hort,459:265-274.
    Grelon M, Budar F, Bonhomme S, Pelletier G.1994. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet,243:540-547.
    Hammond-Kosack K E,Jones J D G.1996. Resistance gene-dependent plant defense responses. The Plant Cell Online, Am Soc Plant Biol.8:1773-1791.
    Handa H, Nakajinia K.1992. Different organization and altered transcription of the mitochondrial atp6 gene in the male-sterile cytoplasm of rapeseed (Brassica napus L.). Current Genetics,21(2):153-159.
    Hanson M R and Bentolila S.2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. The Plant Cell.16:154-169.
    Hanson M R.1991.Plant mitochondrial mutations and sterility. Annuual Review of Genetics,25:461-486.
    Heath R L,Packer L.1968.Photoperoxidation in isolated chloroplasts I. kinetics and stoichiometry of fatty acid peroxidation.Archives of Biochemistry and Biophysics,125:189-198.
    Jean M, G G Brown, B S Landry.1998. Targeted mapping approaches to identify DNA markers linked to Rfp I restorer genes for the "Polima" CMS of canola (Brassica napus L.). Theor Appl Genet, 97:431-438.
    Johnson A G.1958.Male sterility in Brassica. Nature,182:1523.
    Jourdan P S, Earle E D, Mutsehler M A.1989.Synthesis of male sterile, atriazine-resistance Brassica napus by somatic hybridization between cytoplasmic male sterile B. oleracea and atrazine-resistant B. campestris. Theor Appl Genet,78:445-455.
    Kadowakik, Suzukit, Kazame S.1990. A chimeric gene containing the 5'portion of atp6 is associated with cytoplasmic male sterility of rice. Mol Gen Genet,224:10-16.
    Kao H M,Keller W S,Gleddie S and Brown G G.1992.Synthesis of Brassica oleracea/Brassica napus somatic hybrid plants with novel organelle DNA compositions. Theor. Appl. Genet.,83:313-320.
    Kaul M L H.1988.Male Sterility in Height Plants.Berlin:Springer-Verleg,193-220.
    Kochba J,Lave E S,Spiegel-Roy P.1977.Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic"Shamouti" orange ovular callus lines.Plant Cell Physiology,18:463-467.
    Laser K D, Lersten N R.1972. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev,38 (3):425-454.
    Laser K.D.1972.A light and abdelectron microscope study of the staman vascular bundle in cytoplasmic male sterile and normal sorghum bicolor. Amer Jour Bot,59:653.
    Leroy P, Bazatoux S, Quetier F.1985. A comparison between mitochondrial DNA of an isogenic male-sterile(S) and male-fertile(F) couple (HA89) of sunflower. Cur Genot,9:245-251.
    Levings C S, Pring D R.1976. Restriction endonuelease analysis of mitochondria DNA from normal, Texas cytop lasmic male sterile maize. Science,193:158-169.
    Levings C S.1990. The Texas cytoplasm of maize:cytoplasmic male sterility and disease susceptibility, Science,250(4983):942-947.
    Li S Q,Wan C X,Kong J,Zhang Z J,Li Y S,Zhu Y G 2004.Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria.Functional Plant Biology, 31:369-376.
    Linke B, Borner T.2005. Mitochondrial effects on flower and pollen development. Mitochondrion, 5:389-402.
    Liu H W, Zhang G S,Wang J W, et al.2003.Effect of male sterility on different wheat genotype induced by SQ21. Northwest Sci2Tech Univ Agric & For (Nat. Sci. Edn.),31 (4):15-18.
    Mahipal-singh, Brown G G, Singh M.1991. Suppression of cytoplasmic male sterility by nuclear gene alters expression of a novel mitochondrial gene region. Plant Cell,3(12):1349-1362.
    Mariani C, Beuckeleer M D, Truettner J, et al.1990.Induction of male sterility in plants by a chimeric ribonuclease gene. Nature,347 (25):737-741.
    McCormick S.1981.Induction of an alloplasmic male sterile Brassica oleracea by substituting cytoplasm from "early Scarlet globe"(Raphanus sativus). Euphytica,30:855-859.
    Nieuwhof M.1965.Ten year's breeding work on cabbage crops(1953-1963).Land bouwclocumentatie,21: 1067-1097
    Nieuwhof M.1961. Male Sterility in some cole crops. Euphytica,10:351-356.
    Nieuwhof M.1968.Effects of temperature on the expression of male sterility in Brussels sprouts(Brassica oleracea L. var. gemmifera). Euphytica,17:265-273.
    Nishi S and Hiraoka T.1958.Studies on F1 hybrid vegetable crops.(1)Studies on the utilization of male sterility on F1 seed production I. Histological studies on the degenerative process of male sterility in some vegetable crops. Bull. Natl/Inst. Agric. Jpn.,ser. E,6:1-41.
    Nuzia S, Teodoro C, Laurence M D.2001. Mitochondrial DNA and RNA isolation from small amounts of potato tissue. Plant Molecular Biology Reporter,19:67a-67h.
    Odland M L.1950. The utilization of cross-compatibility and self-incompatibility in the production of F1 hybrid cabbage. Proc Amer Soc Hort,55:391-402.
    Ogura H.1968.Studies on the new male sterility in Japanese radish with special reference to the utilization of this sterlity towards the practical raising of hybrid seeds. Mern Fac Agri Kagoshima University, 6(2):39-78.
    Patterson B D, Macke E A, Ferguson I B.1984. Estimation of hydrogen peroxide in plant extracts,using titanium(IV).Analytical Biochemistry,139:487-492.
    Pelletier G, Ferrault M, Laucelin D and Boulidard L.1989. CMS Brassica Oleracea cybrids and their potentiall for hybrid seed production.12th Eucarpia congerss, Gottinggen,11 (7):15.
    Pelletier G, Primard C.1983. Intergeneric cytoplasmic hybridization in cruciferae by protoplast fusion. Mol Gen Genet,191:244-250.
    Polowick P L.Sawhney V K.1990.Microsporogenesis in a normal line and in the Ogu cytoplasmic male-sterile line of Brassica napus. Sex Plant Report,3:263-276.
    Rehm S.1952.Male sterile plant s by chemical treatment. Nature,179:38-39.
    Reynaerts A, Van de W H, De Sutter G, et al.1993. Engineered genes for fertility control and their application in hybrid seed production. Sci Hortic,55:125-139.
    Rhoades.1930. Cytoploasmic inheritance of male sterility in Zea mays. Science,73:340-341.
    Robertson D.1987. Somatic hybridization of cytoplasmic male sterile B. oleracea and atriazine resistant B. campestris. Theor Appl Genet,74(3):303-309.
    Ruffino-chable V, Bellis H and Herve Y.1993.A dominant gene for male sterility in cauliflower (Brassica oleracea var. botrytis). Phenotype expression, inheritance and use in F1 hybrid production. Euphytica,67:9-17.
    Rundfeldt,H.1960, Untersuchungen zur zichtung des kopfkohls (B. oleraceaL. var. capitata), Z.Pflanzenziicht,44:30-62.
    Sampson D R.1966.Genetic analysis of Brassica oleracea using nine genes from sprouting broccoli. Can J Genet Cytol,8:404-413.
    Sawhney V K, Shukla A.1994.Male sterility in flowering plants are plant growth substances involved. American Journal of Botany,81(12):1640-1647.
    Sawhney V K.1974. Morphogenesis of the stamenless-2 mutant in tomato. Ⅲ Relative levels of gibberellins in the normal and mutant plants. J. Exper. Bot.25:1004-1009.
    Shamon S, Guardia M D.1969.Sex expression and the produetion of ethylene induced by auxin in the cucumber (Cucumis sarivus L.). Nature,223:186-190.
    Shiga T.1971. Cytoplasmic male sterility in rape plant. Japan J Breed,21(2):15-17.
    Shiga T.1973. Cytoplasmic male sterility in oil seed rape and its utilization to breeding. Japan J Breed,23 (4):187-197.
    Shukla A, Sawhney V K.1992. Cytokinins in a genic male sterile line of B rassica napus. Physiol Plant, 85:23-29.
    Shukla A, Sawhney V K.1994. A bscisic acid:one of the factors affecting male sterility in B rassica napus. Physiol Plant,91:522-528.
    Singh S, Sawhney V K, Pearce D W.1992a.Temperature effects on endogenous indole-3-aceticacid levels in leaves and stamens of the normal and male sterile "stamenless-2" mutant of tomato (Lycoperrsi-con esculentum M ill). Plant Cell & Enviroment.15:373-377.
    Singh S, Sawhney V K.1992b. Cytokinins and abscisic acid in roots of the stamenless-2 mutant of tomato. Reports of the Tomato Genetics Cooperative,42:34-35.
    Theissen G and Saedler H.2001. Floral quartets. Nature,409:469-471.
    Touzet P, Budar F.2004. Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility.Trends in Plant Science,9:568-570.
    Vedel F.1982.Comparative micromolecular analysis of the cytoplasms of normal and cytoplasmic male sterile Brassica napus. Theor Appl Genet,62:255-262.
    Walters T W,Mutschler M A and Earle E D.1992.Protoplast fusion-derived Ogura male sterile cauliflower with cold tolerance. Plant cell Pep,10:624-628.
    Wang H M, Ketela T, Kellerw A, et al.1995.Genetic correlation of the orf224/atp6 gene region with polima CMS in Brassica somatic hybrids. Plant Mol Biol,27:801-807.
    Yarrow S A, Burnett L A, Wildeman R D,et al.1990. The transfer of polima cytoplasmic male sterility from oilseed rape (Brassica napus) to broccoli (B. oleracea) by protoplast fusion. Plant cell Rep,9 (4):185-188.
    Yesodi V, Izhar S, Hauschner H, et al.1997.Homologous recombination involving cox Ⅱ is responsible for mutation in the CMS-specific mitochondrial locus of Petunia. Mol Gen Genet,255:106-114.
    Zhu G L, Deng X W, Zuo W N.1984. Studies on the free amino acid content in anthers of malesterile and fertile plants of Taigu wheat, with special reference to free proline content. Acta Botanica Sinica, 26(6):616-622.
    Zhu G L, Sun C, Cao Z Z.1985. The source and utilization of praline in anthers of normal Taigu wheat plants and their possible rlation to the abortion of sterile anthers. Acta Phytophysiologica Sinica,11(2): 122-129.
    Zobala G, Gabay-laughnan S, Laughna J R.1997. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics,147: 847-860.
    Zuberi S, Ahmad A, Zuberi M I.1988.Male sterility in rapeseed Brassica campestris L. Development of male fertile and genie male sterile anthers. Phytomorphology,38(2.3):219-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700